
178 Tijdschrift voor Didactiek der B-wetenschappen 10 (1992) nr.3 

Problem decomposition using programming plans 

Y . A J . Berendsen, H.P .M. Krammer 
Toegepaste Onderwijskunde 
Universiteit Twente 

Abstract 
The use of programming plans is an important method for decomposing 
problems. The goal of this study was to gain insight into the usefulness of 
programming plans in teaching introductory computer programming. Subjects 
were students at a school for higher vocational education. Subjects' use of 
programming plans was observed by the inspection of programming products 
and the analysis of thinking-aloud protocols. The results indicated that the 
concept of programming plans given to the subjects must be told explicitly in 
order to get them to use these plans. 

1. Introduction 
Courses in computer programming are an essential part of the curriculum of 
technical vocational education. Some introductory skills in programming are 
considered essential, not only in training courses for computer engineers but 
also for other technical occupations such as chemical analyst, architect and 
engineer. 

In introductory programming courses structured programming is generally 
emphasized. The reasons for this are not always clear. First, in software 
development a structured approach is necessary (Dahl, Dijkstra, & Hoare, 
1972; Wirth, 1974; Yourdon, 1975). For several technical occupations, on 
the other hand, programming is not supposed to be a necessary skill, since 
relevant applications are available for most tasks. Second, a structured 
approach may be taught in introductory programming courses because of the 
expected effects on general problem solving abilities. However, research 
presents conflicting results (Rucinski, 1991). Whatever the reasons, teachers 
and textbook authors apparently think it necessary to teach a structured 
approach in introductory programming courses. 

Generally, the instructions for a structured approach to computing comprise 
expository statements, the presentation of worked examples and a design 
scheme. The latter appears in different forms: flow-charts, structured charts, 
Nassi-Shneiderman charts, etc. (Brooke, & Duncan, 1980; Green, 1982; 
Shneiderman, Mayer, McKay, & Heller, 1977). However, most students of 
introductory computer programming courses have problems in applying these 



Berendsen & Krammer 179 

techniques. Usually they do not use the design schemes, since they want to 
start the coding of the variables and the operations to solve the problem as 
soon as possible. They do not pay attention or may be unable to design the 
general structure of the program before coding the variables and operations. 
Obviously for the students programming means coding. Tromp (1989) 
phrases the motto of such students as: 'Code first, repair later and design 
never' (p. 47). This idea may be strengthened because the usefulness of the 
design techniques which are presented to students are unclear. Often the 
techniques are too detailed, too complex or too time consuming to use. 
Secondly, the instructions for the use of design techniques may be inadequa­
te. It is assumed that the content of the instruction emphasizes the syntax and 
semantics of the programming language. As soon as the teacher finishes the 
expository part of the instruction, the students are haphazardly proceeding 
with their work. Results of a previous experiment showed that in spite of the 
presented design techniques, the teachers of introductory computer program­
ming courses did not provide feedback on the students' design, or even worse 
did not see the designs. The authors suppose that when the students are 
developing the program, the provision of feedback and explicit instruction of 
the design scheme is essential. 

One of the key steps in designing schemes is the analysis of the problem 
and the synthesis of a set of subproblems that solve the original problem. A 
generally used term for this proces is decomposition of the problem (Jeffries, 
Turner, Polson & Atwood, 1981). The fact that decomposition plays a minor 
part in the programming activities of the novices, implies that the students 
should be coached during their problem solving. The usefulness of the design 
scheme can be promoted if the student learns and practices the decomposition 
skills. They should be coached during their decomposition trials. This implies 
that the teacher gives informative feedback on intermediate and final 
programming products. In doing so, the student receives relevant comments 
on his decomposition actions and possible frustrations of the student might be 
overcome. 

This paper addresses the question of how the decomposition can be 
represented in instruction in order to further the acquisition and to make 
instructional feedback possible. 

