Annual meeting of the low countries 2022

Local linearity

Martin Kindt en Rogier Bos

30-10-2022

References

Bos, R., Doorman, M., Cafuta, K., Praprotnik, S., Antoliš, S., & Bašić, M. (2019). Supporting the reinvention of the slope of a curve in a point. In U. T. Jankvist, M. van de Heuvel-Panhuizen, & M. Veldhuis (Eds.), *Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education*. Utrecht, the Netherlands: Freudenthal Group & Freudenthal Institute, Utrecht University and ERME

Bos, R. D., Doorman, L. M., & Piroi, M. (2020). Emergent models in a reinvention activity for learning the slope of a curve. Journal of Mathematical Behavior, 59, [100773]. https://doi.org/10.1016/j.jmathb.2020.100773

- What's the problem?
- Meaning making
- Research questions
- Mathematical approaches to the slope of a curve
- Results
- Discussion

What's the problem?

- calculus students have difficulty seeing the tangent line as a limit of secant lines (Orton, 1977; Ferrini-Mundy and Geuther Graham, 1991).
- Students believe that the tangent is the same as a bounding line: a line that touches, but does not cross, the curve. (Vinner, 1982; Biza, Christou and Zachariades, 2008)
- the transition between geometric and analytic/algebraic representations of slope is problematic for students (Orton, 1983; Habre and Abboud, 2006).
- Once students learn to compute the slope symbolically and algorithmically, the geometric interpretation is lost -> originates in a daily educational practice with a quick shift from the conceptual introduction to calculation procedures (Thompson, 1994).

Hypothesis: Neither calculation algorithms nor formal definitions of slope and tangent line align with ideas that are meaningful for students.

- What's the problem?
- Meaning making
- Research questions
- Mathematical approaches to the slope of a curve
- Results
- Discussion

Meaning making

Build on ideas about slope that are meaningful to students

- Realistic mathematics education (RME): recursive approach to meaningfulness
- Embodied cognition -> grounded cognition (Barsalou, 2007):

"Grounded cognition reflects the assumption that cognition is typically grounded in multiple ways, including simulations, situated action, and, on occasion, bodily states"

Mathematical cognition on the slope of a curve needs to be grounded in situated action, simulations, and bodily states of experiences involving steepness and smoothness

Meaning making

Task: design a slide with a straight and a bended bit joining smoothly, without bump. Give equations for both bits and coordinates of the point where both parts meet.

Minimal pre-knowledge: equations for lines and some curves.

Reinvention principle: based on methods and ideas that are meaningful to students themselves

Emergent models design principle: from students' informal ideas and activities to more formal mathematical models for slope of a curve (Doorman & Gravemeijer, 2009; Gravemeijer, 1999) Models of slope -> models for slope

Meaning making

The reinvention principle and emergent models principle in recent years:

- calculus (Doorman, 2005; Doorman & Gravemeijer, 1999; Herbert & Pierce, 2008; Oehrtman, Swinyard, & Martin, 2014)
- linear algebra (Andrews-Larson, Wawro, & Zandieh, 2017; Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012),
- abstract algebra (Larsen, 2013)
- statistics (Schwartz & Martin, 2004)
- bifurcation diagrams (Rasmussen, Dunmyre, Fortune, & Keene, 2019)

- What's the problem?
- Meaning making
- Research questions
- Mathematical approaches to the slope of a curve
- Results
- Discussion

Research questions

How do RME-inspired task characteristics support students' reinvention of the notion of slope of a curve?

Sub-questions:

- What strategies do students follow and how do these depend on their level?
- How do the student strategies relate to the four approaches as formulated in our a-priori analysis? What models for emerge from students' models of? Are some approaches preferred over others?
- Is it possible for teachers to institutionalize a notion of slope based on the students' informal models?

Issue: is the reinvention principle suitable and feasible at secondary/tertiary level?

