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Preface
In 1987, during a teacher training course which I attended before completing my
mathematics study, George Schoemaker pointed out the possibility of doing com-
pulsory social service at the Freudenthal Institute to me. I took the opportunity and
have been at the institute since then. At first I was mainly occupied with software
development. Since the 1990s this changed to an increasing role in curriculum
development projects. The work at the institute modified my view on the learning of
mathematics and on mathematics as a discipline, from an abstract language with
hardly any connections to the world around us, to a language which emerges from
organising phenomena and restructuring through reflection and generalisation.
The abstract nature of mathematics is experienced by many people because of the
emphasis on algorithms in education: “dividing by a fraction is the same as multi-
plying by its inverse.” Teaching algorithms fosters beliefs such as mathematical
rules having little to do with common sense, intuition, or the real world. I found
another example of an algorithm on an old drawing of mine where adding 4 times
14 results in 20: adding the fours gives 16, and adding the ones makes 20. This seems
correct, because 20 divided by 4 appears to result in 14. Similarly, you can add 7
times 13 and conclude that this has 28 as a result. Is this a standard algorithm? What
does the algorithm express? Such issues are hardly addressed in education. Teaching
mathematics from applications, as propagated by Hans Freudenthal, is an alternative
for teaching algorithms.

From 1994 to 1998 I was involved in a curriculum project for upper secondary edu-
cation. In this project Martin Kindt showed how history of mathematics and appli-
cations from physics could be used for the development of instructional materials for
calculus. The experiences with students in this project indicated a parallel develop-
ment of knowledge of mathematics and of applications where this mathematics orig-
inated from. It was shortly after that project that I got the opportunity to start a
research study on an integrated approach to the learning of calculus and kinematics.
The study created the possibility to investigate the students’ learning of motion and
of the mathematics which models it. This thesis is the result of that research.
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1 Introduction

In 1998 the Netherlands Organisation for Scientific Research (NWO) awarded fund-
ing to a research project on Calculus and Kinematics. The project is being carried
out by the Centre for Science and Mathematics Education, which comprises the
Freudenthal Institute, at Utrecht University. This thesis is one of the results of the
project. In this chapter we describe the reasons for the study, its context and its aims,
and we close with an overview of the contents of this thesis. 

1.1 Reasons for this study
In the 1990s there was an increasing interest in the search for empirical evidence on
the role of information technology in the learning of mathematics. ‘Learning’ here
refers to a process that is based on students’ contributions and constructions. Infor-
mation technology (IT) can support constructive activities and can offer students the
opportunity to experiment and to explore various situations. The question of how to
employ IT in such a way that it supports students’ learning of mathematics is the
main theme of five projects within the research programme IT as an aid to learning
mathematics. The programme was awarded an NWO grant (number 575-36-003).
The research programme assumes that mathematics education requires both appro-
priate teaching sequences and a classroom culture conducive to learning. The pro-
gramme focuses on the way in which IT can support both these elements.
One of the domains within the programme concerns the learning of calculus and kin-
ematics. Much research points towards students’ difficulties in learning calculus and
kinematics. Students often have problems with understanding the basic concepts
even after their courses have been completed. The introduction of graphing cal-
culators and computer algebra has resulted in an increasing emphasis on these basic
concepts at the cost of practising specific algorithms for differentiating and integrat-
ing functions. In addition, the use of computer tools − especially the distinction
between building and exploring models − is often addressed in the context of the
mathematics of change.
In this study the basic principles of calculus refer to what Freudenthal called dif-
ferential and integral methods when he discussed an introduction to calculus:

Calculus should be preceded didactically by something I propose to call Dif-
ferential and Integral Methods. This topic deserves a place in an early stage of
the learning process where algorithmisation has not yet been developed far
enough as to allow teaching Calculus. It is an approach (in principle by
graphic representations) initially merely qualitative and later on quantitatively
refined (if possible). It aims at understanding and interpreting such ideas as
the steepness of a graph and areas covered by the moving ordinate segment,
maybe even curvature, in contexts where the drawing of the curve mathema-
tises a given situation or occurrence in primordial reality. 
(Freudenthal 1991, p. 55)
1



