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History of derivatives

Derivative: a financial contract whose value is derived from some other financial instrument
(stock, index, commodity, exchange rate, bond, ...) — underlying

THE KEY EVENT IN DERIVATIVES: Black-Scholes (and Merton) formula for the price
of an option, discovered in 1970, published in 1973, Nobel prize for economics 1997 |

Trading in derivatives started , on Chicago Board of Trade (CBoT)
N : 1.1 trillion USD (10'?)

° : 20 trillion USD

° : 33 trillion USD

° : 98 trillion USD

° : 270 (!) trillion USD

Financial Times, January 17, 2007: "... can (derivatives) market continue its monumental
growth? Most (analysts) not only think it can, but believe it absolutely will”.



Classic derivatives: plain vanilla options

European option: the right to buy (call) or sell (put) a financial instrument, e.g. a stock
(underlying asset) on a specified maturity date T", at a specified strike price X.

Payoff of a call option:
o(T) = (S(T) — X)*,
where S(T) is the stock price on the date 7.
An American option can be exercised anytime before the maturity date 7.

These are the so-called plain vanilla options.



Black-Scholes option valuation

Main assumption: stock price S(t) follows a Geometric Brownian motion: (picture)

dS (t)
S(t)

= pdt + odW ().

Discrete-time version:

S(t + At) — S(t)
S(t)

= uAt + o X N(0, At),
so stock returns are normally distributed, and the price itself is lognormally distributed.
The key ingredient of Black-Scholes option valuation: the risk-neutrality argument,

used for construction of a replicating portfolio:

A portfolio that, at any time, consists of a call option and an appropriate amount of stocks
is, on expiry date, exactly equal in value to the option’s payoff ! (example)
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Risk-neutral valuation

Call option price can be expressed as the expected (discounted) payoff under the risk-
neutral probability measure Q:

c=e¢ " Eo(S(T) — X)*t

Under such risk-adjusted probability measure, the rate of return on a stock is equal
to the risk-free interest rate r:

dS(t)
S(t)

= rdt + ocdW (t)

Mathematical tools: binomial trees, 1t6 calculus, martingale theory, change of measure,
Radon-Nikodym derivative, Girsanov theorem.



Extensions of classical setup

Extensions of the celebrated Black-Scholes formula:

|. Replacing classic option payoff (S(T) — X)* by a more complicated ("exotic")
payoff, which depends not only on the stock price at maturity date 1" but the entire stock
price path during the lifetime of the option [0, T].

II. More sophisticated (and more realistic!) processes for the asset price, e.g. those
incorporating price jumps.

lIl. Underlying asset is not a stock or index, but a commodity (gold, oil, agricultural
products), electricity, credit, house, weather or insurance (against catastrophic events)
— "exotic underlying”.
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Exotic options: Asian options

The payoff is

(A(T) = X)7,
where A(T) is the arithmetic average of daily stock prices during the lifetime of the
option [0, T'] - very widely used options, especially in commodity markets!

Main difficulty: the main assumption of Black-Scholes model is that the stock price
has a lognormal distribution, but the sum of lognormal random variables is not lognormal!

What to do?

e Replace arithmetic average by geometric average - the product of lognormal random
variables is again lognormal!

e Assume the arithmetic average is lognormal, and match first few moments.

e Run a Monte Carlo simulation, in the risk-neutral world!

e An exact solution involves sophisticated mathematical tools: Laplace transform of the
call price with respect to maturity.




Other exotic options

e Barrier options: provide the classical payoff (S(T) — X)™ only if the asset price
crossed (or not crossed) a pre-specified barrier B over the lifetime of the option.

Can be: "up-and-in", "down-and-in", "up-and-out”, "down-and-out” —— clickfondsen.
(picture)

e Bermudan options: can be exercised at any of the IN given dates — 7between”
American and Furopean options

e More exotic options: Russian options, Parisian options, basket options, swaptions,
quanto’s, volumetric (swing) options, ...
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Difficulties and mathematical tools for exotic options

e Non-lognormality of the underlying value (Asian, basket options and quanto’s)

e Conditioning on some event(s) (barrier, double barrier)

e Optimization strategies and optimal stopping involved in American, Bermudan, swing
and volumetric options

Tools available:

e Risk-neutral valuation: the option price = expected discounted payoff under the
risk-neutral probability measure Q:

c(0) = e~ "' Eg(payoff)

- sometimes (rarely) the solution can be expressed in a closed form formula, most often it
involves numerical evaluation of an integral.



Mathematical tools for exotic options

e Monte Carlo simulations:
- a large number of price paths are generated under the risk-neutral probability measure Q)

- these are used to compute the option’s payoffs ¢;(T")
- law of large numbers assures that the average payoff converges to the expected payoff

under Q:
M

c(T) = % Z ci(T) — Eg(payoff)

1=1

- discounted sample average gives the option price:

e(0) = e "E(T).