- What's the problem?
- Meaning making
- Research questions
- Mathematical approaches to the slope of a curve
- Results
- Discussion

Mathematical approaches to slope of a curve

Mathematical approaches to slope of a curve

Algebraic multiplicities approach (A) Cf. R. Michael Range Transition point approach (T) Cf. Marsden & Weinstein *Calculus Unlimited*

- What's the problem?
- Meaning making
- Research questions
- Mathematical approaches to the slope of a curve
- Results
- Discussion

Participants

rubie 2. Overview participating classes, groups									
Class label	School	Grade	Mathematics	Length of	Number of	% of groups			
			level	action phase	groups	with a (nearly)			
				in minutes	(n = 44)	correct solution			
1	А	9	Normal	25	8	12,5%			
2	А	9	Normal	25	7	100%			
3	В	9	Advanced	25	3	66,7%			
4	С	10	Normal	25	7	42,9%			
5	В	10	Advanced	35	9	55,6%			
6	В	10	Advanced	50	10	80%			

Table 2. Overview participating classes, groups

Analysis

T 11 0	G () ·	1	· ·	1	
I able 3	Ntrateores	and	connecting	annroach	ner grour
1 abic 5.	Dudiczies	anu	connecting	approach	per group

Class label	School	Strategies per group	Connecting approach
1	А	PC, PC, O, PT, HS, D/PS, O, N	V, V, N, T, N, T, N
2	А	PC/PT, O/PT, O, O, O, PS/PC, O	V, V, V, V, V, V, V
3	В	A, C, C	A, T, N
4	С	PT/PC, D, O, C/R, O, R, N	V, V, V, L, N, L, N
5	В	D, R, PC, O , R, PC/PS/PT, PC, HS, O	V, V, V, N, A, L, A, T, N
6	В	A, C, D, PT/PC/C, D, R, PC/PT/PS/A,	A, N, L, V, N, V, A, V, V, A
		C, D, PC	

Figure 13. Frequency of student strategies

Figure 14. Relative frequency of approaches

Case 1 (Class 4, classified as $C/R \rightarrow L$).

- GeoGebra to visualize their designs
- Equations: y = 2x + 8 and $y = \frac{1}{2}x^2 + 2x + 8$.
- "b in the formula of the parabola and a in the formula of the line must be the same."
 (they had the formulas y = a x² + bx + c and y = a x + b in mind).
 "the directional coefficients of the line and the curve must be the same"

Case 2 (Class 4, classified as $HS \rightarrow T$).

- Equations: $y = \frac{1}{x}$ and y = -x + 2.
- Students mentioned symmetry as a justification
- They mentioned that they would like to zoom in on the intersection point... that to have absolute certainty, they would like to "zoom in forever"
- Symmetry, rotating mirrors and transition points

Case 3 (Class 5, classified as PC/PS/PT L)

- used a graphical calculator
- First the students fixed a seemingly random line and tried to adjust the parameters in the equation for the parabola.
- Then they changed strategy and fixed the parabola to $y = \left(\frac{3}{10}x\right)^2$ and fixed a point on it (10,9). Next, they wanted to adjust the parameters of the line.
- In the end, they settled for $y = \frac{15}{10}x 6$, which is not "correct". However, graphing it on a GC on a "standard" scale shows a convincing picture
- one students said: "I think that when the line touches the curve, in that small part the equation of the parabola must be the same as the line".

Case 5 (Class 6, classified as $A \rightarrow A$)

- First: hyperbola, $y = \frac{6}{x}$, and a line, y = -x + 5
- They compute the intersection points at x = 2 and x = 3.
- "not good, we need 1 outcome".
- in the next line the "5" is replaced by " $2\sqrt{6}$ ", which allows a unique solution, with multiplicity 2.

- What's the problem?
- Meaning making
- Research questions
- Mathematical approaches to the slope of a curve
- Results
- Discussion

Discussion

- Why fix line before curve?
- Use of GeoGebra
- Aspect of time for action phase
- Why does the secant lines approach not occur?
- Why does the idea of overtaking lines (as a step towards the transition point approach) not occur?

(1) Algebraic multiplicities approach and the locally linear approach are most often/easy connected to.

(2) In 77% of student groups and 100% of classes, teachers had opportunities for institutionalizing the lesson goal

(3) Only 4,5% of the student groups were not engaged

No specifics for participating groups -> evidence that reinvention principle is feasible at secondary level.