Chapter 1
Following Sawyer’s book What is calculus about?, we took motion as the situation
for developing these principles (Sawyer, 1961). Sawyer argued that calculus grows
from questions about the idea of speed. It seems that the learning of calculus paral-
lels an increasing understanding of speed and its relation with distance travelled.
Graphs are important in the teaching and learning of calculus and kinematics. In gen-
eral, conventional mathematical symbols such as graphs, tables and algebraic nota-
tions play a central role in instructional sequences in mathematics education.
Traditionally, math education has focused on the use of such ready-made symbols
by presenting them to students, explaining what they mean and how they can be
manipulated. In some topics it showed that this approach resulted in problems: the
students did not ‘see’ the mathematical concepts through these symbolisations. We
consider that this might also be the cause of the problems in learning with graphs
about calculus and kinematics. Recent alternatives to the traditional approach make
use of simulations and computer tools.
In mathematics and physics teaching we see an increasing use of simulations, which
display scientific knowledge using models that are connected with idealised micro-
worlds. These worlds behave according to the laws of the system that students are
supposed to discover while exploring the simulation. Therefore, the simulation is
designed to enable students to test and improve their hypothetical ideas about the sci-
entific system. Such a use of simulations in education is referred to as discovery
learning (de Jong & Joolingen, 1998a). The main activity for the students is to
uncover and to try to reconstruct what was previously hidden from sight.
Guided reinvention can be characterised by the students performing a different mod-
elling activity. The use of computers in this approach focuses on computer tools as
an aid for modelling. These are tools which create opportunities for students to
invent and express ideas, and to develop symbolisations from situation-specific to
formal (Cobb, 2002; Gravemeijer, 2002a). The students can express and communi-
cate their tentative ideas with the tools provided. The resulting modelling process
with computer tools is also known as expressive modelling (Doerr, 1997).
For guided reinvention to work, it is necessary to know how students model new sit-
uations. Students are confronted with problem situations for which they do not have
the appropriate models at their disposal; i.e. models which describe possible struc-
tures or patterns in the situations. Building upon the students’ tentative expressions
is one of the main objectives of guided reinvention. At this point, instructional
designers should try to see whether ideas from theories on symbolising can be use-
ful. We note that almost all human behaviour has a symbolising aspect in it. How-
ever, some general patterns can be identified that seem useful for education. We did
not present students with mathematical and ready-made symbols, like graphs, in
their conventional form. On the contrary, we will argue that there is a dialectic rela-
tion between students developing and using symbols on the one hand, and the devel-
opment of their understanding of what is represented, on the other.
2



Introduction
According to Meira (1995), the use of symbols influences actions, and the interpre-
tation of symbols changes during the activities. We have adopted this dynamic
approach, in which symbols and meaning co-evolve, as an alternative to an approach
that focuses on appropriation of a ready-made symbol system.
Guided reinvention appears to be connected to Meira’s argumentation for such a dia-
lectic relation between symbolising and understanding. In line with Doerr and
Meira, we investigated the possibilities of a modelling process from informal and
intuitive notions to the basic principles of calculus and kinematics: an approach that
progressively builds on students’ symbolisations.
Finally, we note that the traditional border between the school topics of physics and
mathematics is currently being reconsidered. Traditionally, the transfer of
mathematical notions of change to physical situations appeared problematic. Our
approach to the learning of calculus and kinematics seems a good way to investigate
how these topics can be integrated, especially when their joint history is taken into
account.
Problems with kinematics are often connected with an incomplete understanding of
mathematical symbols. Conversely, the relation between speed and distance trav-
elled is frequently used to explain calculations and interpretations of mathematical
symbolisations of change, like the slope of a graph and the area underneath it. Con-
sequently, it seems that the learning of calculus and kinematics are intertwined, and
it is difficult, maybe even impossible, to say what must be taught first. We therefore
investigated how, and to what extent, we were able to realise a learning process for
modelling motion in which the teaching and learning of the basic principles of cal-
culus and kinematics is integrated.

