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Some applications of graph theory in daily life
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1) Eulerian graphs and the Königsberg bridge problem



The seven bridges of Königsberg

The Königsberg bridge problem

Is it possible to find a walk through Königsberg that passes exactly
once over each of the seven bridges and returns to the starting
point?
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Graphs: definition and properties

Definition (graph)

A graph is a mathematical object that is constituted of points
(called vertices or nodes) and edges between pairs of these points.
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Graphs: definition and properties

The meaning of the vertices and edges might differ from case to
case.

Examples: Vertices and edges can represent:

persons and the fact that they know each other

junctions and streets

cities and transport connections

configurations of a Rubik’s cube and the fact that one
configuration can be reached from another in one single move

. . .

⇒ Numerous problems can be modelled by graphs!

University of Luxembourg Graph Theory



Graphs: definition and properties

The meaning of the vertices and edges might differ from case to
case.

Examples: Vertices and edges can represent:

persons and the fact that they know each other

junctions and streets

cities and transport connections

configurations of a Rubik’s cube and the fact that one
configuration can be reached from another in one single move

. . .

⇒ Numerous problems can be modelled by graphs!

University of Luxembourg Graph Theory



Graphs: definition and properties

The meaning of the vertices and edges might differ from case to
case.

Examples: Vertices and edges can represent:

persons and the fact that they know each other

junctions and streets

cities and transport connections

configurations of a Rubik’s cube and the fact that one
configuration can be reached from another in one single move

. . .

⇒ Numerous problems can be modelled by graphs!

University of Luxembourg Graph Theory



Graphs: definition and properties

The meaning of the vertices and edges might differ from case to
case.

Examples: Vertices and edges can represent:

persons and the fact that they know each other

junctions and streets

cities and transport connections

configurations of a Rubik’s cube and the fact that one
configuration can be reached from another in one single move

. . .

⇒ Numerous problems can be modelled by graphs!

University of Luxembourg Graph Theory



Graphs: definition and properties

The meaning of the vertices and edges might differ from case to
case.

Examples: Vertices and edges can represent:

persons and the fact that they know each other

junctions and streets

cities and transport connections

configurations of a Rubik’s cube and the fact that one
configuration can be reached from another in one single move

. . .

⇒ Numerous problems can be modelled by graphs!

University of Luxembourg Graph Theory



Graphs: definition and properties

The meaning of the vertices and edges might differ from case to
case.

Examples: Vertices and edges can represent:

persons and the fact that they know each other

junctions and streets

cities and transport connections

configurations of a Rubik’s cube and the fact that one
configuration can be reached from another in one single move

. . .

⇒ Numerous problems can be modelled by graphs!

University of Luxembourg Graph Theory



Graphs: definition and properties

The meaning of the vertices and edges might differ from case to
case.

Examples: Vertices and edges can represent:

persons and the fact that they know each other

junctions and streets

cities and transport connections

configurations of a Rubik’s cube and the fact that one
configuration can be reached from another in one single move

. . .

⇒ Numerous problems can be modelled by graphs!

University of Luxembourg Graph Theory



Graphs: definition and properties

The meaning of the vertices and edges might differ from case to
case.

Examples: Vertices and edges can represent:

persons and the fact that they know each other

junctions and streets

cities and transport connections

configurations of a Rubik’s cube and the fact that one
configuration can be reached from another in one single move

. . .

⇒ Numerous problems can be modelled by graphs!

University of Luxembourg Graph Theory



The graph of the Königsberg problem

Here: vertices = different districts of Königsberg
edges = bridges connecting the corresponding districts

The Königsberg bridge problem (‘graph version’)

Is it possible to traverse the graph of Königsberg (starting at an
arbitrary vertex) using each edge exactly once and return to the
starting vertex?
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Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian
graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does
there exist a eulerian cycle?)

What about other cities/graphs?

Are there conditions that guarantee that a graph is eulerian?
→ Activity

University of Luxembourg Graph Theory



Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian
graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does
there exist a eulerian cycle?)

What about other cities/graphs?

Are there conditions that guarantee that a graph is eulerian?
→ Activity

University of Luxembourg Graph Theory



Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian
graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does
there exist a eulerian cycle?)

What about other cities/graphs?

Are there conditions that guarantee that a graph is eulerian?
→ Activity

University of Luxembourg Graph Theory



Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian
graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does
there exist a eulerian cycle?)

What about other cities/graphs?

Are there conditions that guarantee that a graph is eulerian?
→ Activity

University of Luxembourg Graph Theory



Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian
graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does
there exist a eulerian cycle?)

What about other cities/graphs?

Are there conditions that guarantee that a graph is eulerian?

→ Activity

University of Luxembourg Graph Theory



Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian
graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does
there exist a eulerian cycle?)

What about other cities/graphs?

Are there conditions that guarantee that a graph is eulerian?
→ Activity

University of Luxembourg Graph Theory



Euler’s and Hierholzer’s theorem

For a vertex A, we call the number of edges connected to A the
degree of A. We write deg(A).

Euler’s theorem (1736)

If a graph is eulerian, all its vertices have an even degree.

Consequence: If a graph has (at least) one vertex of odd degree, it
can not be eulerian!

What about Königsberg?

The graph of Königsberg has vertices of odd degree, hence it is not
a eulerian graph and there is no eulerian cycle!
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Euler’s and Hierholzer’s theorem

Euler: G eulerian ⇒ all vertices have even degree.

