Find the shortest path? Thanks to graph theory!

University of Luxembourg

Thierry Meyrath
David Kieffer
Marco Breyer
Gabor Wiese
Bruno Teheux
Antonella Perucca

Some applications of graph theory in daily life

1) Eulerian graphs and the Königsberg bridge problem

The seven bridges of Königsberg

The seven bridges of Königsberg

The Königsberg bridge problem

The seven bridges of Königsberg

The Königsberg bridge problem

Is it possible to find a walk through Königsberg that passes exactly once over each of the seven bridges and returns to the starting point?

Graphs: definition and properties

Graphs: definition and properties

Definition (graph)

Graphs: definition and properties

Definition (graph)

A graph is a mathematical object that is constituted of points (called vertices or nodes) and edges between pairs of these points.

Graphs: definition and properties

Definition (graph)

A graph is a mathematical object that is constituted of points (called vertices or nodes) and edges between pairs of these points.

Graphs: definition and properties

Graphs: definition and properties

The meaning of the vertices and edges might differ from case to case.

Graphs: definition and properties

The meaning of the vertices and edges might differ from case to case.

Examples: Vertices and edges can represent:

Graphs: definition and properties

The meaning of the vertices and edges might differ from case to case.

Examples: Vertices and edges can represent:

- persons and the fact that they know each other

Graphs: definition and properties

The meaning of the vertices and edges might differ from case to case.

Examples: Vertices and edges can represent:

- persons and the fact that they know each other
- junctions and streets

Graphs: definition and properties

The meaning of the vertices and edges might differ from case to case.

Examples: Vertices and edges can represent:

- persons and the fact that they know each other
- junctions and streets
- cities and transport connections

Graphs: definition and properties

The meaning of the vertices and edges might differ from case to case.

Examples: Vertices and edges can represent:

- persons and the fact that they know each other
- junctions and streets
- cities and transport connections
- configurations of a Rubik's cube and the fact that one configuration can be reached from another in one single move

Graphs: definition and properties

The meaning of the vertices and edges might differ from case to case.

Examples: Vertices and edges can represent:

- persons and the fact that they know each other
- junctions and streets
- cities and transport connections
- configurations of a Rubik's cube and the fact that one configuration can be reached from another in one single move - ...
\Rightarrow Numerous problems can be modelled by graphs!

The graph of the Königsberg problem

The graph of the Königsberg problem

The graph of the Königsberg problem

The graph of the Königsberg problem

The graph of the Königsberg problem

Here: vertices $=$ different districts of Königsberg edges $=$ bridges connecting the corresponding districts

The graph of the Königsberg problem

Here: vertices $=$ different districts of Königsberg edges $=$ bridges connecting the corresponding districts

The Königsberg bridge problem ('graph version')

Is it possible to traverse the graph of Königsberg (starting at an arbitrary vertex) using each edge exactly once and return to the starting vertex?

Eulerian graphs, eulerian cycles

Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does there exist a eulerian cycle?)

Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does there exist a eulerian cycle?)

What about other cities/graphs?

Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does there exist a eulerian cycle?)

What about other cities/graphs?

Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does there exist a eulerian cycle?)

What about other cities/graphs?

Are there conditions that guarantee that a graph is eulerian?

Eulerian graphs, eulerian cycles

A graph that may be traversed in this way is called a eulerian graph and such a circuit is called eulerian cycle.

Question: Is the Königsberg graph a eulerian graph? (i.e. does there exist a eulerian cycle?)

What about other cities/graphs?

Are there conditions that guarantee that a graph is eulerian?
\rightarrow Activity

Euler's and Hierholzer's theorem

Euler's and Hierholzer's theorem

For a vertex A, we call the number of edges connected to A the degree of A . We write $\operatorname{deg}(A)$.

Euler's and Hierholzer's theorem

For a vertex A, we call the number of edges connected to A the degree of A . We write $\operatorname{deg}(A)$.

Euler's theorem (1736)

Euler's and Hierholzer's theorem

For a vertex A, we call the number of edges connected to A the degree of A . We write $\operatorname{deg}(A)$.