1.2 Context for this study
The paradigm for this study is a view on mathematics and physics as related disci-
plines. We believe that these disciplines do not primarily study sets of laws and algo-
rithms which should be transferred to students, but we see them rather as disciplines
that attempt to mathematise and physicalise our surrounding world, i.e. to describe
phenomena in physical and mathematical terms in order to act and deal with them in
a sensible way. It is precisely this activity that Freudenthal saw as fundamental for
acquiring mathematical knowledge. 
Freudenthal’s point of departure is given in his critique of traditional mathematics
education. He was fiercely opposed to what he called an anti-didactical inversion
(Freudenthal, 1973), where the end results of the work of mathematicians were taken
as starting points for mathematics education. Ernst Mach had already pointed this
inversion out in the presentation of mathematical theorems in 1905: 

(...) more than in any other science, it is customary in the field of mathematics
to erase any trace of its historical development. Yet even the completely evident
knowledge of mathematical theorems does not come to light all of a sudden, but
3



Chapter 1
is introduced and prepared for by accidental remarks, conjectures, thought
experiments and physical experiments.
(Mach, 1980, p. 117; translated from Dutch) 

By neglecting the history and presenting a final system for transferring mathematical
ideas, students may have difficulties in understanding the relevance of, and the rea-
sons for, its invention, and may not understand the connection with other topics.
Hanson pointed to the importance of experiencing the very making of a scientific
theory in order to be able to understand it:

(...) a theory should not only be understood in terms of its formal generalisa-
tions, but also in terms of the interpretations of the formal statements (…)
Interpretation is not something a physicist works into a ready-made deductive
system: it is operative in the very making of the system.
(Hanson cited in Ingerman, 2002, p. 45) 

As an alternative for this inversion, Freudenthal advocated that mathematics educa-
tion should take its starting point in mathematics as an activity, and not in the teach-
ing of mathematics as a ready-made-system (Freudenthal, 1973, 1991). For him the
core mathematical activity was mathematising, which means organising from a
mathematical perspective. Freudenthal saw this activity as a way for students to rein-
vent mathematics.
Mathematising involves both mathematising everyday-life subject matter and math-
ematising the mathematical activity itself. In other words, mathematics involves
organising phenomena into mathematical structures, studying these structures, and
investigating the relations and transformations between structures and phenomena.
The formal mathematical language originates from identifying patterns and relation-
ships in phenomena, structuring and representing them, and progressively develop-
ing these representations in a process of reflection, restructuring and generalising.
Depending on one’s background and on the goal of the activity, the core of the math-
ematical activity varies from dealing with the elegance and efficiency of the pure
mathematical structure, to its relation with or applicability in dealing with everyday-
life phenomena.
Contrary to what seems to be implied by standard educational methods, the dif-
ference between a mathematical and a physical activity is not always clear. Accord-
ing to Klaassen (1995), physics deals with classifying objects and events, relating
these objects and events to each other, and recognising patterns in these descriptions
from a physical perspective. These recognitions may lead to the formulation of gen-
eralisations that make it possible to deal with, to describe and to predict physical
phenomena. The physicist is not primarily interested in the mathematical structures
that underlie these generalisations, but the physical language uses mathematics.
However, at certain moments, classifying an activity as physical or as mathematical
4



