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ABSTRACT. Several recent ascertaining studies revealed a deep-rooted and almost ir-
resistible tendency among 12–16-year old students to improperly apply the linear or pro-
portional model in word problems involving lengths, areas and volumes of similar plane
figures and solids. While these previous studies showed to what extent students’ improper
use of linear reasoning is affected by different characteristics of the task, it remained
largely unclear what aspects of their knowledge base are responsible for the occurrence
and strength of this phenomenon and how these aspects relate to other more general mis-
conceptions and buggy rules identified in the literature. This paper reports an in-depth
investigation by means of individual semi-standardised interviews aimed at analysing the
thinking process underlying students’ improper linear reasoning and how this process is
affected by their mathematical conceptions, beliefs and habits. During these interviews,
students’ solution processes were revealed through a number of well-specified questions
by the interviewer with respect to one single non-linear application problem, as well as
through their reactions to subsequent kinds of cognitive conflict. The interviews provided
a lot of information about the actual process of problem solving from students falling into
the ‘linearity trap’ and the mechanism behind it. Although some students seem to really
‘believe’ that quantities are always linked proportionally, their improper use of linearity
often results from superficial and intuitive reasoning, influenced by specific mathematical
conceptions, habits and beliefs leading to a deficient modelling process.

KEY WORDS: illusion of linearity, length and area, misconception, ratio and proportion,
similarity

1. INTRODUCTION

Linearity (or proportionality1) is, from a long way back, a key concept in
mathematics and science education from elementary school to university.
Both from a psychological and a mathematical point of view, the idea
of linearity comes first. Rouche argues that because of their simplicity,
linear functions immediately appear in human’s mind (“C’est l’idée de
proportionnalité qui vient d’abord à l’esprit, parce qu’il n’y a sans doute
pas de fonctions plus simples que les linéaires”, Rouche, 1989, p. 17). In
its longitudinal development the linearity concept appears in many shapes:
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from the old-fashioned ‘rule of three’ in primary school, to the idea of lin-
ear models and approximations in calculus and statistics at the secondary
level, and to the abstraction in a vector space sense in university courses.

However, the reinforcement of linearity at numerous occasions in school
mathematics, along with its intrinsic simplicity and self-evidence, may
lead to a tendency in students – and even in adults – to see and apply
the linear model ‘everywhere’. As formulated by Freudenthal (1983, p.
267): “Linearity is such a suggestive property of relations that one readily
yields to the seduction to deal with each numerical relation as though
it were linear.” The misuse of linearity in non-linear situations – some-
times referred to as the ‘illusion of linearity’ (or proportionality) – is a
‘classical’ misconception, probably one of the oldest in the literature of
mathematical thought. The most famous and most often quoted example
is the duplication of a square in Plato’s dialogue Meno, in which a slave is
asked to double the area of a given square and firstly proposes to double
its side. The slave spontaneously applies the idea of linear proportionality
(between length and area) and changes his mind only when Socrates helps
him in diagnosing and correcting the error in his reasoning by confronting
him with a drawing. Another well-known historical example is Cheva-
lier de Méré’s faulty linear approach to a dice game problem (see, e.g.,
Freudenthal, 1973). By experience, de Méré knew the advantage of betting
on at least one six in 4 throws of a single die and he incorrectly deduced
that it must be equally advantageous to bet on at least one double six in 24
throws of a pair of dice, because 4

6 = 24
36 . Later on, because he experienced

that, notwithstanding his reasoning, bets on the latter event did not yield
the financial gain he had hoped for, he brought this problem to the attention
of Pascal and de Fermat which led these two mathematicians to work out
the basics of probability theory.

As the concept of linearity itself, the misuse of linearity has many faces:
it has been found at different age levels and in a variety of mathematical
domains (see, e.g., De Bock et al., 1999). In elementary arithmetic, the
phenomenon of improper proportional reasoning is often related to a ‘lack
of sense-making’ in the mathematics classroom (Gagatsis, 1998; Greer,
1993; Nesher, 1996; Verschaffel et al., 1994, 2000; Wyndhamn and Säljö,
1997). When confronted with so-called ‘pseudoproportionality problems’
(such as, e.g. “It takes 15 minutes to dry 1 shirt outside on a clothesline.
How long will it take to dry 3 shirts outside?”), many students give answers
based on direct proportionality (i.e., tripling the drying time because the
number of shirts is tripled). Also in cases where modelling with direct
proportionality at best offers a very rough approximation (such as, e.g., in
the runner problem: “John’s best time to run 100 metres is 17 seconds. How
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long will it take him to run 1 kilometre?”), only very few students appear to
show awareness that direct proportionality will give only an approximate
answer. In secondary education, ‘linearity errors’ are often reported in the
fields of algebra and (pre)calculus. Students tend to overgeneralise what
has been experienced as ‘true’ for linear functions to non-linear func-
tions (e.g. “the square root of a sum is the sum of the square roots” or
“the logarithm of a multiple is the multiple of the logarithm”). This type
of systematic errors has been discussed and illustrated by Berté (1987,
1993), Gagatsis and Kyriakides (2000) and Matz (1982). According to
Matz (1992), these linearity errors result from students’ overgeneralisation
of the distributive law. The immense number of occasions wherein students
add and use the distributive law in arithmetic and early algebra is very
likely to reinforce students’ acceptance of linearity. Students’ excessive
adherence to linearity has not only been observed in algebraic but also in
graphical environments (for an overview, see Leinhardt et al., 1990). For
example, Markovits et al. (1986) discovered that 14–15-year old students
who were asked to generate examples of functions or to draw graphs of
functions passing through given points stuck to linear functional thinking.

The best-known example of students’ improper use of linearity, issued
from the domain of geometry and measurement, is students’ improper
application of linearity in problems about the relationships between the
lengths and the area and/or volume of similarly enlarged or reduced figures
(De Bock et al., 1998). As the slave in Plato’s Meno, students of different
educational levels strongly tend to generalise changes in linear dimensions
to changes in area and volume. In responding to questions about the effect
of halving or doubling the sides of a figure to produce a similar figure,
most students – and even prospective teachers – claim that the area and
volume will be halved or doubled too (National Council of Teachers of
Mathematics, 1989; Outhred and Mitchelmore, 2000; Simon and Blume,
1994; Tierney et al., 1990). Gaining insight in the quadratic, respectively,
cubic growth rates of areas and volumes, appears to be a slow and difficult
process, and, therefore, it deserves our close attention, both from a phe-
nomenological and a didactical point of view. According to Freudenthal
(1983, p. 401), “this principle deserves, as far as the moment of constitu-
tion and the stress are concerned, priority above algorithmic computations
and applications of formulae because it deepens the insight and the rich
context in the naive, scientific, and social reality where it operates.”