Commodity derivatives

Underlying asset: not stock or index but metals (gold, aluminium), energy (oil, gas) or
agricultural product (wheat, soya, coffee, orange juice, pork bellies).

Main differences:

e Underlying asset price is NO LONGER GBM, but can have
- seasonalities

- mean-reversion

- price jumps

e We cannot costlessly hold a commodity until option’s maturity (either must pay
storage costs or completely impossible (agricultural commodities)).
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Commodity prices

Crude oil, Natural Gas and Soybean
Crude oil: April 1994 - May 2004
Natural Gas: January 1997 - April 2004
Soybean: October 1998 - October 2001
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Exotic underlyings: Electricity

Leap in difficulty: totally different CLASS of markets and derivatives: czotic underlyings.
Newly liberalized electricity markets, where electricity is traded as any other commodity.

US: PJM (Pennsylvania-New Jersey-Maryland), COB (California-Oregon Border)
Europe: Nordpool (Scandinavia), EEX (Germany), APX (Netherlands), UKPX (UK)
in the next few years also Italy, France, Belgium, ... .

BUT: Electricity is a totally new type of commodity!

® seasonality

e high volatility

e non-elasticity of demand —- price spikes
e limited transportability

e non-storability!



Three major European power exchanges:
APX, UKPX and EEX

APX: Amsterdam Power Exchange
UKPX: UK Power Exchange, London

EEX: European Energy Exchange, Leipzig, Germany

All prices for 2001-2004:
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Yearly seasonalities

The yearly seasonal component:
f(t) = 37 (Agsin(2nkt) + By, cos(2mkt))

eeeeeeee
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Weekly pattern

Here we plotted price premia corresponding to a particular weekday, starting on Monday
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Electricity derivatives (cont’d)

Main problems:

- Realistic models for electricity price is needed.
- Option replication is impossible because electricity cannot be stored!
- Other, new types of options: volumetric options, swing options, flexible supply contracts...

New tools:

- Levy processes (pure jump processes), regime switching models, jump diffusions;
- Risk management with natural gas and weather derivatives;
- Power plants as real options.



Catastrophe (insurance) derivatives

Before 1993: reinsurance.
December 1993: introduction of catastrophe insurance futures and options (CAT) on

Chicago Board of Trade.

e The payoff of a CAT derivative is paid if a there was a large amount in insurance
claims in a certain area, over a certain period.

e This happens in case of a catastrophic event, such as a hurricane, tornado or an
earthquake.

e The payoff is based on the PCS (Property Claim Service) Index.



Use of CAT derivatives

e Insurer will buy CAT futures or CAT call options.

e Sellers of CAT derivatives: construction companies, reinsurance companies, speculators
willing to take risk for profits.

CAT derivatives = perfect diversification instrument, the so-called zero-beta assets:
low correlation to financial markets, investors willing to diversify their portfolios will
buy/sell CAT futures and options.

Mathematical difficulties: seasonalities, spikes in case of a catastrophic event, no tradable
underlying value, insurance versus financial valuation ...



Weather derivatives

Underlying value - any measurable weather factor: temperature, precipitation, snowfall, ...

Most popular: measures of temperature closely reflecting energy demand:
HDD (heating degree days) and CDD (cooling degree days):

HDD(dayt) = max(18°C—AVT(t),0); CDD(dayt) = max(AVT(t)—18°C,0),
AV'T(t) is the average temperature on the day ¢.

e HDDs/CDDs are summed over a period

e The term of a contract may be a full year of a season:

- "Heating”: November-March

- "Cooling”: May-September

e The payoff depends on "strike” and the number of HDD’s or CDD’s exceeding the strike
times a nominal amount.



Using and valuing weather derivatives

Users: Energy, Agriculture, Construction, Tourism, Leisure, Transport, Retail, ...

Fundamental difficulty: the underlying asset (e.g. temperature) is NOT TRADED
—> options cannot be hedged, i.e. replicated with the underlying asset.

Two existing approaches:

e Actuarial, or insurance method: uses historical statistical distributions of the weather
variable —— requires a large diversified weather derivatives portfolio, plus extensive
historical weather databases are needed.

e Financial option theory: more in line with financial markets, but the underlying asset is
not traded, so option replication does not hold!

Weather insurance: low probability, high risk events (e.g. avalanche destroying a skiing

resort).
Weather derivatives: high probability, lower risk events (e.g. no snow, such as this winter

(2006-2007) == low or no profits for a skiing resort).



Conclusions

e A single mathematical development (Black-Scholes option pricing theory) solely gave
rise to an entire multi-trillion finance industry of derivatives!

e Sophisticated mathematical tools are needed to deal with exotic derivatives, realistic
asset price models, exotic underlyings.

e New classes of derivatives are growing and establishing their importance in enterprize-
wide risk management and in the financial marketplace.

e "'Bermuda triangle” is formed by the energy, weather and insurance derivatives.