Introduction
is difficult. Both focus on organising phenomena. Bauersfeld described these proc-
esses of structuring the world around us as “throwing an organising net over it”
(Bauersfeld, 1995, p. 278).
This view on the nature of mathematics and physics stresses the importance of the
activities of students in education. Our emphasis is on the character of the learning
process rather than on the inventions as such. The idea is to allow students to come
to regard the knowledge they acquire as their own knowledge. Therefore, we looked
for problems which students would recognise as relevant and real, and which would
also evoke productive solution strategies. Then, we looked for a way to guide them
to the intended goals that could progressively build on their ideas and strategies.
These activities should help students acquire a scientific attitude, learn the nature of
modelling, and develop new concepts from their experiences in everyday life.
At the Centre for Science and Mathematics Education, design heuristics are devel-
oped that can be used for setting up the teaching and learning processes aimed at.
These heuristics can be used to realise a guided reinvention learning process starting
from students’ tentative symbolisations to the basic principles of calculus and kine-
matics. The design heuristics aim to realise a process in which students re-invent the
intended concepts, while being guided by the teaching materials and the teacher.
Hence, the main question for this research project was: 

How, and to what extent, can the teaching and learning of the principles of calculus
and kinematics be integrated into a guided reinvention course on modelling motion
using computer tools?

Freudenthal has already pointed out the need for such a reinvention course and the
difficulties that would be encountered: 

Reinvention is here [calculus] a bigger problem than in the domains I have
dealt with so far. Reinventing something that since Archimedes has waited for
about two millennia to be invented the first time is not that easy. It requires
stronger but nevertheless more subtle guidance. It seems to me that we are just
beginning to understand and tackle this problem. (Freudenthal 1991, p. 63)

1.3 Aims of this study
The aim of our study was to gain insight into the way students can develop scientific
knowledge in a learning process characterised by guided reinvention. How can stu-
dents be involved in a process of modelling motion in which they develop, use, and
improve symbolisations together with learning the principles of calculus and kine-
matics? This should also give insight into the possibilities of design heuristics for
realising these teaching and learning goals.
In addition, we aimed to gain insight into how computer tools can be used for sup-
porting learning processes with a guided reinvention character. This should lead to
5
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a better understanding of the way in which computer tools can help students develop,
use and improve symbolisations.
Our final aim was to outline an exemplary, empirically tested, instructional sequence
for the basic principles of calculus and kinematics. This sequence should contribute
to the development of a local instruction theory for the teaching and learning of these
topics.

1.4 Overview
This thesis starts with discussing literature on the teaching and learning of ideas
related to modelling motion, and literature on symbolising processes which are
related to (mathematics) education. These discussions help to specify our main
research question and the methodology needed to answer this question.
In chapter 2 we give examples of problems in the teaching and understanding of the
principles of calculus and kinematics. We claim that these didactical problems are
more complex than appears from current school practice. A gap exists between daily
life use and use in education of the notions related to motion and change. Recent
educational approaches to these topics which try to overcome this gap are discussed.
The main conclusions of this chapter refer to the interplay between using and inter-
preting graphical inscriptions on the one hand, and organising phenomena on the
other.
The interplay between graphs and organising phenomena is the starting point for the
need to gain more insight into the development and use of graphical inscriptions as
an aid to learning mathematical and physical concepts. 
In chapter 3 the literature on this topic is discussed together with related theories on
perception and interpretation. We reason that didactical problems in the teaching of
calculus and kinematics might have their origin in overestimating the power of con-
tinuous graphs, and in insufficient attention being paid to students’ symbolising
activities. The consequences of theories on symbolising for education are analysed,
and we hypothesise that a guided reinvention approach might overcome the didacti-
cal problems. At the end of chapter 3 the main question is split into two research
questions for this project.
Chapter 4 describes the research methods. We focused on design research for devel-
oping an instruction theory for calculus and kinematics. This methodology contains
a design phase in which an instructional sequence was designed for creating an edu-
cational setting in which our conjectures could be investigated. The sequence con-
sisted of learning and teaching materials for ten lessons in grade 10 (16-year old stu-
dents). These materials, together with the assumptions that underlie the hypothetical
teaching and learning processes in relation to the use of these materials, have shaped
a conjectured local instruction theory.
In chapter 5 we describe the emergence of the conjectured local instruction theory
together with the instructional sequence. This design was inspired by the historical
6



