## Annual meeting of the low countries 2022



## References

Bos, R., Doorman, M., Cafuta, K., Praprotnik, S., Antoliš, S., \& Bašić, M. (2019). Supporting the reinvention of the slope of a curve in a point. In U. T. Jankvist, M. van de Heuvel-Panhuizen, \& M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education. Utrecht, the Netherlands: Freudenthal Group \& Freudenthal Institute, Utrecht University and ERME

Bos, R. D., Doorman, L. M., \& Piroi, M. (2020). Emergent models in a reinvention activity for learning the slope of a curve. Journal of Mathematical Behavior, 59, [100773]. https://doi.org/10.1016/j.jmathb.2020.100773


Plan

- What's the problem?
- Meaning making
- Research questions

- Mathematical approaches to the slope of a curve
- Results
- Discussion


## What's the problem?

- calculus students have difficulty seeing the tangent line as a limit of secant lines (Orton, 1977; Ferrini-Mundy and Geuther Graham, 1991).
- Students believe that the tangent is the same as a bounding line: a line that touches, but does not cross, the curve. (Vinner, 1982; Biza, Christou and Zachariades, 2008)
- the transition between geometric and analytic/algebraic representations of slope is problematic for students (Orton, 1983; Habre and Abboud, 2006).
- Once students learn to compute the slope symbolically and algorithmically, the geometric interpretation is lost -> originates in a daily educational practice with a quick shift from the conceptual introduction to calculation procedures (Thompson, 1994).

Hypothesis: Neither calculation algorithms nor formal definitions of slope and tangent line align with ideas that are meaningful for students.

Plan

- What's the problem?
- Meaning making
- Research questions

- Mathematical approaches to the slope of a curve
- Results
- Discussion


## Meaning making

Build on ideas about slope that are meaningful to students

- Realistic mathematics education (RME): recursive approach to meaningfulness
- Embodied cognition -> grounded cognition (Barsalou, 2007):

"Grounded cognition reflects the assumption that cognition is typically grounded in multiple ways, including simulations, situated action, and, on occasion, bodily states"

Mathematical cognition on the slope of a curve needs to be grounded in situated action, simulations, and bodily states of experiences involving steepness and smoothness

## Meaning making

Task: design a slide with a straight and a bended bit joining smoothly, without bump. Give equations for both bits and coordinates of the point where both parts meet.

Minimal pre-knowledge: equations for lines and some curves.

Reinvention principle: based on methods and ideas that are meaningful to students themselves

Emergent models design principle: from students' informal ideas and activities to more formal mathematical models for slope of a curve (Doorman \& Gravemeijer, 2009; Gravemeijer, 1999)

Models of slope -> models for slope


## Meaning making

The reinvention principle and emergent models principle in recent years:

- calculus (Doorman, 2005; Doorman \& Gravemeijer, 1999; Herbert \& Pierce, 2008; Oehrtman, Swinyard, \& Martin, 2014)
- linear algebra (Andrews-Larson, Wawro, \& Zandieh, 2017; Wawro, Rasmussen, Zandieh, Sweeney, \& Larson, 2012),
- abstract algebra (Larsen, 2013)
- statistics (Schwartz \& Martin, 2004)
- bifurcation diagrams (Rasmussen, Dunmyre, Fortune, \& Keene, 2019)

Plan

- What's the problem?
- Meaning making
- Research questions

- Mathematical approaches to the slope of a curve
- Results
- Discussion


## Research questions

How do RME-inspired task characteristics support students' reinvention of the notion of slope of a curve?

## Sub-questions:

- What strategies do students follow and how do these depend on their level?
- How do the student strategies relate to the four approaches as formulated in our a-priori analysis? What models for emerge from students' models of? Are some approaches preferred over others?
- Is it possible for teachers to institutionalize a notion of slope based on the students' informal models?

Issue: is the reinvention principle suitable and feasible at secondary/tertiary level?