Euler's theorem (1736)
If a graph is eulerian, all its vertices have an even degree.

Euler's and Hierholzer's theorem

For a vertex A, we call the number of edges connected to A the degree of A . We write $\operatorname{deg}(A)$.

Euler's theorem (1736)
If a graph is eulerian, all its vertices have an even degree.
Consequence:

Euler's and Hierholzer's theorem

For a vertex A, we call the number of edges connected to A the degree of A . We write $\operatorname{deg}(A)$.

Euler's theorem (1736)

If a graph is eulerian, all its vertices have an even degree.
Consequence: If a graph has (at least) one vertex of odd degree, it can not be eulerian!

Euler's and Hierholzer's theorem

For a vertex A, we call the number of edges connected to A the degree of A . We write $\operatorname{deg}(A)$.

Euler's theorem (1736)

If a graph is eulerian, all its vertices have an even degree.
Consequence: If a graph has (at least) one vertex of odd degree, it can not be eulerian!

What about Königsberg?

Euler's and Hierholzer's theorem

For a vertex A, we call the number of edges connected to A the degree of A . We write $\operatorname{deg}(A)$.

Euler's theorem (1736)

If a graph is eulerian, all its vertices have an even degree.
Consequence: If a graph has (at least) one vertex of odd degree, it can not be eulerian!

What about Königsberg?

Euler's and Hierholzer's theorem

For a vertex A, we call the number of edges connected to A the degree of A . We write $\operatorname{deg}(A)$.

Euler's theorem (1736)

If a graph is eulerian, all its vertices have an even degree.
Consequence: If a graph has (at least) one vertex of odd degree, it can not be eulerian!

What about Königsberg?

The graph of Königsberg has vertices of odd degree, hence it is not a eulerian graph and there is no eulerian cycle!

Euler's and Hierholzer's theorem

Euler's and Hierholzer's theorem

Euler: G eulerian \Rightarrow all vertices have even degree.

Euler's and Hierholzer's theorem

Euler: G eulerian \Rightarrow all vertices have even degree.
Thus: Having only vertices of even degree is a necessary condition for a graph to be eulerian!

Euler's and Hierholzer's theorem

Euler: G eulerian \Rightarrow all vertices have even degree.
Thus: Having only vertices of even degree is a necessary condition for a graph to be eulerian!

Is it also sufficient?

Euler's and Hierholzer's theorem

Euler: G eulerian \Rightarrow all vertices have even degree.
Thus: Having only vertices of even degree is a necessary condition for a graph to be eulerian!

Is it also sufficient?
Hierholzer's Theorem (1873)

Euler's and Hierholzer's theorem

Euler: G eulerian \Rightarrow all vertices have even degree.
Thus: Having only vertices of even degree is a necessary condition for a graph to be eulerian!

Is it also sufficient?

Hierholzer's Theorem (1873)

If a graph has only vertices of even degree, it is eulerian.

Euler's and Hierholzer's theorem

Euler: G eulerian \Rightarrow all vertices have even degree.
Thus: Having only vertices of even degree is a necessary condition for a graph to be eulerian!

Is it also sufficient?

Hierholzer's Theorem (1873)

If a graph has only vertices of even degree, it is eulerian.
Finally:

Euler's and Hierholzer's theorem

Euler: G eulerian \Rightarrow all vertices have even degree.
Thus: Having only vertices of even degree is a necessary condition for a graph to be eulerian!

Is it also sufficient?

Hierholzer's Theorem (1873)

If a graph has only vertices of even degree, it is eulerian.
Finally:
Euler-Hierholzer theorem

Euler's and Hierholzer's theorem

Euler: G eulerian \Rightarrow all vertices have even degree.
Thus: Having only vertices of even degree is a necessary condition for a graph to be eulerian!

Is it also sufficient?

Hierholzer's Theorem (1873)

If a graph has only vertices of even degree, it is eulerian.
Finally:
Euler-Hierholzer theorem
G is eulerian \Leftrightarrow all the degrees of G are even.