2. Decomposition and programming plans 
The term decomposition refers to two different concepts. First, decomposition 
is described as the process of decomposing the problem into more managea-
ble units. Second, the term can refer to the product of this process. The latter 
can be rather abstract (e.g., if it only resides in the brain of the programmer) 
or more concrete (e.g., in the fonn of a diagram). Our observations illustrate 



the difference between these two meanings. Some students who had to solve 
a programming problem proceeded in a rather unstructured way. They 
'hacked' (programmed quick and dirty) and debugged as they used to do 
when they still made BASIC programs on their home computers, but they 
took a final step to their solution by reorganizing the program into procedures 
and sub-procedures with the addition of comments, so that the programs 
looked like they were developed in accordance with the principles of 
structured design. This observation illustrates that a proper decomposition 
product (as reflected by a program) may be developed in accordance with an 
undesirable decomposition process. 

A main goal of most programming courses in vocational education is that 
students acquire the process of decomposing problems based on structured 
design principles. In order to reach this goal, the instruction should contain 
a suitable model for the product of a decomposition. Possibly the teacher can 
use this model to demonstrate the process, and to give feedback on students' 
decompositions. 

For practical reasons, the model for a decomposition product should meet 
the following requirements. First, the visual reproduction of the decompositi­
on should be chosen in such a way as to clearly represent how to approach 
the problem, both for the teacher and the student. Second, the usage of the 
decomposition product must be attractive to the students. This means that the 
student should not spend too much of nis/her time and effort making a 
representation of the problem approach. Furthermore, the instruction for 
making a decomposition product has to be as simple as possible and even has 
to be linked up with the current programming curriculum. Fourth, the 
approach to the problem and the structure of the program must be deducible 
from the decomposition product. Finally, the decomposition as an intermedia-
te product should simplify the student's coding task. 

A substantial number of empirical studies support the assumption that 
experts in domains like chess, go, geometry and electronic circuits, use goals 
and plans in their problem solving strategies (Chase & Simon, 1973; Greeno, 
1978; Soloway, 1986). Studies of experts' programming clearly demonstrate 
the use of programming plans (Adelson, 1981; Johnson, 1985; Rich, 1981; 
Rist, 1986; Soloway, 1985, 1986; Spohrer, Soloway & Pope, 1985). These 
programming plans are Standard fragments of code to achieve certain goals. 
For every subproblem (which can be considered as a specific goal), several 
Standard solutions (which can be considered as plans) are available. The plans 
consist of lines of code which belong together to achieve a particular goal. 

The term plan may suggest that experts always consciously design their 
programs which is not necessarily the case. Within the framework of 
programming other terms are in use, namely schemes (Gegg-Harrison, 1991), 



Berendsen & Krammer 181 

templates (Linn & Dalbey, 1985), beacons (Wiedenbeck, 1986), or clichés 
(Vanneste, Olivié & Dedecker, 1990). Because of its widespread use we hold 
on to the term plan. 

A programming plan does not necessarily form an integrated part of the 
code. It is in fact a framework with its 'feet' (which are represented by the 
lines of code) on different locations within the program. Figure 1 shows three 
programming plans: 'repeat-until', 'ixmning-total', and 'count-how-many'. 
The nmning-total plan, for example, keeps the total of the numbers read or, 
as Figure 1 makes clear, keeps the total of the counts. This plan consists of 
two subplans, one which sets the total at zero and the second which increases 
the total within the loop. Figure 1 further shows that the running-total plan 
covers two different lines of code, which are positioned at two different 
locations in the program. However, these lines belong together in order to 
keep a running total. The tl gure also demonstra tes that in the final program 
several plans are intertwined with each other. In order to get a working 
program, the programmer has to put the plans together in a good way. This 
composition of plans is a particular source of many novices' misconceptions 
(Spohrer & Soloway, 1986). 

plans programming codes 

count-how-many. 

runnlng-total 

repeat-until 

count := 1; 

total := 0; 

r— REPEAT 

total := total + count; 

count := count + 1; 

UNTIL total > 100; 

Fig. 1. Ulustration of the relation between plans and code for three plans and the corresponding 
Pascal program 



Experts distinguish several plans in their programs, whereas novices usually 
only see the individual code lines of the program. A major feature of 
programming expertise is the use of these plans. Experts have built a whole 
repertoire of such plans which is used as a kind of collection of ready-made 
answers to problems (Soloway, 1986). 

