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What’s the problem?

- calculus students have difficulty seeing the tangent line as a limit of secant lines (Orton, 1977; Ferrini-Mundy 
and Geuther Graham, 1991). 

- Students believe that the tangent is the same as a bounding line: a line that touches, but does not cross, the 
curve. (Vinner, 1982; Biza, Christou and Zachariades, 2008)

- the transition between geometric and analytic/algebraic representations of slope is problematic for students 
(Orton, 1983; Habre and Abboud, 2006). 

- Once students learn to compute the slope symbolically and algorithmically, the geometric interpretation is 
lost -> originates in a daily educational practice with a quick shift from the conceptual introduction to 
calculation procedures (Thompson, 1994). 

Hypothesis: Neither calculation algorithms nor formal definitions of slope and tangent line align with ideas 
that are meaningful for students.
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Meaning making

Build on ideas about slope that are meaningful to students

- Realistic mathematics education (RME): recursive approach to meaningfulness
- Embodied cognition -> grounded cognition (Barsalou, 2007): 

“Grounded cognition reflects the assumption that cognition is typically 
grounded in multiple ways, including simulations, situated action, and, 
on occasion, bodily states”

Mathematical cognition on the slope of a curve needs to be 
grounded in situated action, simulations, and bodily states of 
experiences involving steepness and smoothness
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Meaning making 

Task: design a slide with a straight and a bended bit joining 
smoothly, without bump. Give equations for both bits and 
coordinates of the point where both parts meet.

Minimal pre-knowledge: equations for lines and some curves.

Reinvention principle: based on methods and ideas that are 
meaningful to students themselves

Emergent models design principle: from students’ informal ideas 
and activities to more formal mathematical models for slope of a 
curve (Doorman & Gravemeijer, 2009; Gravemeijer, 1999)

Models of slope -> models for slope
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Meaning making 

The reinvention principle and emergent models principle in recent years: 

• calculus (Doorman, 2005; Doorman & Gravemeijer, 1999; Herbert & Pierce, 2008; Oehrtman, Swinyard, & Martin, 
2014)

• linear algebra (Andrews-Larson, Wawro, & Zandieh, 2017; Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012), 

• abstract algebra (Larsen, 2013)

• statistics (Schwartz & Martin, 2004)

• bifurcation diagrams (Rasmussen, Dunmyre, Fortune, & Keene, 2019)
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Research questions

How do RME-inspired task characteristics support students’ reinvention of the notion of slope of a curve?

Sub-questions:

- What strategies do students follow and how do these depend on their level?

- How do the student strategies relate to the four approaches as formulated in our a-priori analysis? What models 
for emerge from students’ models of? Are some approaches preferred over others?

- Is it possible for teachers to institutionalize a notion of slope based on the students’ informal models?

Issue: is the reinvention principle suitable and feasible at secondary/tertiary level?



1130-10-2022

Plan

- What’s the problem?

- Meaning making

- Research questions

- Mathematical approaches to the slope of a curve

- Results

- Discussion



1230-10-2022

Mathematical approaches to slope of a curve

Secant line approach (S)

lim
∆𝑥𝑥→0

𝑓𝑓 𝑥𝑥0 + ∆𝑥𝑥 − 𝑓𝑓 𝑥𝑥0
∆𝑥𝑥

Locally linear approach (L)
Cf. David Tall
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Mathematical approaches to slope of a curve

Algebraic multiplicities approach (A)
Cf. R. Michael Range

Transition point approach (T)
Cf. Marsden & Weinstein Calculus Unlimited
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Participants
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Analysis
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A: algebraic multipl.
L: Locally linear
T: Transition point
S: Secant lines
V: Various options
N: None apply
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Results

Case 1 (Class 4, classified as C/R→L). 

- GeoGebra to visualize their designs

- Equations: 𝑦𝑦 = 2𝑥𝑥 + 8 and 𝑦𝑦 = 1
2
𝑥𝑥2 + 2𝑥𝑥 + 8.

- “𝑏𝑏 in the formula of the parabola and 𝑎𝑎 in the formula of the line must be the same.”
(they had the formulas 𝑦𝑦 = 𝑎𝑎 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 and 𝑦𝑦 = 𝑎𝑎 𝑥𝑥 + 𝑏𝑏 in mind). 
“the directional coefficients of the line and the curve must be the same”
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Results

Case 2 (Class 4, classified as HS→ 𝐓𝐓). 

- Equations: 𝑦𝑦 = 1
𝑥𝑥

and 𝑦𝑦 = −𝑥𝑥 + 2.

- Students mentioned symmetry as a justification

- They mentioned that they would like to zoom in on the 
intersection point… that to have absolute certainty, they 
would like to “zoom in forever”

- Symmetry, rotating mirrors and transition points
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Results

Case 3 (Class 5, classified as PC/PS/PT  L)

- used a graphical calculator 

- First the students fixed a seemingly random line and tried to adjust the parameters in the 
equation for the parabola. 

- Then they changed strategy and fixed the parabola to 𝑦𝑦 = 3
10
𝑥𝑥

2
and fixed a point on it 

(10,9). Next, they wanted to adjust the parameters of the line. 

- In the end, they settled for 𝑦𝑦 = 15
10
𝑥𝑥 − 6, which is not “correct”. However, graphing it on a GC 

on a “standard” scale shows a convincing picture

- one students said: “I think that when the line touches the curve, in that small part the 
equation of the parabola must be the same as the line”.
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Results

Case 5 (Class 6, classified as A→A)

- First: hyperbola, 𝑦𝑦 = 6
𝑥𝑥
, and a line, 𝑦𝑦 = −𝑥𝑥 + 5

- They compute the intersection points at 𝑥𝑥 = 2 and 𝑥𝑥 = 3. 

- “not good, we need 1 outcome”. 

- in the next line the “5” is replaced by “2 6”, 
which allows a unique solution, with multiplicity 2.
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Discussion

- Why fix line before curve?

- Use of  GeoGebra

- Aspect of time for action phase

- Why does the secant lines approach not occur?

- Why does the idea of overtaking lines (as a step towards the transition point approach) not occur?

(1) Algebraic multiplicities approach and the locally linear approach are most often/easy connected to.

(2) In 77% of student groups and 100% of classes, teachers had opportunities for institutionalizing the lesson goal

(3) Only 4,5% of the student groups were not engaged

No specifics for participating groups -> evidence that reinvention principle is feasible at secondary level.
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