Recently, several studies have shown that – in the context of enlarge-
ments or reductions of plane figures and solids – students’ improper pro-
portional reasoning is a widespread and almost irresistible tendency among
students (see, e.g., De Bock et al., 1998, 2002). In these studies, large
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groups of 12–16-year old students were administered (under different ex-
perimental conditions) a written test consisting of proportional and non-
proportional word problems about lengths, areas and/or volumes of differ-
ent types of regular and irregular figures. The next problem is an example
of a non-proportional item about the enlargement of a square: “Farmer Carl
needs approximately 8 hours to manure a square piece of land with a side
of 200 m. How many hours would he need to manure a square piece of
land with a side of 600 m?”. The majority of the students in these studies
failed on the non-proportional problems because of their alarmingly strong
tendency to apply proportional reasoning ‘everywhere’. Even with consid-
erable support (such as drawings, metacognitive stimuli calling students’
attention to the problematic character of the word problems, or embedding
the problems in an authentic problem context), only very few students
appeared to make the shift to the correct non-proportional reasoning.

Despite our rather extensive empirical data base about the phenomenon
of improper proportional reasoning in this domain, the research method
used so far, namely administering collective tests to large groups of stu-
dents under different experimental conditions, did not yield adequate in-
formation on the problem-solving processes underlying improper propor-
tional responses. Moreover, it remained largely unclear what aspects of
students’ knowledge base were responsible for the occurrence and strength
of this phenomenon and how these aspects relate to other more general
misconceptions and buggy rules identified in the literature. Therefore, we
made a shift in our methodology by doing in-depth interviews with in-
dividual students who fall into the ‘proportionality trap’. The interview
study that will be reported here was preceded by a pilot study aimed at the
development, try-out and definitive design of the different aspects of this
interview technique (see De Bock et al., 2001).

2. METHOD

Twenty seventh graders (12–13-year olds) and twenty tenth graders (15–
16-year olds) participated in the interview study. The participants came
from a boarding-school located in a medium-sized Flemish town and were
equally divided over most of the study streams of general secondary edu-
cation. The number of boys and girls in the school as well as in our sample
was more or less the same. All interviews were audio-taped and the inter-
viewees had some pieces of paper, writing materials, a ruler and a scientific
calculator at their disposal. The interviews consisted of five phases: after a
short introduction, the interviewee was confronted with a non-proportional
problem (Phase 1), followed by four subsequent forms of help to solve
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that problem (Phases 2, 3, 4, and 5). The interview stopped in the phase
wherein the students discovered the non-linear nature of the problem and
gave the correct response. If no form of help proved to be successful, the
interview stopped at the end of Phase 5. The forms of help provided in
Phases 2 to 5 aimed at eliciting a cognitive conflict in students who fell into
the ‘linearity trap’. Eliciting a cognitive conflict is a well-known method
to create cognitive disequilibrium in a learner and to lead him or her to
the discovery and development of new ideas (Forman and Cazden, 1985;
Limón, 2001). In the present study, the cognitive conflict was evoked by
presenting parts of the problem-solving protocol of a fictitious peer who
proposes a (correct) non-linear solution to the problem. From Phase 2
to 5 this cognitive conflict in the interviewee was gradually increased by
providing more and more evidence for the non-linear solution. As will be
explained below, this procedure of stepwise bridging the distance between
the linear and the non-linear solution originated partly from a rational ana-
lysis of the different obstacles students could encounter, and partly from
specific hypotheses stemming from previous research findings (De Bock
et al., 1998). This procedure was refined by the experiences in our pilot
study (De Bock et al., 2001). For the sake of clearness, the main purpose
of the cycle of cognitive conflicts used in the interviews was to unravel
students’ thinking processes by ascertaining how they reacted to certain
kinds of help, and was thus not meant as a didactical trajectory. Preventing
or remedying students for falling into the ‘linearity trap’ would require
another approach (see, e.g., the pioneering work in this field by scholars
of the Freudenthal Institute like ‘Gulliver’ in Treffers, 1987, or ‘With the
giant’s regards’ in Streefland, 1984), but the development and/or evaluation
of such an instructional unit was not the focus of the present study.

Technically speaking, the interviews can be characterised as adaptive
and semi-standardised: the interviewer-researcher followed a pre-determined
scheme for the global development of the interview, asked specific stand-
ardised questions, but left enough room for spontaneous reactions of the
interviewee and tried to respond to these reactions in a flexible way (Gins-
burg et al., 1982).

We describe the five interview phases in more detail. A summary of
each phase is given in Figure 1. The interview started with a standardised
Introduction explaining the student that the interview was part of a research
project on mathematical problem solving. Therefore, he would be confron-
ted with one single problem. The interviewer stressed that, in every phase
of the interview, the student was free to revise his answer whenever he felt
this was necessary, since the interviewer was only interested in whether
the student could give the correct answer by the end of the interview and
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in how this final answer was obtained. This aspect of the ‘experimental
contract’ (Greer, 1997) was crucial, because we knew from our preliminary
study (De Bock et al., 2001) as well as from other similar studies (e.g.
Verschaffel et al., 1997) that some students tend to react in a self-defensive
way and therefore try to withhold their original answer, even when they
realise at a certain moment that this answer is untenable. So, we made
every possible effort to create an experimental ‘climate’ in which a student
would not resist changing his solution as soon as he thought or realised it
was incorrect.

In Phase 1 of the interview, the student received one non-proportional
word problem about the enlargement of an irregular two-dimensional fig-
ure. To guarantee an appropriate and uniform interpretation, the problem
was accompanied by a drawing of the original and enlarged figure. Previ-
ous research had shown that the vast majority of 12–16-year old students
solve problems about the area of enlarged irregular figures in a propor-
tional way, even when these problems are accompanied by ready-made
drawings (De Bock et al., 1998). To prevent that students would get inside
information about the problem and/or its correct answer from their class-
mates being interviewed earlier, we administered four isomorphic versions
of the same problem, one of which is given in Figure 1. With respect to the
choice of numbers in the problem, we avoided both too ‘easy’ numbers
(which might make students suspicious about the nature and goal of the
task, as documented in our pilot study, De Bock et al., 2001) and too ‘diffi-
cult’ numbers (which might necessitate students to pay too much attention
to the purely computational aspects of the problem-solving process). The
students were first asked to read the problem aloud and to ‘think aloud’
(Ginsburg et al., 1982) while solving it. At the moment when the student
finished his first reading of the problem, a chronometer was started to
measure the response time. When the thinking-aloud protocol did not yield
sufficient information about the student’s thinking process, the student was
asked to explain how his answer was found. Then, the student was asked to
indicate how sure he was about the correctness of that answer, by choosing
position on a five-point scale (from ‘certainly wrong’ to ‘certainly cor-
rect’). When a student did not indicate ‘certainly correct’, the interviewer
asked why he was not absolutely sure, if there was anything that did arouse
doubts and if he had considered alternatives. At the end of Phase 1, the
student was asked to explain why he thought the problem had to be solved
in that way. When a student could not justify his answer, the interviewer
made use of a ‘teaser’ consisting of a nonsensical additive solution for the
problem and asking the student why his solution was better than this one
(referring to the problem given in Figure 1, the ‘teaser’ was: “The second
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Father Christmas is 168 cm – 56 cm = 112 cm higher, thus Bart will need
112 ml more paint”).