Euler's theorem: proof

Euler's theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an even degree.

Euler's theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an even degree.

Since G is eulerian, there exists a eulerian cycle.
Let A be an arbitrary vertex of G.
Denote by n_{A} the number of times this cycle passes through A

Euler's theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an even degree.

Since G is eulerian, there exists a eulerian cycle.
Let A be an arbitrary vertex of G.
Denote by n_{A} the number of times this cycle passes through A
\Rightarrow At each passage through A, the cycle 'consumes' two edges connected to A

Euler's theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an even degree.

Since G is eulerian, there exists a eulerian cycle.
Let A be an arbitrary vertex of G.
Denote by n_{A} the number of times this cycle passes through A
\Rightarrow At each passage through A, the cycle 'consumes' two edges connected to A
\Rightarrow After n_{A} passages, $2 \times n_{A}$ edges are 'consumed'

Euler's theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an even degree.

Since G is eulerian, there exists a eulerian cycle.
Let A be an arbitrary vertex of G.
Denote by n_{A} the number of times this cycle passes through A
\Rightarrow At each passage through A, the cycle 'consumes' two edges connected to A
\Rightarrow After n_{A} passages, $2 \times n_{A}$ edges are 'consumed'
$\Rightarrow \operatorname{deg}(A) \geq 2 \times n_{A}$

Euler's theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an even degree.

Since G is eulerian, there exists a eulerian cycle.
Let A be an arbitrary vertex of G.
Denote by n_{A} the number of times this cycle passes through A
\Rightarrow At each passage through A, the cycle 'consumes' two edges connected to A
\Rightarrow After n_{A} passages, $2 \times n_{A}$ edges are 'consumed'
$\Rightarrow \operatorname{deg}(A) \geq 2 \times n_{A}$
Suppose now that $\operatorname{deg}(A)>2 \times n_{A}$

Euler's theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an even degree.

Since G is eulerian, there exists a eulerian cycle.
Let A be an arbitrary vertex of G.
Denote by n_{A} the number of times this cycle passes through A
\Rightarrow At each passage through A, the cycle 'consumes' two edges connected to A
\Rightarrow After n_{A} passages, $2 \times n_{A}$ edges are 'consumed'
$\Rightarrow \operatorname{deg}(A) \geq 2 \times n_{A}$
Suppose now that $\operatorname{deg}(A)>2 \times n_{A} \Rightarrow$ There is (at least) one edge connected to A that is not included in the eulerian cycle

Euler's theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an even degree.

Since G is eulerian, there exists a eulerian cycle.
Let A be an arbitrary vertex of G.
Denote by n_{A} the number of times this cycle passes through A
\Rightarrow At each passage through A, the cycle 'consumes' two edges connected to A
\Rightarrow After n_{A} passages, $2 \times n_{A}$ edges are 'consumed'
$\Rightarrow \operatorname{deg}(A) \geq 2 \times n_{A}$
Suppose now that $\operatorname{deg}(A)>2 \times n_{A} \Rightarrow$ There is (at least) one edge connected to A that is not included in the eulerian cycle Impossible!

Euler's theorem: proof

a) Let G be a eulerian graph. We show: Every vertex of G has an even degree.

Since G is eulerian, there exists a eulerian cycle.
Let A be an arbitrary vertex of G.
Denote by n_{A} the number of times this cycle passes through A
\Rightarrow At each passage through A, the cycle 'consumes' two edges connected to A
\Rightarrow After n_{A} passages, $2 \times n_{A}$ edges are 'consumed'
$\Rightarrow \operatorname{deg}(A) \geq 2 \times n_{A}$
Suppose now that $\operatorname{deg}(A)>2 \times n_{A} \Rightarrow$ There is (at least) one edge connected to A that is not included in the eulerian cycle Impossible!
Hence: $\operatorname{deg}(A)=2 \times n_{A}$ (= even)!