Introduction
development of calculus and kinematics. We paid attention to this history and to a
pilot study that preceded the design of the sequence.
Chapter 6 describes our findings with the instructional sequence and the underlying
assumptions in two teaching experiments. The first teaching experiment took place
in two schools, and the second experiment in a third school.
In chapter 7 the conclusions with respect to the research questions are described. We
have made recommendations for a local instruction theory for the teaching and
learning of the basic principles of calculus and kinematics. In addition, we recom-
mend the use of computer tools in trajectories that foster a guided reinvention learn-
ing process, and we draw attention to the use of theories on symbolising in mathe-
matics and physics education, in general. Finally, we discuss the possibilities and
constraints of integrating the learning of mathematical concepts with concepts from
other disciplines.
7
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2 The teaching and learning of calculus and kinematics 

In this chapter we first discuss what the literature has to say on students’ conceptual
problems with calculus and kinematics, and possible relations with textbooks and
current teaching practices (section 2.1). The main conclusions of this discussion deal
with the gap between real life experiences with change and motion and students’
ideas about them, and the teaching and learning of calculus and kinematics. Children
interpret speed as an undifferentiated property, while we teach speed as a derived
compound quantity that is related to two components which you can use for calcu-
lations. The frame of reference that is crucial for these calculations is influenced by
our perception of motion. The causal and descriptive aspects of speed are inter-
twined in our everyday reasoning, and instantaneous change seems impossible. Get-
ting students to interpret and use graphs appears to be insufficient for them to learn
about these topics. Usually, we expect students to see the concepts in motion graphs,
and then to be able to bridge the gap between the phenomena described and the con-
cepts. However, these graphs are not as transparent as teachers sometimes think: the
physical and mathematical knowledge remains isolated from students’ everyday
experience and reasoning.
Section 2.2 describes two recent alternative approaches using computer tools that try
to bridge the gap between street wisdom and school knowledge. The first approach
is referred to as discovery learning, and uses graphs in simulations that students can
explore. The explanatory power of the graphical models in this computer environ-
ment is clear to the expert, but the student may relate only the visual similarities of
graphs to changes in the situation without becoming aware of the underlying princi-
ples. The second approach is an inventive approach that tries to lead students into
developing graphs guided by their interpretation and understanding of the context.
This approach involves the students’ reasoning and interpretations, but it is not clear
to us how they will reach the taken-as-shared consensus on the meaning of calculus
and kinematics.
We conclude in section 2.3 that if it is possible to allow students to invent distance-
time and speed-time graphs by themselves and to let them experience a model-
evolving process, the gap between formal mathematics and their own experience
will not arise; the mathematical ways of symbolising such concepts will emerge nat-
urally from the students’ activities, and the accompanying formal mathematics will
be seen as an extension of their own experience.

2.1 Conceptual problems in calculus and kinematics
It is difficult, and maybe even useless to talk about conceptual problems without
relating these problems to a didactical implementation of the concepts, to the per-
sons that perceive them, and to their previous education. Here we describe what the
literature has to say on the problems related to teaching and learning the concepts of
9
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kinematics and calculus. In some cases it proved difficult to reconstruct the class-
room processes that caused these problems. Nonetheless, the problems are so wide-
spread and persistent that they seem to be almost independent of the type education:
they appear at all levels, from young children to university students studying physics
and mathematics (McCloskey, 1983; McDermott et al., 1987; Orton, 1983a, b).
We focus here on how students develop the concepts for the basic principles of kin-
ematics and mathematical aspects of modelling motion. These include the difference
between average and instantaneous velocity, their relation with distance travelled,
the use of graphs, graphical characteristics like slope and area, and the difference
quotient. We also investigate the literature on the entanglement between the teaching
and learning of the mathematics of change and the kinematical aspects of motion.