In Phase 2, we tried to raise a first, weak form of cognitive conflict
in the students who had solved the problem incorrectly by means of pro-
portional reasoning. This conflict aimed at testing the hypothesis that these
students were simply inattentive in the first phase and to enable them to dis-
cover as yet the correct solution. It was realised by confronting the student
with a manipulated frequency table presenting an overview of the answers
given by a group of fictitious peers (see also Figure 1). The frequency table
contained two major answer categories. For the Father Christmas problem
in Figure 1, for instance, it indicated that 43% of the peers answered 18
ml (which is the incorrect, linear answer given by the student himself), but
another 43% answered 54 ml (which is the correct, non-linear answer).
The remaining 14% in this frequency table gave other answers or could
not give any answer at all. At first, no questions were asked and we looked
if the student spontaneously searched for the origin of the equally popular
alternative. If the frequency table did not elicit a spontaneous reaction, the
interviewer asked if the student had any idea where the alternative non-
linear answer did come from and if this alternative did raise some ‘seeds
of doubt’ about his initial answer. Finally, the student was asked which
answer he preferred: the initial answer or the alternative that emerged in
the peer group. After the student made his decision, the interviewer once
more asked for a justification.

For the students who did not abandon their initial linear answer at the
end of the second phase, a stronger conflict was elicited in Phase 3. In this
phase, we gave the argumentation of a fictitious peer from the 43% who
answered the problem correctly. For the example listed in Figure 1, the
following argumentation was given: “One student told me that if the Father
Christmas becomes three times as high while keeping the same shape, not
only his height is multiplied by 3, also the width has to be multiplied by
3, so that you have to multiply the amount of paint by 9”). Moreover,
the calculation ‘9 × 6 ml’ was written down next to the answer ‘54 ml’
in the frequency table. So, although the arithmetic operation underlying
the non-linear answer was uncovered, no reference was made yet to the
concept of area. If the student did not react spontaneously, the interviewer
asked if the argumentation of the peer did (not) raise doubts about his
initial answer. Finally, the student was invited once again to indicate his
preference between the linear and the non-linear answer. Students who did
not exchange their original linear answer for the correct non-linear one,
went to Phase 4.
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Bart is publicity painter. In the last few
days, he had to paint Christmas
decorations on several store windows.
Yesterday, he made a drawing of a 56 cm
high Father Christmas on the door of a
bakery. He needed 6 ml paint. Now he is
asked to make an enlarged version of the
same drawing on a supermarket window.
This copy should be 168 cm high. How
much paint will Bart approximately need
to do this? Bakery’s door   Supermarket window 

Phase 1 
Solving a word problem 

Phase 2 
Weak form of cognitive conflict 

Phase 3 
Argumentation of fictitious peer 

Phase 4 
Solution process of fictitious peer 

Phase 5 
Explicit link with area measurement 

“Last week, we gave this problem to 
pupils in another school …” 
 

Answer Number of pupils 
18 ml 43 % 
54 ml 43 % 

Other answers 14 % 
 

“One student told me that if the Father 
Christmas becomes three times as high 
while keeping the same shape, not only its 
height is multiplied by 3, but also the 
width has to be multiplied by 3, so that
you have to multiply the amount of paint 
by 9. 

9 × 6 ml = 54 ml” 

       
Bakery’s door   Supermarket window 

• “Can you calculate the area of the 
two rectangles?” 

• “How much larger is the area of the 
large rectangle compared to the small 
one?” 

• “How much larger is the area of the 
large Father Christmas compared to 
the small one?” 

• “How much more paint do you need 
to paint the large Father Christmas?” 

“One student drew rectangles around 
the Fathers Christmas …”

Figure 1. Summary of the interventions in each phase of the interview.

In Phase 4 an even stronger cognitive conflict was installed by demon-
strating (visually) the reasoning behind the argumentation of the fictitious
peer. Therefore, the interviewer showed again the two Fathers Christmas of
Figure 1, but now inscribed in exactly fitting rectangles (see Figure 1). He
explained that the peer who multiplied by 9 drew the rectangles around the
Fathers Christmas and then saw that it enlarges 3 times in both dimensions.
So, the amount of paint needed for the big Father Christmas is 3 × 3 = 9
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times the amount needed for the small one. This intervention was inspired
by previous studies in which students more easily discovered the two-
dimensional impact of an enlargement in regular than in irregular figures
(De Bock et al., 1998). Once more, after leaving room for spontaneous
reactions, the interviewer asked if the solution strategy of the peer did (not)
raise doubts about his initial answer. Finally, the interviewee was invited
to indicate his preferential answer. If this preferential answer was kept to
be the incorrect linear one, the student arrived in the last interview phase.

The strongest cognitive conflict was installed in Phase 5 wherein for the
first time we created an explicit link with the concept of area of regular and
irregular figures. The student was consecutively asked (1) to calculate the
area of the rectangles wherein the two Fathers Christmas were inscribed,
(2) to compare the area of these two rectangles, (3) to compare the area
of the two inscribed Fathers Christmas, and (4) to compare the amounts
of paint needed for painting them (for the exact phrasings, see Figure 1).
If this fourth scaffold proved to be ineffective, the interviewer asked to
compare the amounts of paint needed for painting the two rectangles. Be-
cause every step in Phase 5 could be helpful, the interviewer left room for
spontaneous reactions after each step. At the end, the interviewee stated his
definite preference and whatever this answer was, the interview stopped
here.

3. RESULTS

Table I presents the number of students who chose the correct answer in
each phase. A detailed overview of the answers of the different students
in each phase of the interview is given in the Appendix. As expected, the
tendency to give a linear answer was strongly present in both age groups.
Initially, only two students, both 15–16-year olds, solved the problem cor-
rectly. The other thirty-eight students gave an erroneous, linear answer in
Phase 1 of the interview. The subsequent cognitive conflicts of Phases 2
to 5 proved to be effective for, respectively, one, seven, five, and three 12–
13-year olds and for, respectively, one, seven, four, and two 15–16-year
olds. By the end of the interview, four students of both age groups had not
exchanged their wrong, linear answer for the correct, non-linear one. We
now look at each phase in more detail, particularly from a qualitative point
of view. The codes between squared brackets are individual student codes
and refer to the overview in the Appendix. Differences between the two
age groups will only be described if relevant.
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TABLE I

Absolute and cumulative number of students who chose the correct answer in each phase

Age group N Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

12–13-year (N = 20) Absolute 0 1 7 5 3

Cumulative 0 1 8 13 16

15–16-year (N = 20) Absolute 2 1 7 4 2

Cumulative 2 3 10 14 16

Total (N = 40) Absolute 2 2 14 9 5

Cumulative 2 4 18 27 32

3.1. Phase 1: Solving the word problem

The mean response time after the first reading of the word problem was
98.18 seconds, with a standard deviation of 73.20 seconds. Without the
response times of the two 15–16-year olds who gave the correct non-linear
answer in Phase 1 (125 and 130 seconds), the mean and standard deviation
were still, respectively 96.56 and 74.91 seconds. This mean is rather high,
considering that most students used very simple and straightforward pro-
portional calculations. It is, however, considerably raised by the response
times of a few students, which also explains the high standard deviation.
These students were having difficulties with manipulating the available
calculator or had to re-read the problem because they had not written down
nor memorised the relevant numerical data. None of the forty students
made a drawing or any other kind of external representation involving
more than writing down the three given numbers.