Hierholzer's theorem: proof

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian
Consider Hierholzer's algorithm:

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian

Consider Hierholzer's algorithm:

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian
Consider Hierholzer's algorithm:

1) Choose a starting vertex

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian

Consider Hierholzer's algorithm:

1) Choose a starting vertex
2) Generate a cycle starting at this vertex, such that no edge is used twice. Highlight the edges contained in this cycle.

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian
Consider Hierholzer's algorithm:

1) Choose a starting vertex
2) Generate a cycle starting at this vertex, such that no edge is used twice. Highlight the edges contained in this cycle.
3) If all the edges of G are highlighted $\rightarrow 7$). Else $\rightarrow 4$)

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian
Consider Hierholzer's algorithm:

1) Choose a starting vertex
2) Generate a cycle starting at this vertex, such that no edge is used twice. Highlight the edges contained in this cycle.
3) If all the edges of G are highlighted $\rightarrow 7$). Else $\rightarrow 4$)
4) Choose a vertex of G to which non-highlighted edges are connected

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian

Consider Hierholzer's algorithm:

1) Choose a starting vertex
2) Generate a cycle starting at this vertex, such that no edge is used twice. Highlight the edges contained in this cycle.
3) If all the edges of G are highlighted $\rightarrow 7$). Else $\rightarrow 4$)
4) Choose a vertex of G to which non-highlighted edges are connected
5) Generate a cycle starting at this vertex, such that

- no edge is used twice
- no highlighted edge is used

Highlight the edges of the new cycle.

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian

Consider Hierholzer's algorithm:

1) Choose a starting vertex
2) Generate a cycle starting at this vertex, such that no edge is used twice. Highlight the edges contained in this cycle.
3) If all the edges of G are highlighted $\rightarrow 7$). Else $\rightarrow 4$)
4) Choose a vertex of G to which non-highlighted edges are connected
5) Generate a cycle starting at this vertex, such that

- no edge is used twice
- no highlighted edge is used

Highlight the edges of the new cycle.
6) Go to 3)

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian

Consider Hierholzer's algorithm:

1) Choose a starting vertex
2) Generate a cycle starting at this vertex, such that no edge is used twice. Highlight the edges contained in this cycle.
3) If all the edges of G are highlighted $\rightarrow 7$). Else $\rightarrow 4$)
4) Choose a vertex of G to which non-highlighted edges are connected
5) Generate a cycle starting at this vertex, such that

- no edge is used twice
- no highlighted edge is used

Highlight the edges of the new cycle.
6) Go to 3)

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian
Consider Hierholzer's algorithm:

1) Choose a starting vertex
2) Generate a cycle starting at this vertex, such that no edge is used twice. Highlight the edges contained in this cycle.
3) If all the edges of G are highlighted $\rightarrow 7$). Else $\rightarrow 4$)
4) Choose a vertex of G to which non-highlighted edges are connected
5) Generate a cycle starting at this vertex, such that

- no edge is used twice
- no highlighted edge is used

Highlight the edges of the new cycle.
6) Go to 3)

Hierholzer's theorem: proof

b) Let G be a graph having only vertices of even degree. We show: G is eulerian

Consider Hierholzer's algorithm:

1) Choose a starting vertex
2) Generate a cycle starting at this vertex, such that no edge is used twice. Highlight the edges contained in this cycle.
3) If all the edges of G are highlighted $\rightarrow 7$). Else $\rightarrow 4$)
4) Choose a vertex of G to which non-highlighted edges are connected
5) Generate a cycle starting at this vertex, such that

- no edge is used twice
- no highlighted edge is used

Highlight the edges of the new cycle.
6) Go to 3)
7) Merge the different cycles, that is:

Hierholzer's theorem: proof

Hierholzer's theorem: proof

\Rightarrow the resulting cycle is a eulerian cycle!

Hierholzer's theorem: proof

Hierholzer's theorem: proof

This procedure always works, provided that all the vertices have even degree:

Hierholzer's theorem: proof

This procedure always works, provided that all the vertices have even degree:

- From an arbitrary starting point, it is always possible to generate a cycle, such that no edge is used twice (why?)