According to Spohrer, Soloway and Pope (1985), several misconceptions 
of novices can be traced back to the difference between psychological plans 
and programming plans. Psychological plans are used to achieve general 
goals from the 'outer world', whereas programming plans are used for 
achieving goals from the 'programming world'. Novices have not yet 
developed several plans to handle their problem, so they are looking for the 
solution with little planning and organisation (Rist, 1989; Soloway, 1986). 
Various researchers recommend providing the novice with explicit instructi-
ons in relation to programming goals and plans (Bonar, Riggs, Weil & Jones, 
1987; Rist, 1989; Soloway, Ehrlich, Bonar & Greenspan, 1982; Spohrer & 
Soloway, 1986). 

Taking into account the assumption that experts make use of goals and 
plans in their problem solving strategies and the requirements which are 
described above, the authors developed a model for the decomposition 
product. In presenting this model to novices, we wanted to know to what 
extent the subjects did actually use the plans in decomposing the problems so 
that the model's usefulness might become clear. Therefore we wanted to 
know something about the subjects' cognitive processes. 

3. Method 
Subjects 
Twenty-one subjects (15 male and 6 female, about 18 years old) who were 
requested to volunteer, participated in this study. The subjects were chemical 
technology freshmen at the Hogeschool Enschede, a school for higher 
vocational education. They attended classes of introductory programming 
(Pascal) and they had followed a maximum of five lessons in introductory 
programming. During four lesson periods, the subjects participated in the 
experimental treatment which was a part of the normal school curriculum. 
The subjects were not paid for their participation. 

In addition, verbal protocols of thinking aloud procedures were collected 
from four subjects (1 female and 3 male). These procedures took place 
outside of the regular lessons. These subjects were paid for their cooperation. 

Materials 
The instructional material (note 1) described several programming plans, 
when to select and how to compose them. The subjects were to use the 



Berendsen & Krammer 183 

instructional material together with a textbook which discussed how to use 
Nassi-Shneiderman Diagrams (NSD's) for the representation of the three 
most important programming structures, viz. sequences, iteration and 
selection. In the textbook several problems of increasing difficulty were 
presented which had to be solved with the help of NSD's. The problems 
presented in the textbook were also used for practising the programming 
plans. 

Test 
A short questionnaire (nine items) was administered to estimate the subjects' 
programming experience. Questions like "have you ever written a program?" 
or "have you ever read a program, that is to say did you understand the 
lines?" had to be answered by the subjects. 

Verbal protocols 
Finally, three problems were used to collect thinking aloud protocols which 
were audio-taped. 

Procedure 
During the fïrst lesson subjects were asked to fül in the short questionnaire 
on programming experience. 

After most of the subjects had studied the instructional material, they were 
asked to select several problems from the textbook and to produce a 
decomposition based upon the presented plans. Since the subjects were 
novices their text-book consisted of, among other things, simple programming 
problems. In order to make clear the concept of a plan, it seemed useful to 
practise these plans on very simple problems. Beside this, the plans are in 
this way linked up with the current programming curriculum. 

The decomposition based upon plans had to be worked out as follows. 
They fïrst had to select the appropriate plans, subsequently they had to 
compose these plans and finally they had to make an NSD of their compo-
sition. With this last step the subjects could participate with minimal effort 
because they had to develop an NSD anyway (it was in the school's 
curriculum). They were allowed to solve the problems during class or at 
home. The decompositions had to be handed in to the researcher. 

After all the decompositions were handed in, an appointment was made 
with the four subjects for recording the thinking-aloud protocols. These 
subjects were fïrst given an example problem in order to get them used to the 
task of thinking aloud while solving a problem. After they had solved the 
example problem, they were given a possible solution and received oral 
feedback on their own solution. The remaining three problems were presented 



184 Problem decomposition 

without discussing their Solutions. Every subject required about fifty minutes 
to solve all the problems, except for one subject who could only solve two 
problems. 