Except the two 15–16-year olds who gave the correct non-linear answer
in this phase, all students calculated the amount of paint needed in a pro-
portional way. Only one of these 38 students expressed some doubts about
this linear approach (“You need more data, for instance the width” [10–
19]), but this did not affect his solution. Strategies for finding the linear
solution were, in order of importance, the internal ratio strategy (i.e. using
the ratio between the heights of the Fathers Christmas: 168 ml/56 ml = 3,
thus 3 × 6 ml = 18 ml), the ‘rule of three’ (i.e. via the amount of paint
needed to paint 1 cm of the Father Christmas: 6 ml of paint for 56 cm,
thus 0.107 ml for 1 cm, thus 0.107 × 168 ml = 18 ml for 168 cm) and the
external ratio strategy (i.e. using the ratio between the amount of paint and
the height in one Father Christmas: 6 ml/56 cm = 0.107 ml/cm, thus 0.107
ml/cm × 168 cm = 18 ml).

Most students were very sure or quite sure they gave a correct answer.
On the five-point scale, 20 students indicated to be ‘certainly correct’, 16



IMPROPER USE OF LINEAR REASONING 321

students to be ‘probably correct’ and the remaining 4 students to ‘have
no idea’. Remarkably, the two 15–16-year olds who gave the correct non-
linear answer in Phase 1, indicated to be ‘probably correct’ [10–17] or
to ‘have no idea’ [10–20]. The choices of all individual students on this
scale are given in the Appendix. Typical justifications of the students who
indicated ‘certainly correct’ (while actually having answered incorrectly)
were: “It’s an easy problem. I just used the three numbers and the formula,
so it must be correct” [10–01], “It’s logical, the Father Christmas be-
comes three times bigger” [10–02]. Students who expressed doubts about
the correctness of their answer gave rather superficial and general reas-
ons for their doubts that did not address the correctness of the applied
model (e.g., “I’m not completely sure because I haven’t carefully read
the problem” [7–12], “Maybe I made a computational error. That can al-
ways happen” [10–18], “That was the first thing that came to mind, but
maybe I didn’t use the correct procedure” [7–18], “You are never abso-
lutely sure” [7–06], “Mathematics is not my cup of tea, so I am not sure
that my answer will be correct” [10–15]). The great self-confidence ob-
served in most students seems to indicate that for them, the linear model
was self-evident. Moreover, students’ reasons for being uncertain about
the correctness of their given answers show their habits and beliefs when
approaching word problems: the chance for success is mainly due to gen-
eral mathematical ability, problems are read superficially, while possible
mistakes are attributed purely to technical calculation errors.

Despite the fact that students were quite sure about the correctness
of their answers, they had great difficulties explaining why their methods
were correct. Initially, most students were unable to give any explanation
at all. After insisting on a justification, students (a) referred to the fact
that their solution is the most logical one, (b) explained that the Father
Christmas is higher, so you need more paint and because it is three times
as high, you need three times as much paint, (c) referred to the fact that
the problem is about ratio or proportion. These superficial answers seem
to indicate that students typically use the linear model in a spontaneous
and thoughtless way and do not check whether this model is applicable in
a given situation. Students do not seem to have clear arguments justifying
its use, nor do they realise that there are competing models. Even the few
students who realised that the enlargement acts in two dimensions did not
necessarily give up the linear model. On the contrary, it was among these
latter students that we observed the purest and most general expressions
of the linear misconception (“It’s 3 times bigger, not only the height but
also the width. You can see it on the drawing. The whole thing is enlarged
by factor 3, so you will need 3 times as much paint” [10–08], “I knew it
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was enlarged, but not how much, so I calculated 168: 56 and then I knew
the multiplier” [10–05], “Because the picture becomes larger, you need
more paint, so you have to multiply by three” [7–19], “It has the same
shape, but it is enlarged, so you have to multiply the amount of paint by
the same number” [10–13]). Arguably, these students identified ‘increase’
with ‘proportional increase’, without making a clear mental representation
of the problem situation.

3.2. Phase 2: Reactions to the weak form of cognitive conflict

After being confronted with the manipulated frequency table with the cor-
rect answer and the erroneous linear answer, only two of the thirty-eight
students involved in Phase 2 began to think about a mathematical model
that also takes into account the width of the enlarged Father Christmas.
Both students ([7–10] and [10–14]) decided in favour of the correct, non-
linear solution, although one of them argued that the width surely enlarges,
but that it is impossible to know exactly how much ([10–14]). Being asked
why they had given a wrong linear answer during Phase 1, both students
admitted they had not thought about that (non-linear) solution and had not
paid attention to the given drawings.

For the majority of the thirty-six students who stuck to their original
linear answer, the confrontation with the frequency table with the answers
of fictitious peers really induced a cognitive conflict too: they started won-
dering where that other frequently-chosen answer could come from. Re-
markably, thirteen students discovered that this answer was obtained by
a multiplication by 32 (or 9), but most of them immediately rejected this
method as erroneous (“They multiplied by three two times! You see, they
made a mistake. My answer is correct” [7–01]). The twenty-three other
students who did not find the origin of the alternative answer, searched for
the rationale behind it in a more superficial way. For instance, they tried
out ‘randomly’ some combinations with the basic arithmetical operations
(+, –, ×, :) on the given numbers, regardless of their contextual meaning
(e.g. trying to arrive at the alternative solution by subtracting the heights
of the Fathers Christmas). The reasons of the thirty-six students for per-
sisting in their linear solution were typically very general and extrinsic
(e.g., “In general, I’m good in mathematics” [10–03], “You better always
stay with your first solution” [10–16]). Besides, they often indicated that
the linear answer was self-evident (e.g., “I would think my solution is
much more logical” [10–04], “It’s evident, you cannot do it otherwise”
[10–12]), while the non-linear answer was qualified as ‘counterintuitive’
or ‘illogical’ (e.g., “In my opinion, this is a strange reasoning” [10–15],
“That’s too far-fetched” [7–13], “54 ml is quite a lot” [10–04]).
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3.3. Phase 3: Reactions to the argumentation of a fictitious peer

In the third phase, another fourteen students of the remaining thirty-six
students (equally divided among both age groups) changed their incorrect
answer into the correct one. Apparently, the argumentation of the fictitious
peer who answered the problem correctly provided them the insight that
to maintain the same shape, a figure has to be enlarged in all dimensions,
having a quadratic effect on the area of the figure. The fourteen students
who changed their answer were asked to explain why they originally gave
the wrong linear solution. A first category of explanations referred to the
fact that they did not approach the problem in a thoughtful way, but instead
immediately and routinely (student [10–11] called it ‘instinctively’) started
to reason proportionally (“I started to solve the problem that way, and,
so to speak, I closed myself for the other reasoning. No other reasoning
could come up in my mind any more, also because this is the easiest way”
[10–18]). Second, some students argued that they did not notice the width,
because they were fixating on the problem statement which only referred to
the height (“I only paid attention to the text . . . a little bit to the drawings,
but above all to the text . . . and in the text only the height is mentioned” [7–
12], “In the text, only the height is given. If both the height and the width
were mentioned, I probably would have used another formula” [10–18]).
Third, there were students who realised that the enlargement also had an
effect on the width, but deliberately did not take it into account because the
width was not explicitly mentioned in the problem statement (“I thought
that the width was relevant too, but because in the text no reference was
made to the width, I decided to work with the height only” [7–06]).