2.1.1 Intuitive notions of velocity
Velocity is used as an instantaneous property of an object (‘at this moment I am driv-
ing at 90’), and as a relative property that describes a relation between objects. Such
different ways of using and interpreting velocity are discussed here and related to the
teaching of kinematics. With velocity we generally refer to the scalar quantity speed
instead of a vectoral quantity.
Piaget studied young children’s intuitions on time, velocity and distance travelled.
One of his main conclusions was that velocity is a basic concept rooted in our expe-
rience (Piaget, 1970). He found that young children (7-8 year olds) see velocity not
in terms of a relation between time and distance travelled, but rather between lengths
of displacement and overtaking. They confused duration of motion and the length of
a specific path travelled. Young children could not associate small displacements
with large velocities, and in their explanations they used displacements independent
of the duration of motion. They could compare velocities only in situations where
they saw one object overtaking another, regardless of the objects starting position or
time. This focus on displacement can also be recognised in the use of everyday lan-
guage, where driving at 60 m.p.h. refers to a distance of 60 miles. The number of
miles is treated as a measure for velocity. This may be why students said they could
not answer the question: If a car drives at 50 m.p.h., how much time does it need to
travel 1 mile? The students said that you cannot know the answer because the car’s
velocity can change continuously, the only thing you know is that it will take one
hour to cover 50 miles. Velocity is conceived as the length of a displacement before
it becomes a coordinated image of the rate of change of two quantities (Thompson,
1994a).
Piaget concluded that if velocity itself, as well as motion in general, is perceived in
terms of relations of displacement, then the whole generic structure which follows
will depend on these relationships. The children will comprehend velocity only in
localised terms until they are able to grasp time operationally. Hutcheon specifies
this aspect of grasping time in more detail and points out the idea of simultaneity:
10
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What is involved in the measure of time is simultaneity: the intuition that
when two objects begin and stop moving at the same instant, the one which
has gone the farthest has moved the fastest. The child who has acquired a
grasp of simultaneity is able to coordinate these two velocities, and thereby
compare them. (Hutcheon, 1996, p. 376)

From these studies we can conclude that children must perceive a measure of dura-
tion and be able to compare the time intervals of different events before they are able
to interpret velocity as a compound quantity. As long as this notion is absent, chil-
dren will not perceive velocity as a relationship between distance and time.
As an aside we should note that Piaget’s study of young children was framed by sci-
entific ideas of motion. In his experiments he investigated to what extent scientific
notions of velocity exist in children’s reasoning. His experiments were designed
from this perspective. He was not investigating which notions were present or how
they were used by the children in familiar situations. After all, children are able to
move, to orientate, and to catch moving objects successfully. It is possible that from
such a point of view you might derive different conclusions for the generic structure
that has to follow. 
Saltiel & Malgrange (1980) also investigated how students spontaneously reason
about velocity (in approximately 700 first- and fourth-year university students).
They observed how students used velocity in both a descriptive and a causal way.
Descriptive aspects of velocity are related to perception: velocity is perceived as the
property of an object, or as a relation between objects. Velocity as a property is
called a true or real velocity that is relative to the ground. Motion and rest are in this
interpretation fundamentally non-equivalent for students (a typical pre-Galilean
view), e.g. ‘object A has velocity v and object B stays in one position’, is fundamen-
tally different from ‘object A has velocity v with respect to a moving object B’.
One problem with descriptive aspects of velocity is that velocity might be perceived
relative to another object, but that it is interpreted relative to the ground. Often the
perceived frame of reference is not the ground but another moving object. McClos-
key (1983) gave a few examples of these illusions (fig. 2.1): a ball dropped by a run-
ning person is perceived as falling straight down (B), or even a bit backwards (A) and
landing behind its point of release, while actually it follows a curve in the direction
of the running person (C). 
Our perception takes the running man as the frame of reference because he remains
in view, and because we are able to identify with him. Tests on the computer have
indeed pointed out that the moving carrier influences the interpretation of the motion
of the ball. McCloskey designed an experiment with two situations. In the first situ-
ation, the moving carrier remained visible, while in the second situation the moving
carrier disappeared from the screen after dropping the ball.
11
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figure 2.1 What is the trajectory of a ball which is released by a running man?