Analysis 
The decomposition product and the verbal protocols constituted the data to 
be analysed. In both analyses, the main question is whether the subject 
actually used the plan-based decomposition method. Therefore, the following 
issues were of importance. First, did the subject make a selection of 
appropriate plans? Second, did the subject compose these plans in a correct 
way? Third, are subplans, if any, being noticed? Fourth, did the procedure 
of decomposing proceed from plan selection to NSD specification? 

Analysis of the product - The decomposition notes were evaluated with the 
help of a worked-out scheme with plans. In these worked-out schemes the 
correct plans are selected and composed in accordance with our method (see 
Figure 2 where one of the problems is worked out). Because the subjects 

(selection] (corrposttion) 

rapsot-u-fmny 

ask-for-nrput-aniread 

ruinlno-total 

aorputo 

Gutput-rosut 

(NSD) 

total DnTt] 

repent-os-meny 

aak-for-lnout-and̂ ead 

tot [ircrement] 

conpute 

output-result 

TOTALX) 

FGRNUM3ERS>1T0n 

WHITE 'irput ruttjer1 

READNUMBER 

TOTAL> TOTAL+NUMBER 

MEAN s TOTAL/« 

WRiïEMEAN 

Fig.2. Worked-out scheme, according to our decomposition method, of the following problem: 
Read in ten numbers and compute the average of these numbers and assign this to the 
variable M E A N . Print the output of M E A N . 



Berendsen & Krammer 185 

were all novices, an incorrect or partly correct use of plans was expected. 
Therefore, we wanted to check whether (a) a minimum of three plans was 
correctly selected, (b) a minimum of three plans was correctly composed, and 
(c) the course of the programming process started with plan selection and 
ended with NSD specification. We checked for each subject whether the 
minimum of three plans was correctly selected. If this was true the subject 
scored one po int otherwise they scored no points. The same procedure was 
used for the composition of a minimum of three plans and for the procedural 
sequence of the subject. In relation to the latter evaluation it must be noted 
that we checked whether the subject had begun with plans: if the subject had 
only made an NSD, a zero score was assigned because he/she had immediate-
ly started with NSD, if he/she had first noted plans one point was assigned. 
Thus the most important issue here was whether the subject had begun bis 
decomposition product with plans. We expected to find at least 70% of the 
subjects had met the requirements we just mentioned. 

Analysis of thinking aloud protocols - Thinking aloud sessions were audio 
recorded and typed out. The protocols of all three problems were scored on 
the occurrence of verbal references to plan-structures and plans. Two 
questions with regard to the scoring of these thinking aloud protocols were: 
(a) Did the subjects make use of plan-structures and plans? (b) Did they 
proceed from plan selection and plan composition to NSD or code specificati­
on? We conceived the cognitive activity of plan selection and plan decomposi­
tion as high, and NSD or code specification as low abstraction. When the 
subject had indeed used the plans but applied them retrospectively, that is 
after the coding, the subject didn't proceed in accordance with the authors' 
idea of decomposition. 

The following scheme was used to observe subjects' application of plans 
in which the subjects' formulations which referred to plan-like structures 
were coded. Five categories were distinguished, four of which were 
interpreted as levels of abstraction, the fïfth was used for cases that were 
difficult to categorize. 
Level 1 - The use of the literal plans, i.e. the plans which exactly match the 
terminology as described in the instructional material. For example, 'ask-for-
input-and-read plan', 'compute plan' and 'test plan'. 
Level 2 - The use of the paraphrased plans, i.e. plans which do agree with 
the plans from the instructional material, but are named in the subject's own 
words. For example, 'that has to be printed' which is in agreement with the 
plan 'output-plan'. 
Level 3 - The use of sub-plans. These may be the sub-plans as formulated in 
the instructional material or may be self-labeled as well. For instance, 'count 



186 Problem decomposition 

[initialize]' (literally as described in the instruction) or 'the counter is set to 
zero' (paraphrased)'. 
Level 4 - The use of code or NSD terms. Examples are, 'for number is 1 to 
10' or 'while . .do' . 