Hierholzer's theorem: proof

This procedure always works, provided that all the vertices have even degree:

- From an arbitrary starting point, it is always possible to generate a cycle, such that no edge is used twice (why?)
- Every vertex of the subgraph containing only the non-highlighted edges has even degree

Hierholzer's theorem: proof

This procedure always works, provided that all the vertices have even degree:

- From an arbitrary starting point, it is always possible to generate a cycle, such that no edge is used twice (why?)
- Every vertex of the subgraph containing only the non-highlighted edges has even degree
\Rightarrow If all the vertices of a graph G have an even degree, it is always possible to construct a eulerian cycle be means of Hierholzer's algorithm

Hierholzer's theorem: proof

This procedure always works, provided that all the vertices have even degree:

- From an arbitrary starting point, it is always possible to generate a cycle, such that no edge is used twice (why?)
- Every vertex of the subgraph containing only the non-highlighted edges has even degree
\Rightarrow If all the vertices of a graph G have an even degree, it is always possible to construct a eulerian cycle be means of Hierholzer's algorithm
$\Rightarrow G$ is eulerian!

Hierholzer's theorem: proof

This procedure always works, provided that all the vertices have even degree:

- From an arbitrary starting point, it is always possible to generate a cycle, such that no edge is used twice (why?)
- Every vertex of the subgraph containing only the non-highlighted edges has even degree
\Rightarrow If all the vertices of a graph G have an even degree, it is always possible to construct a eulerian cycle be means of Hierholzer's algorithm
$\Rightarrow G$ is eulerian!
\rightarrow Activity

One more time: The Königsberg problem

One more time: The Königsberg problem

Euler's theorem implies that the Königsberg bridge problem has no solution.

One more time: The Königsberg problem

Euler's theorem implies that the Königsberg bridge problem has no solution.

Question:

One more time: The Königsberg problem

Euler's theorem implies that the Königsberg bridge problem has no solution.

Question:

How many bridges must be added (at least) to Königsberg (and where), in order that the problem has a solution?

Semi-eulerian graphs, eulerian paths

Semi-eulerian graphs, eulerian paths

Variation of the Königsberg problem:

Semi-eulerian graphs, eulerian paths

Variation of the Königsberg problem:
Is it possible to find a walk through Königsberg that passes exactly once over each of the seven bridges without returning to the starting point?

Semi-eulerian graphs, eulerian paths

Variation of the Königsberg problem:

Is it possible to find a walk through Königsberg that passes exactly once over each of the seven bridges without returning to the starting point?

Equivalent: Is it possible to traverse the graph of Königsberg (starting at an arbitrary vertex) using each edge exactly once without returning to the starting vertex?

Semi-eulerian graphs, eulerian paths

Variation of the Königsberg problem:

Is it possible to find a walk through Königsberg that passes exactly once over each of the seven bridges without returning to the starting point?

Equivalent: Is it possible to traverse the graph of Königsberg (starting at an arbitrary vertex) using each edge exactly once without returning to the starting vertex?

A graph that may be traversed in this way is called a semi-eulerian graph and such a passage is called eulerian path.

Semi-eulerian graphs, eulerian paths

Semi-eulerian graphs, eulerian paths

Semi-eulerian graphs, eulerian paths

Semi-eulerian graphs, eulerian paths

Semi-eulerian graphs, eulerian paths

Theorem

Semi-eulerian graphs, eulerian paths

Theorem

A graph is semi-eulerian if and only if it has exactly two vertices of odd degree.

Semi-eulerian graphs, eulerian paths

Semi-eulerian graphs, eulerian paths

a) Let G be a semi-eulerian graph. We show: Exactly two vertices of G have an odd degree.

Semi-eulerian graphs, eulerian paths

a) Let G be a semi-eulerian graph. We show: Exactly two vertices of G have an odd degree.

Since G is semi-eulerian, there exists a eulerian path.
Denote by A the starting vertex, and by B the ending vertex of this path.