The justifications of the twenty-two students who decided to stick to
their original answer were diverse, but can be grouped into three different
categories.

A first group of students gave the non-linear reasoning a serious thought
and were torn between the two alternative solutions, but they finally opted
for the familiar linear model because they insufficiently understood the
mathematical principles relevant to this problem. Some realised that the
enlargement had an impact on the Fathers Christmas’ width too, but were
unsure about how much this width increased (“Height and width are not
that much related to each other” [10–04], “The width changes too, but you
cannot know how much” [10–16]). Others struggled with the quadratic
impact of a linear enlargement on a figure’s area (or on the amount of
paint, the indirect measure that is linearly related to this area) (“6 ml is
for the whole Father Christmas, not only for the height. And 18 ml is for
the whole large Father Christmas, for the height as well as for the width”
[7–08]).
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For a second group of students the argumentation of the fictitious peer
was an immediate cause to formulate their mistaken linear belief more
clearly and more convincingly than ever before (“if you need 6 ml for this
area and this area fits three times in that area, you need three times more
paint” [10–04]). This reasoning is similar to that of those students in the
first group who struggled with the quadratic impact of a linear enlargement
on a figure’s area in the sense that they both improperly assumed a linear
relationship between two quantities. However, this second group differs in
the sense that its linear reasoning seemed not to be inspired by any specific
mental representation of the problem situation, but rather by an application
of linearity ‘everywhere’.

A third group of students justified their answer by referring to the im-
plicit rules for solving school mathematics word problems (Verschaffel
et al., 2000; Wyndhamn and Säljö, 1997). These students demonstrated a
simplistic view on school word problem solving, assuming that all word
problems can be solved by using simple mathematical calculations on the
numbers given in the problem, and that real-world knowledge and context-
based considerations should not be involved in the solution process. Some-
times, this type of arguments also occurred in students belonging to the first
two categories. Examples of justifications in this group are: “I think that
the pupils who gave this answer make it too complex for a word problem”
[7–13], “In your calculation you can only involve numbers that are given”
[10–04], “The word problem says nothing about the width at all, so it must
be wrong” [10–15]. Typically, these students rejected conflicting evidence
arising from the given drawings (“In the drawing it is wider, but not in the
word problem. The word problem is about the height only” [7–09]).

3.4. Phase 4: Reactions to the solution process of a fictitious peer

After the confrontation with the fictitious peer’s solution process, namely
actually drawing rectangles around the Fathers Christmas’ irregular shapes,
in Phase 4, another nine of the remaining twenty-two students (five 12–
13- and four 15–16-year olds) exchanged their initial linear answer for
the correct non-linear one. It appeared that for these students, the circum-
scribed rectangles seemed to function as a real ‘Gestaltwechsel’ (Wer-
theimer, 1945), since they immediately and conclusively made a shift in
their answers: “Oh yes, now I see it. Indeed, it is nine times larger because
the small rectangle also fits nine times in the large one. With the help of
these rectangles I understand it. I am sure now, it should be 54 ml” [7–04].
The uncertainty about how much the width increased, which was noted
down several times at the previous phases, disappeared completely in these
students. Before concluding the interview, these students were also asked
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why they originally gave a wrong linear answer and why they stuck so long
to it. Their reactions were very similar to those given on this question by
the students who found the correct response in Phase 3.

In the thirteen students who stayed with their original linear answer
during Phase 4, no reflections were made about a mathematical model that
takes into account the increased width of Father Christmas. Most students
justified their answers by expressing their beliefs about how to solve math-
ematical word problems (“Don’t look too far for the solution of a school
word problem” [10–07], “It’s possible, but the width is not mentioned in
the problem statement” [7–09]) and about the role of and the relationship
between textual and graphical information in a word problem (“It is nine
times for the drawings, but three times for the word problem” [10–08],
“Drawings are less accurate” [10–04], “You never should ground a solution
in mathematics on a drawing. You have to ground it on formulas” [10–15])
(cf. also Phase 3). Some students could not give any justification at all or
just repeated their mistaken linear belief, sounding an attempt to convince
the interviewer (“The little Father Christmas fits three times into the large
one. It’s the same for the rectangles. Three times more area, thus three
times more paint” [7–20]).

Remarkably, the confrontation with the rectangles brought two of the
thirteen students who stayed with their original linear answer ([7–03] and
[7–13]) to express for the first time a strange misconception: the increase
of area is different for the enlarged rectangles than for the irregular figures
inscribed in these rectangles (in this case, the area scale factor was sup-
posed to be nine for the rectangles, but three for the Fathers Christmas).
Student [7–03] formulated it this way: “What they do with the rectangle
is correct: it enlarges in two directions. But within the rectangles is an
irregular figure. And that’s completely different. See here and here” (points
at the white parts in the rectangles).

3.5. Phase 5: Reactions to the explicit link with area measurement

In this final phase, yet five other students of the remaining thirteen students
(three 12–13- and two 15–16-year olds) left the wrong linear answer and
exchanged it for the correct non-linear answer. All five students correctly
calculated the area of both rectangles and, to their astonishment, found
that the area of the larger rectangle was indeed nine times the area of
the smaller one. Three of them felt no difficulties to generalise this last
finding to the ‘irregular’ Fathers Christmas within these rectangles and to
the amounts of paint needed to paint them. However, two students ([7–15]
and [10–03]) only succeeded in drawing this conclusion after the inter-
viewer provided them with still an extra scaffold (e.g. after the interviewer
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had asked them to compare the amounts of paint needed to paint the two
rectangles). Moreover, an ultimate choice for the correct answer did not
necessarily remove all doubts (e.g., “OK, it is nine times more paint. But I
still don’t see why my original calculation was not correct” [10–03]).

Even after four types of increasing cognitive conflicts, eight students
maintained their linear answer until the very end of the interview. While
arguing their choice, these students even stronger stuck up for their beliefs
about how to solve word problems and about the role of drawings in word
problem solving (“For the drawings, it is nine times, but this is not that
relevant. In a word problem you are expected to work with the data that
are provided in the text. Using drawings and measuring is less accurate”
[10–04]) (see also Phases 3 and 4). Some of these persisting students also
seemed to be worried about the role of ‘amount of paint’ as an indirect
measure for ‘area’ in this context (“It’s about ‘consumption of paint’ and
you don’t have to solve it via area” [7–02], “For the area, it is nine times,
but for the amount of paint, I’m not so sure. Millilitre is not referring to
area, but rather to volume” [10–08]).