When cases were difficult to categorize, they had to be included in the 
remaining category. An example is 'write x'. In this case it is unclear 
whether the subject is paraphrasing 'output-plan' or referring to code 'WRIT-
E(x)'. 

According to the required procedure it was to be expected that the subjects 
should mainly report plans in the fïrst half of the thinking-aloud protocols, 
while in the second half the more detailed terms should be predominantly 
present. 

For the analysis of the text of the thinking aloud protocols, an index of 
planning sequence was constructed. The fïrst three levels were taken together 
as being a level of high abstraction opposite to level 4, a level of low 
abstraction. For each problem's protocol a distinction was made between the 
fïrst half and the second half by taking the median of the coded scores of 
every part of the protocol (each protocol consisted of three parts, namely the 
three problems). The index of planning sequence was computed as being the 
fraction of codes that were in order, that is to say, firstly the codes of the 
level(s) of high abstraction and finally the codes of low abstraction. Figure 
3 illustrates this definition. 

Abstraction 

level 4 

levels 
X 2 and 3 

c D 

A B 

number of codes 

first second 
half half 

Note: The numbers a, b, c, and d are cell frequencies. The index of planning order is defined 
as (a + d)/(a + b + c + d) 

Fig.3. Partitioning of the code frequencies according to abstraction level and number of codes 



Berendsen & Krammer 187 

The index of planning sequence was expected to be greater then .70. If this 
were the case we might conclude that the requested procedure did actually 
take place. Subsequently we could evaluate if it would be useful to continue 
with this procedure in a follow-up study. 

4. Results 
The products of programming 
In total 29 decompositions made by 14 subjects were taken in. Most of the 
subjects handed in two or three products. After a fïrst review of these pro­
ducts, we decided to take the subject's best decomposition into the analysis. 
The best decomposition was the one which most agreed with the authors' idea 
of decomposition. 

From the analysis of these decompositions, it appeared that eleven out of 
fourteen subjects (79%) made a correct selection of a minimum of three 
plans. However, 43% of the subjects made a correct composition of a 
minimum of three plans. A correct sequence of the decomposing process -
fïrst focusing on plans and eventually ending in NSD's - was found for 86% 
of the subjects. 

Thinking-aloud protocols 
Two independent observers scored the protocols, with an inter-observer 
reliability of .80. In Table 1 the index of planning sequence is presented for 
all subjects and all programming problems. It appears that the average index 
per person of all the three problems together, ranges between .58 and .82. 
We find six out of the eleven segments of protocol to have an index greater 
then .70. That means that the requested method can be recognized in the 
majority of the protocol segments (55%). 

Table 1: Index of planning sequence for four subjects and three problems 

Problem 

Subject 1 2 3 Mean 

1 
2 
3 
4 

.78 

.50 

.77 

.81 

.47 

.67 

.86 

.78 .72 

.50 

.60 
.58 
.59 
.82 
.77 



188 Problem decomposition 

Two typical examples of parts of thinking aloud protocols, collected from two 
subjects, follow below. The subjects tried to decompose the following 
problem: "the numbers from 1 up to and including 100 must be added and 
the result must be printed". 

"Iteration plan, a computing plan...and after this all a printing plan...thus A 
becomes.. .until the counter at 100 so...add up the total...and print the result*. 
(Subject nr. 2) 

This example shows that the subject immediately labeled the plans. According 
to him he needs an iteration plan, a computing plan (which is actually not 
correct because he should have mentioned a running-total plan) and a printing 
plan. No details are given. It certainly is clear that this subject has not yet 
worried about the details, which is in our opinion an encouraging procedure. 

"...Begin with initializing a counter...total is zero...he has to add afterwards eh T is 
T plus one...and he does this every time...and eh then 
... the counter is, he starts with, he sets it also to zero...then of course we are going 
to do the same build-up just like before...and we know what he is doing here 
below...we put above it 'FOR 1 TO 100', total is zero and we set the total to T and 
he adds it every time...difficult..". 
(Subject nr. 1) 

This subject typically has directed his attention to the details and he is 
therefore not proceeding in accordance with our method. 