Plan

- What's the problem?
- Meaning making
- Research questions

- Mathematical approaches to the slope of a curve
- Results
- Discussion

Mathematical approaches to slope of a curve


Secant line approach (S)


Locally linear approach (L) Cf. David Tall

## Mathematical approaches to slope of a curve



Algebraic multiplicities approach (A) Cf. R. Michael Range


Transition point approach (T)
Cf. Marsden \& Weinstein Calculus Unlimited

Plan

- What's the problem?
- Meaning making
- Research questions

- Mathematical approaches to the slope of a curve
- Results
- Discussion


## Participants

Table 2. Overview participating classes, groups

| Class label | School | Grade | Mathematics <br> level | Length of <br> action phase <br> in minutes | Number of <br> groups <br> $(\mathrm{n}=44)$ | \% of groups <br> with a (nearly) <br> correct solution |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | A | 9 | Normal | 25 | 8 | $12,5 \%$ |
| 2 | A | 9 | Normal | 25 | 7 | $100 \%$ |
| 3 | B | 9 | Advanced | 25 | 3 | $66,7 \%$ |
| 4 | C | 10 | Normal | 25 | 7 | $42,9 \%$ |
| 5 | B | 10 | Advanced | 35 | 9 | $55,6 \%$ |
| 6 | B | 10 | Advanced | 50 | 10 | $80 \%$ |

## Analysis



| Table 3. Strategies and connecting approach per group |  |  |  |
| :--- | :--- | :--- | :--- |
| Class label | School | Strategies per group | Connecting approach |
| 1 | A | PC, PC, O, PT, HS, D/PS, O, N | V, V, N, T, N, T, N |
| 2 | A | PC/PT, O/PT, O, O, O, PS/PC, O | V, V, V, V, V, V, V |
| 3 | B | A, C, C | A, T, N |
| 4 | C | PT/PC, D, O, C/R, O, R, N | V, V, V, L, N, L, N |
| 5 | B | D, R, PC, O, R, PC/PS/PT, PC, HS, O | V, V, V, N, A, L, A, T, N |
| 6 | B | A, C, D, PT/PC/C, D, R, PC/PT/PS/A, <br> C, D, PC | A, N, L, V, N, V, A, V, V, A |
|  |  |  |  |




Figure 13. Frequency of student strategies


Figure 14. Relative frequency of approaches

## Results

## Case 1 (Class 4, classified as $\mathrm{C} / \mathrm{R} \rightarrow \mathrm{L}$ ).

- GeoGebra to visualize their designs
- Equations: $y=2 x+8$ and $y=\frac{1}{2} x^{2}+2 x+8$.
- " $b$ in the formula of the parabola and $a$ in the formula of the line must be the same." (they had the formulas $y=a x^{2}+b x+c$ and $y=a x+b$ in mind). "the directional coefficients of the line and the curve must be the same"


## Results

## Case 2 (Class 4, classified as HS $\rightarrow$ T).

- Equations: $y=\frac{1}{x}$ and $y=-x+2$.
- Students mentioned symmetry as a justification
- They mentioned that they would like to zoom in on the intersection point... that to have absolute certainty, they would like to "zoom in forever"

- Symmetry, rotating mirrors and transition points



## Results

## Case 3 (Class 5, classified as PC/PS/PT L)

- used a graphical calculator
- First the students fixed a seemingly random line and tried to adjust the parameters in the equation for the parabola.
- Then they changed strategy and fixed the parabola to $y=\left(\frac{3}{10} x\right)^{2}$ and fixed a point on it $(10,9)$. Next, they wanted to adjust the parameters of the line.
- In the end, they settled for $y=\frac{15}{10} x-6$, which is not "correct". However, graphing it on a GC on a "standard" scale shows a convincing picture
- one students said: "I think that when the line touches the curve, in that small part the equation of the parabola must be the same as the line".


## Results

## Case 5 (Class 6, classified as $\mathrm{A} \rightarrow \mathrm{A}$ )

- First: hyperbola, $y=\frac{6}{x^{\prime}}$, and a line, $y=-x+5$
- They compute the intersection points at $x=2$ and $x=3$.
- "not good, we need 1 outcome".
- in the next line the " 5 " is replaced by " $2 \sqrt{6}$ ", which allows a unique solution, with multiplicity 2 .


Plan

- What's the problem?
- Meaning making
- Research questions

- Mathematical approaches to the slope of a curve
- Results
- Discussion


## Discussion

- Why fix line before curve?
- Use of GeoGebra
- Aspect of time for action phase
- Why does the secant lines approach not occur?
- Why does the idea of overtaking lines (as a step towards the transition point approach) not occur?
(1) Algebraic multiplicities approach and the locally linear approach are most often/easy connected to.
(2) In $77 \%$ of student groups and $100 \%$ of classes, teachers had opportunities for institutionalizing the lesson goal
(3) Only $4,5 \%$ of the student groups were not engaged

No specifics for participating groups -> evidence that reinvention principle is feasible at secondary level.