They found that people were far more able to draw the real trajectory of the ball in
the second situation. McCloskey concluded that everyday experiences do not guar-
antee that people will have reasonably accurate, physical, ideas about the motion of
objects, or even have an informal grasp of the general principles that govern objects
in motion (McCloskey, 1983).
As well as these descriptive aspects that are strongly related with perception, Saltiel
& Malgrange (1980) noticed a causal aspect in students’ explanations of perceived
motion. In daily life, velocity is often associated with the driving forces that cause
it. This aspect is also mingled with perception and comes to the fore in students’ ex-
planations about the trajectories of objects. 
For instance, with the trajectory of the ball that is released by a running person, many
students reasoned that this ball only follows a vertical path and immediately loses its
horizontal velocity, because there is no longer a connection between the ball and the
person. The only driving force is due to gravity, which is vertical. Another well-
known example that illustrates this aspect is a ball that leaves a spiral-shaped pipe
on the floor (fig. 2.2). The driving force on the ball in the pipe is circular and students
therefore reason:

The ball goes like this (curved path) because it still had some momentum
when you were turning it in a circle, and it wants to go in a straight line (...) it
goes in a curve until the momentum wears out (...) then it goes straight. 
(Halloun, 1985, p. 1060)

figure 2.2 How will the ball leave the curved pipe?

A B C

?
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The teaching and learning of calculus and kinematics
We conclude that our perception of motion is influenced by our ideas of a frame of
reference, by a possible identification with a person or object in the situation, and by
our supposed causalities in the situation.
People often relate the examples presented above with the history of kinematics,
where scientists had similar thoughts and problems (e.g. Halloun, 1985; Eckstein &
Kozhevnikov, 1997). A mixture of fragments of Aristotelian reasoning (the striving
by the falling ball to return to its original or natural position), medieval reasoning
(the ball that leaves the pipe has an ‘impetus’ that controls its motion), and Newto-
nian reasoning are found in students’ solutions of kinematical problems. However,
you might say that there is a fundamental difference between scientists that try to
frame motion from a theoretical perspective, and the situation-dependent reasoning
described above (DiSessa et al., 1993). Everyday reasoning simply does not share
the theoretical character of the reasoning of medieval scientists. In chapter 5 we will
return to this historical relation, and to what we can learn from the historical devel-
opment of these topics.
What can we learn from these studies about these naive intuitions of motion? The
main reaction might be that students have intuitive ideas of motion that education
has to correct, or for which education has to present a consistent alternative. How-
ever, the assumption that students have different ideas can also be the result of a
misunderstanding between students and scientists. Scientists give very specific
meanings to expressions like ‘to exert a force on’. It is therefore important to try to
interpret students’ reasoning without taking into account the scientific conventions
behind their expressions (Boyd & Rubin, 1996; Klaassen, 1995). 
According to Klaassen, it is not surprising that students’ reasoning seems to conflict
with scientific knowledge. Differences between these ways of reasoning do not give
immediate information which can be used in teaching. Instead of correcting their
ideas or presenting alternatives, teaching should start from the assumption that all
our reasoning is consistent with our intuition built on our everyday experiences. This
reasoning is based upon an underlying scheme of explanations that students and sci-
entists have in common. From this starting point, teachers should try to evoke the
scientific perspectives for modelling motion in such a way that students come to see
the point of extending their knowledge in the intended direction, based upon this
joint scheme of explanations.
To sum up, most differences between the scientific notion of velocity and students’
grasp of the concept of velocity are related to their experiences, perceptions, and sit-
uation-specific reasoning, in which a direct connection with time and distance trav-
elled is not necessary. Lijnse described this distinction between daily life and theo-
retical perspectives for grasping a physical concept (Lijnse cited in Genderen, 1989
p. 86). He characterised differences between these street images and school images
of physics (see table 2.1).
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table 2.1 Differences between street and school images of physics