Semi-eulerian graphs, eulerian paths

a) Let G be a semi-eulerian graph. We show: Exactly two vertices of G have an odd degree.

Since G is semi-eulerian, there exists a eulerian path.
Denote by A the starting vertex, and by B the ending vertex of this path.

Create G^{\prime} by adding an edge between A and B

Semi-eulerian graphs, eulerian paths

a) Let G be a semi-eulerian graph. We show: Exactly two vertices of G have an odd degree.

Since G is semi-eulerian, there exists a eulerian path.
Denote by A the starting vertex, and by B the ending vertex of this path.

Create G^{\prime} by adding an edge between A and B
$\Rightarrow G^{\prime}$ has a eulerian cycle

Semi-eulerian graphs, eulerian paths

a) Let G be a semi-eulerian graph. We show: Exactly two vertices of G have an odd degree.

Since G is semi-eulerian, there exists a eulerian path.
Denote by A the starting vertex, and by B the ending vertex of this path.

Create G^{\prime} by adding an edge between A and B
$\Rightarrow G^{\prime}$ has a eulerian cycle
\Rightarrow Every vertex of G^{\prime} has even degree

Semi-eulerian graphs, eulerian paths

a) Let G be a semi-eulerian graph. We show: Exactly two vertices of G have an odd degree.

Since G is semi-eulerian, there exists a eulerian path.
Denote by A the starting vertex, and by B the ending vertex of this path.

Create G^{\prime} by adding an edge between A and B
$\Rightarrow G^{\prime}$ has a eulerian cycle
\Rightarrow Every vertex of G^{\prime} has even degree
$\Rightarrow G$ has exactly two vertices of odd degree

Semi-eulerian graphs, eulerian paths

Semi-eulerian graphs, eulerian paths

b) Let G be a graph that has exactly two vertices with an odd degree. We show: G is a semi-eulerian graph (i.e. there exists a eulerian path)

Semi-eulerian graphs, eulerian paths

b) Let G be a graph that has exactly two vertices with an odd degree. We show: G is a semi-eulerian graph (i.e. there exists a eulerian path)

Denote by A and B the two vertices of odd degree. Create G^{\prime} by adding an edge between A and B.

Semi-eulerian graphs, eulerian paths

b) Let G be a graph that has exactly two vertices with an odd degree. We show: G is a semi-eulerian graph (i.e. there exists a eulerian path)

Denote by A and B the two vertices of odd degree. Create G^{\prime} by adding an edge between A and B.
\Rightarrow Every vertex of G^{\prime} has an even degree

Semi-eulerian graphs, eulerian paths

b) Let G be a graph that has exactly two vertices with an odd degree. We show: G is a semi-eulerian graph (i.e. there exists a eulerian path)

Denote by A and B the two vertices of odd degree. Create G^{\prime} by adding an edge between A and B.
\Rightarrow Every vertex of G^{\prime} has an even degree
$\Rightarrow G^{\prime}$ possesses a eulerian cycle

Semi-eulerian graphs, eulerian paths

b) Let G be a graph that has exactly two vertices with an odd degree. We show: G is a semi-eulerian graph (i.e. there exists a eulerian path)

Denote by A and B the two vertices of odd degree. Create G^{\prime} by adding an edge between A and B.
\Rightarrow Every vertex of G^{\prime} has an even degree
$\Rightarrow G^{\prime}$ possesses a eulerian cycle
$\Rightarrow G$ possesses a eulerian path

Semi-eulerian graphs, eulerian paths

b) Let G be a graph that has exactly two vertices with an odd degree. We show: G is a semi-eulerian graph (i.e. there exists a eulerian path)

Denote by A and B the two vertices of odd degree. Create G^{\prime} by adding an edge between A and B.
\Rightarrow Every vertex of G^{\prime} has an even degree
$\Rightarrow G^{\prime}$ possesses a eulerian cycle
$\Rightarrow G$ possesses a eulerian path

Remark:

Semi-eulerian graphs, eulerian paths

b) Let G be a graph that has exactly two vertices with an odd degree. We show: G is a semi-eulerian graph (i.e. there exists a eulerian path)

Denote by A and B the two vertices of odd degree. Create G^{\prime} by adding an edge between A and B.
\Rightarrow Every vertex of G^{\prime} has an even degree
$\Rightarrow G^{\prime}$ possesses a eulerian cycle
$\Rightarrow G$ possesses a eulerian path

Remark:

The two vertices of odd degree are necessarily the starting and end points of every eulerian path!