4. DISCUSSION

The interviews confirmed the existence of a very strong and deep-rooted
tendency among 12–13- and 15–16-year olds to stick to the linear model
when doing non-linear word problems about the enlargement of two-dimen-
sional figures, even when confronted with very strong contradictory evid-
ence for the tenability of that model in the given context. Indeed, after the
first confrontation with the word problem, almost all students improperly
applied the linear model and, in each of the subsequent phases of the
interview, only a limited number of students – often hesitatingly – left
that model. After four types of increasing cognitive conflicts, providing
increasingly strong evidence for a non-linear approach, still one fifth of
the students stuck to the linear model.

More importantly, the interview study provided a lot of information
about the reasoning and problem-solving processes of students falling into
the ‘proportionality trap’ and the mechanisms behind it. The results en-
abled us to identify the role of different aspects of students’ knowledge
base that were responsible for their inappropriate proportional responses.
These aspects can be grouped in four distinct categories, which we will
explain in detail now. However, it is important to mention here that students
cannot always be exclusively or straightforwardly put into one of these
categories. Most often, the reactions of a student during the five phases of
the interview involved a complex interplay of elements originating from
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different categories and some of these elements were more prominently
present in particular interview phases.

A first category of explanations refers to the intuitiveness of linear
relationships. According to Fischbein (1987), intuitive cognitions have
an obvious, self-evident, and coercive character, receive great confidence
and persist despite formal learning. These characteristics seem to apply
to the incorrect reasonings of the students in our study too, particularly
in the first phase of the interview: the use of linear relationships was per-
ceived as correct without a need for any further justification, students were
overconfident in it, and were reluctant to question the correctness of their
linear approach when confronted with conflicting evidence. Proportions
appeared to be deeply rooted in students’ intuitive knowledge and were
used in a spontaneous or even unconscious way, which made the linear
approach quite natural, unquestionable and to a certain extent inaccessible
for introspection or reflection. While thinking aloud, most students imme-
diately used proportions, they were convinced about the appropriateness
of the proportional model and of the correctness of their answer, but it was
virtually impossible for them to justify what they did. Later on during the
interview, some students qualified the non-proportional solution as ‘coun-
terintuitive’ or ‘illogical’ (see, e.g., students’ reasons for persisting in their
linear solution in Phase 2). There also seems to be a parallel between stu-
dents’ problem-solving process – especially in the very first encounter with
the problem – and the ‘intuitive rules’ described and studied by Tirosh and
Stavy (1999a, 1999b). These authors claim that there are some common,
intuitive rules that come in action when students solve problems in math-
ematics and science. Two such rules are manifested in comparison tasks:
‘More A–more B’ and ‘Same A–same B’. In the problem we presented to
our students, it is quite natural (and correct) to apply the ‘More A–more B’
rule (the more height, the more area/paint). However, the ‘Same A–same
B’ reasoning might occur too (figures share the same shape, so everything
enlarges by the same factor), leading to an incorrect ‘k times A–k times
B’ judgement (three times more height, so three times more area/paint).
Expressions in line with these schemes occurred several times during the
interview and were sometimes phrased literally.

Besides the intuitiveness of linear relationships, students’ improper use
of linear reasoning seems – at least in some cases – to be the result of
a conscious and deliberate application of linear functions in situations
wherein they are not applicable. This kind of misconception can be legitim-
ately called the ‘illusion of linearity’: students really believe that the linear
model is applicable in a given situation. This second category differs from
the first in the sense that students no longer implicitly or automatically
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rely on proportions, but rather do this in an explicit and deliberate way.
For some students, this deliberate application of linearity was related to
the specific context of enlarging geometrical figures. In their conviction,
the same scale factor (namely factor 3) applies for both the lengths and the
area of a geometrical figure (e.g. “The height and the width of the figure
are tripled, so the area is tripled too” [7–05]). However, the illusion of
linearity also appeared at a more general level. Some interviewed students
tended to quantify every relationship between variables (whatever they
are) into a proportional relationship between these variables. Support for
this assertion can be found in students’ reactions on the question why the
problem had to be solved that way (e.g. “I knew it was enlarged, but not
how much, so I calculated 168: 56 and then I knew the multiplier” [10–
05], “Because the picture becomes larger, you need more paint, so you
have to multiply by three” [7–19]). Apparently, these students identified
‘increase’ by ‘proportional increase’, always and everywhere. Models that
contradicted this conviction, such as the non-proportional solution given
by the fictitious peer, were immediately rejected.

Third, we found that many students (the younger as well as the older
ones) suffer from shortcomings in their geometrical knowledge, especially
about the effect of a similarity on the lengths and area of a figure. Utter-
ances of this fuzzy geometrical knowledge are the confusion of area and
volume, not recognising indirect measures for area (such as the amount of
paint), or the convictions that (1) when a figure is enlarged but maintains
its shape, the height and width not necessarily increase by the same factor,
(2) enlargements have a different effect on the area of a regular figure than
on the area of an irregular one, and (3) only regular figures have an area.
Although students learned these basic concepts and principles of geometry
and measurement at the elementary school level, they seemed to have a
bad or weak understanding of them, or at least they were not able to apply
them correctly.

Fourth, the described findings seem also closely related to students’
inadequate habits and beliefs about solving word problems, which is sup-
ported by a vast amount of research (see, e.g., Verschaffel et al., 2000;
Wyndhamn and Säljö, 1997). The intuitive reasoning in the first phase of
the interview and the moderate impact of the conflicts in the subsequent
phases could occur only because the students approached the word prob-
lem in a superficial way, mainly looking at the numbers (and key words)
in the problem statement without making a clear mental representation of
the problem, assuming that word problems have little or nothing to do
with reality, and that everything you need to solve the problem is always
given in the problem statement. A mechanism that may underlie some of



IMPROPER USE OF LINEAR REASONING 329

these habits and beliefs is the so-called didactical contract (Brousseau,
1984) which can be described as a system of implicit norms, rules and
expectations being in force between a student and his teacher in school
settings. Related to the problem-solving activity, students did not spontan-
eously use and even distrusted heuristic methods that might have facilitated
problem solving (e.g., students rejected conflicting evidence arising from
the given drawings, they assumed that formulas are a more valuable and
trustworthy problem-solving tool than drawings), possibly because they
more or less implicitly received this message from their teachers. They
even didn’t acknowledge it as a necessary and valuable part of the problem-
solving process. These observations are in sharp contrast with the vast
amount of research showing how and why drawings may help people solve
(mathematical) problems, such as, e.g., Larkin and Simon’s (1987) famous
article Why a diagram is (sometimes) worth ten thousand words. In addi-
tion to students’ poor mastery and depreciation of heuristic methods, they
were also affected with deficient metacognitive knowledge (e.g., some of
them were convinced that a first and quickly found idea is always the best
and therefore it is always better to stay with your first solution, and that
evaluation and reflection are not an essential part of mathematical problem
solving).

