


A Natural Way To Algebra

## Algebra the art of 'thingification'



And now is a good moment to open up Pandora's box and explain one of the most powerful general weapons in the mathematician's armory, which we might call the 'thingification of processes'.

Ian Stewart in Nature's Numbers

## Algebra at school

## RESTRICTIONS

equations
inequalities
linear
programming

PROCESSES CHANGE operations
functions
graphs

PATTERNS \&
FIGURES
sequences
figurate numbers

## PATTERNS \& <br> FIGURES

A natural number is an idea that has long ago been thingified so thoroughly that everybody thinks of it as a thing.


Which pattern has the biggest number of dots?

Same question



## $\begin{array}{ll}\bullet & \bullet \\ \bullet & \bullet\end{array}$

## Even \& Odd


$\begin{array}{ll}\bullet & \bullet \\ \bullet & \end{array}$


Even or Odd? Explain your strategy!

## 



Without counting the beads: even or odd?

Groups of birds sometimes fly in a V-pattern


Sequence of V-patterns using dots:


## Exercises

* 



* How many dots has the V-pattern with 85 ?
* Two groups of geese are flying above the IJsselmeer, both in perfect $V$-pattern.
Before going to the South they join.
Can the total group form a perfect $V$-pattern?


Some of the answers of young students (11 years)

* You don't know if you don't know the numbers
* You cannot know, because you don't know how they are going to fly
* No, for there are two leaders now
* No, because together it makes even



In formal language:

$$
[2 a+1]+[2 b+1]=2(a+b+1)
$$

## And if 3 groups in perfect V-pattern join?

## And 4? And 5?

Generalization

Formal expressions


During a show a squadron of airplanes flied in a W-formation

W-numbers


| pattern-number | 0 | 1 | 2 | 3 | 4 | 5 | 6 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| number of dots | 1 | 5 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |

Expression?

$W=4 \times n+1$

$W=n+V+n=n+[2 n+1]+n=4 n+1$



Exercise:
adding
sequences





A famous sequence

Fibonacci
Liber Abaci (1202)


Continuing the sequence ...


five consecutive Fibonacci-numbers ....

\section*{| 5 | 8 | 13 | 21 |
| :--- | :--- | :--- | :--- |
|  | 34 |  |  |}

$5+34=39=3 \times 13$

## $8 \quad 13 \quad 21 \quad 3455$

$8+55=63=3 \times 21$

$$
\begin{array}{llll}
233 & 377 & 610 & 987
\end{array}
$$

## $233+1597=1830=3 \times 610$

Fibonacci-sequence
$\cdot 1$ **
$\theta+\dot{k}=3 \times$

How to prove ????


$$
+\left[\begin{array}{l}
a \\
b \\
a+b \\
b+a+b \\
a+b+b+a+b
\end{array}\right.
$$



$$
a+(a+b+b+a+b)=(a+b)+(a+b)+(a+b)
$$

$$
+\begin{array}{r}
a \\
b \\
a+b \\
a+2 b \\
\\
2 a+3 b
\end{array}
$$

## More 'Fibonacci-exercises’

-Take any subsequence of nine consecutive numbers. Then the sum of the first and the ninth number equals 7 times the number in the middle.
-The sum of any six consecutive numbers in the sequence is exactly 4 times the fifth one.
-Design your own Fibonacci-exercise.



sum of 'evens' = oblong number

## sum of consecutive numbers

 triangular number


(representative) example:
$8 \times 8$ is exactly in the middle of $7 \times 8$ and $8 \times 9$

General:

$$
\begin{array}{ccc}
(n-1) \times n & n \times n & n \times(n+1) \\
\downarrow & \downarrow & \downarrow \\
n^{2}-n & n^{2} & n^{2}+n
\end{array}
$$

## Some investigations with figurate numbers

Repeated add two subsequent triangular numbers.

Which familiar sequence do you get?

Which W-numbers
are
square numbers?

Nicomachos introduced
pentagonal numbers:
$5,12,22,35,51, \ldots$
Design corresponding dot patterns.
Which formula fits the sequence?

| $\square$-numbers $\longrightarrow$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

Repeated add two subsequent triangular numbers .....




## formal proof

$$
\frac{1}{2} n(n-1)+\frac{1}{2} n(n+1)=n^{2}
$$

Which W-squadrons are square(dron)s ?

Sequence of W-numbers


Sequence of W-numbers


Is every odd square a W-number?

$$
\frac{\begin{array}{l}
2 n+1 \\
2 n+1 \\
2 n+1
\end{array}}{\frac{4 n^{2}+2 n}{4 n^{2}+4 n+1}=4\left(n^{2}+n\right)+1}
$$

$4 \times$ oblong number $+1=$ square number


$$
4 \cdot n(n+1)+1=(2 n+1)^{2}
$$

## formula?

Pentagonal numbers
5, 12, 22, 35, 51, etc.



$$
\begin{gathered}
(n+1)^{2}+\frac{1}{2} n(n+1) \\
\frac{1}{2}(n+1)(3 n+2)
\end{gathered}
$$

Or



$$
\begin{gathered}
(n+1)^{2}+\frac{1}{2} n(n+1) \\
\frac{1}{2}(n+1)(3 n+2)
\end{gathered}
$$



Pentagonal numbers
$5,12,22,35,51$, etc.


$2 \cdot \frac{1}{2}(n+1)(n+2)-1+\frac{1}{2}(n-1) n$


$$
\frac{1}{2}(n+1)(3 n+2)
$$





$(n+1)(n+2)$
$n^{2}+3 n+2$


$$
\begin{gathered}
n(n+3) \\
= \\
n^{2}+3 n
\end{gathered}
$$



* Check that the results are squares.
* Give two lines more ...
* the product of any four consecutive numbers added to 1 seems to be a square ???

$$
\begin{gathered}
? ? \\
\hline n(n+1)(n+2)(n+3)+1 \text { is a square } \\
(n+1) \cdot(n+2) \cdot n \cdot(n+3)+1 \\
A+2 \\
A \cdot(A+2)+1=(A+1)^{2} \\
\hline n(n+1)(n+2)(n+3)+1=\left(n^{2}+3 n+1\right)^{2}
\end{gathered}
$$

It might be a good idea to do early algebra in the field of natural numbers

The mixing of algebra with fractions or negative numbers can be temporarily postponed due to their more abstract character and the resulting complications.

A teacher of mathematics has a great opportunity.
If he fills his allotted time with drilling his students in routine operations, he kills their interest, hampers their intellectual development, and misuses his opportunity.

But if he challenges the curiosity of his students by setting them problems proportionate to their knowledge, and helps them to solve their problems with stimulating questions, he may give them a taste for, and some means of, independent thinking.