Questionnaire 
The short questionnaire on programming experience which the subjects had 
to complete showed that everyone had seen a program at least once, 76 % did 
understand the lines of the program and 71% had written a program once 
before. 

5. Discussion 
Both the subjects' plan selection (79% of the subjects), and their procedures 
of working from an abstract level to a concrete level (86 % of the subjects) 
satisfied the preset criterion of 70%. However, the subjects did not meet the 
criterion for the composition of the plans (43% of the subjects). 

The subjects are left free in the selection of a programming problem from 
their textbook. This probably implies that they do not select the most difficult 
problem(s). Some of the problems are easy to solve so that a composition of 
the plans with an indication of the subplans, is not necessary because the 
composition appears in the NSD. The easiness of the problems thus may 
explain the low percentage of plan-composers (43 %). Moreover as was stated 



Berendsen & Krammer 189 

earlier, during the introductory programming classes the NSD's were being 
practised. So it is possible that the NSD's may have acquired a goal function 
which directs the subject's attention to the eventual NSD at the cost of the 
composition of the plans. 

One of the misconceptions occurring most strikingly in these products, is 
related to the idea of a plan. Four subjects did not make use of the described 
plans in their decomposition, but had described their contemplation. So the 
'programming plans' are sometimes considered 'psychological plans' by the 
subjects. Three times, plans were used in an ambiguous way. For instance, 
one subject initially selected the plan 'repeat-n-times', but in nis composition 
this plan had suddenly disappeared and was exchanged for the plan 'repeat-
until'. Four of the subjects used 'running-total' or 'count-how-many' plans 
to solve a problem, but did not mention these plans in their selection. 
However, they did point out the sub-plans (for example: count [init] and 
count [increment]) in their composition. It is most likely that these subjects 
did not understand that the sub-plans they mentioned in their composition 
actually belong to the 'running-total' and 'count-how-many' plans. One 
subject wrote beneath nis decomposition product that he proceeded the other 
way round; he fïrst made a NSD and then derived a decomposition, because 
the problems were too easy to do in the way we asked him. Finally, subjects 
often used the concepts 'compute' instead of 'keep a running total'. Probably 
they did not understand the idea of the 'running-total' plan which is always 
present within a loop. 

The analysis of the thinking aloud protocols reveal that 55% of the 
protocol segments have an index greater than .70, which is satisfying enough 
to proceed with our method in a follow-up study. The authors cautiously 
conclude that most of the protocol segments have reported the requested 
thinking procedure. They proceed from the highest level of abstract to the 
lowest level. 

With regard to the results of the questionnaire we might conclude that at 
least some of the subjects had more experience than was expected. 

The results of both the products and the protocols support the conclusion 
that the majority of the subjects do apply the required method in a correct 
way. They proceed from an abstract level to a concrete level by starting with 
plans and ending with a NSD. In further research the authors will continue 
with the use of the method. The instructional material will be revised by 
taking into account the remarks made by the subjects. For instance, the 
differences between all the plans should be explained more explicitly. In 
addition, more examples must be discussed. The effectiveness of the plans 
will be studied. Thereby we will give feedback on the decompositions, in 
order to emphasize the design aspect of programming. By explicitly offering 



programming plans to the students, and subsequently giving feedback on their 
decompositions, it is expected that the beginning programmers will learn to 
program more effectively and with greater ease. 

Note: 
1. "Plannen en PSD's: een experimentele uitgave in het kader van het TUTOR-project, januari 

1990" [plans and PSD's: an experimental publication within the scope of the TUTOR-project, 
january 1990] by Yolande A. J. Berendsen, Department of Instructional Technology, 
University of Twente. 

Literature 
Adelson, B. (1981). Problem solving and the development of abstract 

categories in programming languages. Memory and cognition, 9, 422-433. 
Bonar, J., P.Riggs, W.Weil & R.Jones (1987). Programming plans work-

book. Experimental edition. 
Brooke, J.B. & K.D.Duncan (1980). Experimental studies of flowchart use 

at different stages of program debugging. Ergonomics, 23, 1057-1091. 
Chase, W.C. & H.A.Simon (1973). Perception in chess. Cognitive Psycholo-
gy, 4, 55-81. 