All four elements mentioned before (intuitive reasoning, the linearity
illusion, shortcomings in geometrical knowledge, inadequate habits and
beliefs) seem to be a fertile soil for a superficial or deficient mathematical
modelling process. As several authors have stressed, mature mathematical
modelling involves a complex, cyclical process consisting of a number
of subsequent steps: understanding the situation described; selecting the
elements and relations in this situation that are relevant; building a math-
ematical model and working through it; interpreting the outcome of the
computational work in terms of the practical situation; and evaluating the
results and the applied model itself (Burkhardt, 1994; Greer, 1997; Ver-
schaffel et al., 2000). In the modelling process observed in many of our
students, some of these steps were completely bypassed. Little effort was
invested in understanding the problem situation and in making a clear men-
tal representation of the relevant elements and relations. The mathematical
model then mainly occurred on the basis of ‘reflex-like recognising’, and is
almost immediately translated in calculations. These calculations received
the most time and attention in the problem-solving process. The super-
ficial modelling was moreover affected by inadequate habits and beliefs
(e.g. solving word problems is just doing the correct operations with the
given numbers, drawings are less trustworthy than formulas). The super-
ficial character of students’ modelling process also appeared in the last
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phases of the modelling cycle: no critical evaluation of the model itself,
nor of the results obtained by applying this model was undertaken. With the
exception of a quick control on calculation errors, students did not spon-
taneously verify their answer by means of their common-sense knowledge
or the given drawings, and in no phase of the modelling cycle (Burkhardt,
1994), students spontaneously compared the applied linear model with al-
ternative models and even when confronted with these alternatives, they
did not seriously take them into consideration. Taking into account these
final considerations, students’ improper use of linear reasoning can also be
seen as a symptom of an immature and even distorted disposition towards
mathematical modelling.

The interview study enabled us to unravel the complex interplay of dif-
ferent elements in students’ knowledge base that was at the origin of their
adherence to a proportional solution. A major open question relates to the
characteristics a powerful learning environment should have to be succes-
ful in defeating students’ deep-rooted tendency towards (improper) propor-
tional reasoning. In an ongoing follow-up design experiment with 13-14-
year old students, Van Dooren et al. (2002) are designing, implementing
and evaluating an ecologically valid learning environment for providing
answers to that question. The environment is based on (1) the results of
this study (such as, e.g., focussing on the underlying concepts and rela-
tionships of problem situations, working on shortcomings in specific geo-
metrical knowledge, acting on students’ conceptions, habits and beliefs),
(2) principles of realistic mathematics education (such as, e.g., starting
from meaningful contexts for concept development, connecting different
mathematical strands, building on students’ own productions and informal
knowledge, integrating authentic assessment procedures) (de Lange, 1987;
Gravemeijer, 1994; Treffers, 1987), and (3) more general research-based
design principles for substantial learning environments aimed at enhancing
higher-order thinking skills (such as the use of instructional techniques like
coaching, scaffolding, articulation and reflection) (Collins et al., 1989).
The preliminary results of this experiment are both promising and disap-
pointing. They are promising in the sense that the students at the end of the
teaching experiment no longer automatically applied the linear model. The
instruction at least installed some kind of critical mindset towards linearity.
However, some undesirable side effects emerged, such as, e.g., students’
overgeneralisation of non-linear reasoning to linear problems and their use
of superficial task characteristics to distinguish between linear and non-
linear problems about the effect of an enlargement or reduction on area
and volume.
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5. APPENDIX

Overview of the answers of the different students in each phase of the
interview

Grade-Student Phase 1 Certainty Phase 2 Phase 3 Phase 4 Phase 5
7–01 L 4 L NL
7–02 L 5 L L L L
7–03 L 4 L L L L
7–04 L 4 L L NL
7–05 L 5 L L NL
7–06 L 4 L NL
7–07 L 4 L NL
7–08 L 5 L L NL
7–09 L 5 L L L L
7–10 L 5 NL
7–11 L 4 L NL
7–12 L 4 L NL
7–13 L 5 L L L L
7–14 L 3 L L NL
7–15 L 5 L L L NL
7–16 L 4 L NL
7–17 L 5 L L NL
7–18 L 4 L NL
7–19 L 4 L L L
7–20 L 5 L L L NL

10–01 L 4 L L NL
10–02 L 5 L L NL
10–03 L 5 L L L NL
10–04 L 5 L L L L
10–05 L 5 L L L NL
10–06 L 5 L NL
10–07 L 5 L L L L
10–08 L 5 L L L L
10–09 L 4 L NL
10–10 L 4 L NL
10–11 L 5 L NL
10–12 L 4 L NL
10–13 L 5 L NL
10–14 L 5 NL
10–15 L 3 L L L L
10–16 L 5 L L NL
10–17 NL 4
10–18 L 4 L NL
10–19 L 3 L L NL
10–20 NL 3

Note. L and NL indicate that a student chose, respectively, for the linear or the non-linear

answer in that phase of the interview. The column ‘certainty’ contains the scores indicating
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how sure a student was about the correctness of his answer (chosen on a scale from 1 to 5,

from ‘certainly wrong’ to ‘certainly correct’)
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NOTES

1. In this paper the terms linearity and proportionality are used as synonyms. In math-
ematics nowadays, linearity refers to relations of the form f(x) = cx, i.e. functions
for which the properties f(a + b) = f(a) + f(b) and f(ka) = k f(a) hold, graphically
represented by a straight line through the origin. Although the concept encompasses
both properties, the term ‘linear reasoning’ as currently used in mathematics education
especially refers to the multiplicative aspect of the concept which is also the case for
this paper.

REFERENCES

Berté, A. (Réd.): 1987, Enseignement des mathématiques utilisant la ‘réalité’, Tome 1,
IREM, Bordeaux.

Berté, A.: 1993, Mathématique dynamique, Nathan, Paris.
Brousseau, G.: 1984, ‘The crucial role of the didactical contract in the analysis and

construction of situations in teaching and learning mathematics’, in: H.G. Steiner
(ed.), Theory of Mathematics Education, Occasional Paper 54, Institut für Didaktik der
Mathematik, Bielefeld, Germany, pp. 110–119.

Burkhardt, H.: 1994, ‘Mathematical applications in school curriculum’, in T. Husen and
T.N. Postlethwaite (eds.), The International Encyclopedia of Education, Pergamon Press,
Oxford/New York, pp. 3631–3634.

Collins, A., Brown, J.S. and Newman, S.E.: 1989, ‘Cognitive apprenticeship: Teaching the
crafts of reading, writing, and mathematics’, in L.B. Resnick (ed.), Knowing, Learn-
ing, and Instruction. Essays in Honor of Robert Glaser, Lawrence Erlbaum Associates,
Hillsdale, NJ, pp. 453–494.

De Bock, D., Van Dooren, W., Verschaffel, L. and Janssens, D.: 2001, ‘Secondary school
pupils’ improper proportional reasoning: An in-depth study of the nature and persistence
of pupils’ errors’, Proceedings of the 25th International Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, Utrecht, The Netherlands,
pp. 313–320.

De Bock, D., Verschaffel, L. and Janssens, D.: 1998, ‘The predominance of the linear
model in secondary school students’ solutions of word problems involving length and
area of similar plane figures’, Educational Studies in Mathematics 35, 65–83.