Thus: Having only vertices of even degree is a necessary condition
for a graph to be eulerian!

Is it also sufficient?

Hierholzer’s Theorem (1873)

If a graph has only vertices of even degree, it is eulerian.

Finally:

Euler-Hierholzer theorem

G is eulerian ⇔ all the degrees of G are even.
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Euler’s theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an
even degree.

Since G is eulerian, there exists a eulerian cycle.
Let A be an arbitrary vertex of G .
Denote by nA the number of times this cycle passes through A

⇒ At each passage through A, the cycle ‘consumes’ two edges
connected to A

⇒ After nA passages, 2× nA edges are ‘consumed’

⇒ deg(A) ≥ 2× nA

Suppose now that deg(A) > 2× nA ⇒ There is (at least) one edge
connected to A that is not included in the eulerian cycle
Impossible!
Hence: deg(A) = 2× nA (= even)!
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Hierholzer’s theorem: proof

b) Let G be a graph having only vertices of even degree. We show:
G is eulerian

Consider Hierholzer’s algorithm:
1) Choose a starting vertex

2) Generate a cycle starting at this vertex, such that no
edge is used twice. Highlight the edges contained in
this cycle.

3) If all the edges of G are highlighted → 7).
Else → 4)

4) Choose a vertex of G to which non-highlighted
edges are connected

5) Generate a cycle starting at this vertex, such that
- no edge is used twice
- no highlighted edge is used
Highlight the edges of the new cycle.

6) Go to 3)

7) Merge the different cycles, that is:
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Hierholzer’s theorem: proof

⇒ the resulting cycle is a eulerian cycle!
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Hierholzer’s theorem: proof

This procedure always works, provided that all the vertices have
even degree:

From an arbitrary starting point, it is always possible to
generate a cycle, such that no edge is used twice (why?)

Every vertex of the subgraph containing only the
non-highlighted edges has even degree

⇒ If all the vertices of a graph G have an even degree, it is always
possible to construct a eulerian cycle be means of Hierholzer’s
algorithm

⇒ G is eulerian!
→ Activity
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One more time: The Königsberg problem

Euler’s theorem implies that the Königsberg
bridge problem has no solution.

Question:

How many bridges must be added (at least) to Königsberg (and
where), in order that the problem has a solution?
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Semi-eulerian graphs, eulerian paths

Variation of the Königsberg problem:

Is it possible to find a walk through Königsberg that passes exactly
once over each of the seven bridges without returning to the
starting point?

Equivalent: Is it possible to traverse the graph of Königsberg
(starting at an arbitrary vertex) using each edge exactly once
without returning to the starting vertex?

A graph that may be traversed in this way is called a semi-eulerian
graph and such a passage is called eulerian path.
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Semi-eulerian graphs, eulerian paths

Theorem

A graph is semi-eulerian if and only if it has exactly two vertices of
odd degree.
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Semi-eulerian graphs, eulerian paths

a) Let G be a semi-eulerian graph. We show: Exactly two vertices
of G have an odd degree.

Since G is semi-eulerian, there exists a eulerian path.
Denote by A the starting vertex, and by B the ending vertex of this
path.

Create G ′ by adding an edge between A and B

⇒ G ′ has a eulerian cycle

⇒ Every vertex of G ′ has even degree

⇒ G has exactly two vertices of odd degree
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Semi-eulerian graphs, eulerian paths

b) Let G be a graph that has exactly two vertices with an odd
degree. We show: G is a semi-eulerian graph (i.e. there exists a
eulerian path)

Denote by A and B the two vertices of odd degree. Create G ′ by
adding an edge between A and B.

⇒ Every vertex of G ′ has an even degree

⇒ G ′ possesses a eulerian cycle

⇒ G possesses a eulerian path

Remark:

The two vertices of odd degree are necessarily the starting and end
points of every eulerian path!
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Semi-eulerian graphs, eulerian paths

What about Königsberg?

The graph of Königsberg has four vertices of odd degree, hence it
is not a semi-eulerian graph and there is no eulerian path!
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Application example: refuse collection

From a given starting point (for
example a dump), a refuse
collection vehicle must pass
through each street of a given
street network and return to its
starting point.

What is the shortest route the vehicle may take?

→ If there exists a route that passes exactly once through each
street, this route is as short as possible!

Problem: The graph representing a street network is not, in
general, a eulerian graph!

Problem (1962):

Given a non-eulerian graph, find the shortest cycle that uses each
edge at least once.
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general, a eulerian graph!

Problem (1962):

Given a non-eulerian graph, find the shortest cycle that uses each
edge at least once.
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Application example: refuse collection

If there is no eulerian cycle, there are streets where the vehicle has
to pass more than once! (that one tries to minimize)

The shortest cycle is then found as follows:

Since the graph is non-eulerian, there are vertices of odd
degree

Observation

In every graph, the number of vertices of odd degree is even.

Proof: Sum of all degrees = 2 × number of edges = even
⇒ Sum of odd degrees = even
⇒ The number of vertices of odd degree is even
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Application example: refuse collection

Idea: Add additional edges between pairs of vertices of odd
degree, such that:

the resulting graph is eulerian

the total length of the streets
represented by the additional
edges is as short as possible

Find a eulerian cycle in the resulting graph, this is the shortest
route for the vehicle, as the total length of the streets it
passes more than once is as short as possible!

Other examples: the postman (‘Chinese postman problem’), route
maintenance, winter road clearance,...
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