Dahl, O.J., E.W.Dijkstra & C.A.R.Hoare (1972). Structured programming. 
London: Academie Press. 

Gegg-Harrison, T.S. (1991). Learning Prolog in a schema-based environ­
ment. Instructional Science, 20, 173-192. 

Green, T.R.G. (1982). Pictures of programs and other processes, or how to 
do things with lines. Behaviour and Information Technology, 1, 3-36. 

Greeno, J.G. (1978). A study of problem solving. In R. Glaser (Ed.), Advan-
ces in instructional psychology. Hillsdale, NJ: Lawrence Erlbaum Associa­
tes. 

Johnson, W.L. (1985). Intention-based diagnosis of errors in novice 
programmers. (Tech. Rep. No. 246), Ph.D. Thesis New Haven: Yale 
University, Department of Computer Science. 

Jeffries, R., A.A.Turner, P.G.Polson & M.E.Atwood (1981). The processes 
involved in designing software. In J. R. Anderson (Ed.), Cognitive skills 
and their acquisition (pp. 255-283). Hillsdale, NJ: Lawrence Erlbaum 
Associates. 

Linn, M . & J.Dalbey (1985). Cognitive consequences of programming 
instruction: Instruction, access and ability. Educational Psychologist, 20, 
191-206. 

Rich, C. (1981). A formal representation for plans in the programmer's 
apprentice. Proceedings of the 7th International Joint Conference on 
Artificial Intelligence (pp. 1044-1052), August 1981. 



Berendsen & Krammer 191 

Rist, R.S. (1986). Plans in programming: Definition, demonstration and 
development. In: E.Soloway & S.Iyengar (Eds.), Empirical studies of 
programmers. Norwood, N.J: Ablex. 

Rist, R.S. (1989). Schema creation in programming. Cognitive Science, 13, 
389-414. 

Rucinski, T.T. (1991). Effects of computer programming on problem solving 
strategies. International Journal of Instructional Media, 18, 4, 341-351. 

Shneiderman, B. , R.Mayer, D.McKay & P.Heller (1977). Experimental 
investigations of the utility of detailed flow-charts in programming. 
Communications of the ACM, 20, 373-381. 

Soloway, E. (1985). From problems to programs via plans: the content and 
structure of knowledge for introductory Lisp programming. Journal of 
Educational Computing Research, 1, 2, 157-172. 

Soloway, E. (1986). Learning to program = learning to construct mecha-
nisms and explanations. Communications of the ACM, 29, 9, 850-858. 

Soloway, E. , K.Ehrlich, J.Bonar & J.Greenspan (1982). What do novices 
know about programming? In: A.Badre & B.Shneiderman (Eds.), Directi-
ons in humanlcomputer interaction, 27-55, Ablex, Inc. 

Spohrer, J.C. & E.Soloway (1986). Novice mistakes: Are the folk wisdoms 
correct? Communications of the ACM, 29, 7, 624-632. 

Spohrer, J . C , E.Soloway & E.Pope (1985). A goal/plan analysis of buggy 
Pascal programs. Research Report #392. Yale University New Haven C.T, 
Department of Computer Science. 

Tromp, Th.J.M. (1989). The acquisition of expertise in computer program­
ming (Dissertation). Amsterdam: Thesis Publishers. 

Vanneste, P., H.Olivié & B.Dedecker (1990). Artificiële intelligentie en het 
gebruik van de computer in het onderwijs: Nieuwe perspectieven [Artificial 
intelligence and the application of the computer in education: New 
perspectives]. Rapport ITS-1. Interdisciplinair Research Centrum, K U L A K , 
Univ. Kortrijk. 

Wiedenbeck, S. (1986). Beacons in computer program comprehension. 
International Journal of Man-Machine Studies, 25, 697-709. 

Wirth, N . (1974). On the composition of well-structured programs. Com­
puting Surveys, 6, 247-259. 

Yourdon, E. (1975). Techniques of program structure and design. Englewood 
Cliffs, NJ: Prentice-Hall. 