IMPROPER USE OF LINEAR REASONING 333

De Bock, D., Verschaffel, L. and Janssens, D.: 1999, ‘Some reflections on the illusion
of linearity’, Proceedings of the 3rd European Summer University on History and Epi-
stemology in Mathematical Education, Vol. 1, Leuven/Louvain-la-Neuve, Belgium, pp.
153–167.

De Bock, D., Verschaffel, L. and Janssens, D.: 2002, ‘The effects of different problem
presentations and formulations on the illusion of linearity in secondary school students’,
Mathematical Thinking and Learning 4(1), 65–89.

de Lange, J.: 1987, Mathematics, insight and meaning, OW&OC, Utrecht.
Fischbein, E.: 1987, Intuition in Science and Mathematics, D. Reidel, Dordrecht.
Forman, E.A. and Cazden, C.B.: 1985, ‘Exploring Vygotskian perspectives in education.

The cognitive value of peer interaction’, in J.V. Wertsch (ed.), Culture, Communication,
and Cognition: Vygotskian Perspectives, Cambridge University Press, New York, pp.
323–347.

Freudenthal, H.: 1973, Mathematics as an Educational Task, D. Reidel, Dordrecht.
Freudenthal, H.: 1983, Didactical Phenomenology of Mathematical Structures, D. Reidel,

Dordrecht.
Gagatsis, A.: 1998, ‘Solving methods in problems of proportion by Greek students

in secondary education, ages 13–16’, Scientia Paedagogica Experimentalis 35(1),
241–262.

Gagatsis, A. and Kyriakides, L.: 2000, ‘Teachers’ attitudes towards their pupils’ mathem-
atical errors’, Educational Research and Evaluation 6(1), 24–58.

Ginsburg, H.P., Kossan, N.E., Schwartz, R. and Swanson, D.: 1982, ‘Protocol methods
in research on mathematical thinking’, in H.P. Ginsburg (ed.), The Development of
Mathematical Thinking, Academic Press, New York, pp. 7–47.

Gravemeijer, K.: 1994, Developing Realistic Mathematics Education, Freudenthal Insti-
tute, Utrecht.

Greer, B.: 1993, ‘The mathematical modelling perspective on wor(l)d problems’, Journal
of Mathematical Behaviour 12, 239–250.

Greer, B.: 1997, ‘Modelling reality in mathematics classroom: The case of word problems’,
Learning and Instruction 7(4), 293–307.

Larkin, J.H. and Simon, H.A.: 1987, ‘Why a diagram is (sometimes) worth ten thousand
words’, Cognitive Science 12, 101–138.

Leinhardt, G., Zaslavsky, O. and Stein, M.K.: 1990, ‘Functions, graphs, and graphing:
Tasks, learning, and teaching’, Review of Educational Research 60(1), 1–64.

Limón, M.: 2001, ‘On the cognitive conflict as an instructional strategy for conceptual
change: A critical appraisal’, Learning and Instruction 11(4-5), 357–380.

Markovits, Z., Eylon, B.-S. and Bruckheimer, M.: 1986, ‘Functions today and yesterday’,
For the Learning of Mathematics 6(2), 18–24, 28.

Matz, M.: 1982, ‘Towards a process model for high school algebra errors’, in D. Sleeman
and J.S. Brown (eds.), Intelligent Tutoring Systems, Academic Press, London, pp. 25–50.

National Council of Teachers of Mathematics: 1994, Curriculum and Evaluation Standards
for School Mathematics, Author, Reston, VA.

Nesher, P.: 1996, ‘School stereotype word problems and the open nature of applications’,
Selected Lectures from the 8th International Congress on Mathematical Education,
Sevilla, Spain, pp. 335–343.

Outhred, L.N. and Mitchelmore, M.C.: 2000, ‘Young children’s intuitive understanding of
rectangular area measurement’, Journal for Research in Mathematics Education 31(2),
144–167.



334 DIRK DE BOCK ET AL.

Rouche, N.: 1989, ‘Prouver: Amener à l’évidence ou contrôler des implications?’, Actes
du 7ème Colloque inter-IREM Epistémologie et Histoire des Mathématiques, Besançon,
France, pp. 8–38.

Simon, M.A. and Blume, G.W.: 1994, ‘Building and understanding multiplicative relation-
ships: A study of prospective elementary teachers’, Journal for Research in Mathematics
Education 25(5), 472–494.

Streefland, L.: 1984, ‘Search for the roots of ratio: Some thoughts on the long term
learning process (Towards . . . a theory). Part I: Reflections on a teaching experiment’,
Educational Studies in Mathematics 15, 327–348.

Tierney, C., Boyd, C. and Davis, G.: 1990, ‘Prospective primary teachers’ conceptions of
area’, Proceedings of the 14th International Conference of the International Group for
the Psychology of Mathematics Education, Vol. 2, Oaxtepex, Mexico, pp. 307–314.

Tirosh, D. and Stavy, R.: 1999a, ‘Intuitive rules: A way to explain and predict students’
reasoning’, Educational Studies in Mathematics 38, 51–66.

Tirosh, D. and Stavy, R.: 1999b, ‘Intuitive rules and comparison tasks’, Mathematical
Thinking and Learning 1(3), 179–194.

Treffers, A.: 1987, Three dimensions. A model of Goal and Theory Description in
Mathematics Instruction. The Wiskobas Project, D. Reidel, Dordrecht.

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D. and Verschaffel, L.: 2002, ‘Rem-
edying secondary school students’ illusion of linearity: A developmental research’,
Proceedings of the 26th International Conference of the International Group for the
Psychology of Mathematics Education, Vol. 1, Norwich, UK, p. 370.

Verschaffel, L., De Corte, E. and Lasure, S.: 1994, ‘Realistic considerations in math-
ematical modelling of school arithmetic word problems’, Learning and Instruction 4,
273–294.

Verschaffel, L., De Corte, E. and Vierstraete, H.: 1997, ‘Teaching realistic mathematical
modelling in the elementary school: A teaching experiment with fifth graders’, Journal
for Research in Mathematics Education 28(5), 577–601.

Verschaffel, L., Greer, B. and De Corte, E.: 2000, Making Sense of Word Problems, Swets
and Zeitlinger, Lisse, The Netherlands.

Wertheimer, M.: 1945, Productive Thinking, Harper and Brothers, New York.
Wyndhamn, J. and Säljö, R.: 1997, ‘Word problems and mathematical reasoning: A study

of children’s mastery of reference and meaning in textual realities’, Learning and
Instruction 7(4), 361–382.

1Center for Instructional Psychology and Technology (CIP&T),
University of Leuven,
Vesaliusstraat 2,
B-3000 Leuven, Belgium
E-mail: dirk.debock@avl.kuleuven.ac.be
2Europese Hogeschool Brussel, (EHSAL)
3Research fellow of the of the Fund for Scientific Research,
Flanders (Belgium)
(F.WO.– Vlaanderen)
4Department of Mathematics,
University of Leuven