Semi-eulerian graphs, eulerian paths

What about Königsberg?

Semi-eulerian graphs, eulerian paths

What about Königsberg?

Semi-eulerian graphs, eulerian paths

What about Königsberg?

The graph of Königsberg has four vertices of odd degree, hence it is not a semi-eulerian graph and there is no eulerian path!

A variation of the Königsberg problem

A variation of the Königsberg problem

A variation of the Königsberg problem

Le 8 e pont

A variation of the Königsberg problem

Le 8 e pont
 Le 9e pont

A variation of the Königsberg problem

Le 8 e pont
 Le 9 e pont
 Le 10e pont

A variation of the Königsberg problem

Application example: refuse collection

Application example: refuse collection

From a given starting point (for example a dump), a refuse collection vehicle must pass through each street of a given street network and return to its
 starting point.

Application example: refuse collection

From a given starting point (for example a dump), a refuse collection vehicle must pass through each street of a given street network and return to its
 starting point.

What is the shortest route the vehicle may take?

Application example: refuse collection

From a given starting point (for example a dump), a refuse collection vehicle must pass through each street of a given street network and return to its
 starting point.

What is the shortest route the vehicle may take?
\rightarrow If there exists a route that passes exactly once through each street, this route is as short as possible!

Application example: refuse collection

From a given starting point (for example a dump), a refuse collection vehicle must pass through each street of a given street network and return to its
 starting point.

What is the shortest route the vehicle may take?
\rightarrow If there exists a route that passes exactly once through each street, this route is as short as possible!

Problem:

Application example: refuse collection

From a given starting point (for example a dump), a refuse collection vehicle must pass through each street of a given street network and return to its
 starting point.

What is the shortest route the vehicle may take?
\rightarrow If there exists a route that passes exactly once through each street, this route is as short as possible!

Problem: The graph representing a street network is not, in general, a eulerian graph!

Application example: refuse collection

From a given starting point (for example a dump), a refuse collection vehicle must pass through each street of a given street network and return to its
 starting point.

What is the shortest route the vehicle may take?
\rightarrow If there exists a route that passes exactly once through each street, this route is as short as possible!

Problem: The graph representing a street network is not, in general, a eulerian graph!

Problem (1962):

Application example: refuse collection

From a given starting point (for example a dump), a refuse collection vehicle must pass through each street of a given street network and return to its
 starting point.

What is the shortest route the vehicle may take?
\rightarrow If there exists a route that passes exactly once through each street, this route is as short as possible!

Problem: The graph representing a street network is not, in general, a eulerian graph!

Problem (1962):

Given a non-eulerian graph, find the shortest cycle that uses each edge at least once.

Application example: refuse collection

Application example: refuse collection

If there is no eulerian cycle, there are streets where the vehicle has to pass more than once! (that one tries to minimize)

The shortest cycle is then found as follows:

Application example: refuse collection

If there is no eulerian cycle, there are streets where the vehicle has to pass more than once! (that one tries to minimize)

The shortest cycle is then found as follows:

- Since the graph is non-eulerian, there are vertices of odd degree

Application example: refuse collection

If there is no eulerian cycle, there are streets where the vehicle has to pass more than once! (that one tries to minimize)

The shortest cycle is then found as follows:

- Since the graph is non-eulerian, there are vertices of odd degree

Observation

In every graph, the number of vertices of odd degree is even.

Application example: refuse collection

If there is no eulerian cycle, there are streets where the vehicle has to pass more than once! (that one tries to minimize)

The shortest cycle is then found as follows:

- Since the graph is non-eulerian, there are vertices of odd degree

Observation

In every graph, the number of vertices of odd degree is even.
Proof:

Application example: refuse collection

If there is no eulerian cycle, there are streets where the vehicle has to pass more than once! (that one tries to minimize)

The shortest cycle is then found as follows:

- Since the graph is non-eulerian, there are vertices of odd degree

Observation

In every graph, the number of vertices of odd degree is even.
Proof: Sum of all degrees $=2 \times$ number of edges $=$ even

Application example: refuse collection

If there is no eulerian cycle, there are streets where the vehicle has to pass more than once! (that one tries to minimize)

The shortest cycle is then found as follows:

- Since the graph is non-eulerian, there are vertices of odd degree

Observation

In every graph, the number of vertices of odd degree is even.
Proof: Sum of all degrees $=2 \times$ number of edges $=$ even
\Rightarrow Sum of odd degrees $=$ even

Application example: refuse collection

If there is no eulerian cycle, there are streets where the vehicle has to pass more than once! (that one tries to minimize)

The shortest cycle is then found as follows:

- Since the graph is non-eulerian, there are vertices of odd degree

Observation

In every graph, the number of vertices of odd degree is even.
Proof: Sum of all degrees $=2 \times$ number of edges $=$ even
\Rightarrow Sum of odd degrees $=$ even
\Rightarrow The number of vertices of odd degree is even

Application example: refuse collection

Application example: refuse collection

- Idea: Add additional edges between pairs of vertices of odd degree, such that:

Application example: refuse collection

- Idea: Add additional edges between pairs of vertices of odd degree, such that:
- the resulting graph is eulerian
- the total length of the streets represented by the additional edges is as short as possible

Application example: refuse collection

- Idea: Add additional edges between pairs of vertices of odd degree, such that:
- the resulting graph is eulerian
- the total length of the streets represented by the additional edges is as short as possible

Application example: refuse collection

- Idea: Add additional edges between pairs of vertices of odd degree, such that:
- the resulting graph is eulerian
- the total length of the streets represented by the additional edges is as short as possible

Application example: refuse collection

- Idea: Add additional edges between pairs of vertices of odd degree, such that:
- the resulting graph is eulerian
- the total length of the streets represented by the additional edges is as short as possible

Application example: refuse collection

- Idea: Add additional edges between pairs of vertices of odd degree, such that:
- the resulting graph is eulerian
- the total length of the streets represented by the additional edges is as short as possible

Application example: refuse collection

- Idea: Add additional edges between pairs of vertices of odd degree, such that:
- the resulting graph is eulerian
- the total length of the streets represented by the additional edges is as short as possible

Application example: refuse collection

- Idea: Add additional edges between pairs of vertices of odd degree, such that:
- the resulting graph is eulerian
- the total length of the streets represented by the additional edges is as short as possible

- Find a eulerian cycle in the resulting graph, this is the shortest route for the vehicle, as the total length of the streets it passes more than once is as short as possible!

Application example: refuse collection

- Idea: Add additional edges between pairs of vertices of odd degree, such that:
- the resulting graph is eulerian
- the total length of the streets represented by the additional edges is as short as possible

- Find a eulerian cycle in the resulting graph, this is the shortest route for the vehicle, as the total length of the streets it passes more than once is as short as possible!

Other examples: the postman ('Chinese postman problem'), route maintenance, winter road clearance,...

- https://www.google.lu/maps
- 'Navigation System' by Lsadout52 (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons
- 'Brother DCP-115C - controller' by Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)
- 'Garbage Truck in Cessange', by Bdx [CC0], from Wikimedia Commons
- 'The problem of the Seven Bridges of Königsberg' by Bogdan Giu?c? (Public domain (PD), based on the image) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons
- https://www.britannica.com/science/Konigsberg-bridge-problem
- 'Variation of the Königsberg problem', by Xiong (Transferred from en.wikipedia to Commons.) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0
(http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