According to Lijnse, the street image of physical notions is strongly rooted in eve-
ryday experiences, and the transition to the school image is not a trivial process.
Lijnse contrasted a not logically consistent street image with a logically consistent
school image. However, we do not think that logical consistency is of great impor-
tance in street use, but consistency itself affects its use. You could say that consist-
ency is related to situational use, while in the school image it is the theoretical, gen-
eral usability, and the connection with related theories that requires logical consist-
ency.
What causes these differences between the street and school images of science? In
the next section we discuss the literature on research into textbooks on kinematics
and calculus.

2.1.2 Systematics in textbooks
Until the 1980s, many teaching methods were qualified as taking a structuralistic ap-
proach (Dall’Alba et al., 1993; Tall, 1996; Treffers, 1987). The basic principle of
this approach is the transmission of a logical structure within a scientific system.
This system is a characteristic feature of adult science. The approach is appreciated
because the theories themselves seem elegant and compact descriptions of what is to
be learned. In chapter 1 we distinguished a structuralistic approach which starts with
a ready-made system from an approach with gradually arising concepts. Teaching
science according to its final structures might lead to teaching a mere system, rather
than the science organised by it (Freudenthal, 1993). In this section we discuss prob-
lems which seem consequences of such a structuralistic approach to the teaching of
calculus and kinematics.
Velocity is defined in textbooks as the compound quantity of distance travelled di-
vided by the corresponding time interval. In this definition students hardly see the
nature of this composition, the difference between instantaneous and average veloc-
ity, nor the meaning and goal of this difference (Halloun & Hestenes, 1985). The dif-

street image school image

strongly rooted in everyday experiences weakly rooted

vague concepts and unclear relations well-defined concepts and relations

not logically consistent logically consistent

individual, situational knowledge public, generalised knowledge

instantaneously making sense of direct 
experience

permanent ‘truth’ of an idealised reality

intuitive frame of interpretation reflective frame of interpretation
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The teaching and learning of calculus and kinematics
ference between average and instantaneous velocity is important for its physical in-
terpretation and the difference comes to the fore in the use of time. Average velocity
is related to distance travelled within a time interval, while instantaneous velocity is
velocity at a moment, which can be approximated with a time interval that tends to
zero.
Streefland (1981) pointed out a conceptual problem that is associated with the role
of time in defining velocity. Velocity is an instantaneous property of motion. How-
ever, as soon as you want to give meaning to velocity, you use a time interval and
lose the instant. This is a conceptual aspect that is not easy to reach from intuitive
reasoning about velocity. Beth (1928) described this aspect in a paradoxical defini-
tion of instantaneous velocity:

The velocity is what it would be if it remained what it was.
(Beth, 1928, p. 54; translated from Dutch) 

Regarding a frame of reference, Saltiel & Malgrange (1980) noticed that scientists
are very careful about their frame of reference, while in daily life this care is not
applied, as we noticed in the previous section. In teaching, this difference is hardly
addressed. In a phenomenographic study, Walsh et al. (1993) found that physics stu-
dents have difficulty in understanding relative speed, because they hardly think
about a frame of reference − except for the ground − when they reason about speed.
Some of their conceptions did not accord with scientific understanding, despite the
fact that they had already passed various examinations in physics. Walsh et al. con-
cluded that teachers often overestimate students’ understanding of their lessons.
Drake (1990) showed that in lessons on velocity there is the danger that the teacher
makes implicit use of expert conventions. Teachers introduce velocity and acceler-
ation as measures of instantaneous change of the distance travelled and velocity,
respectively: v = dx/dt and a = dv/dt. However, in the same lesson, they might also
discuss difference equations on motion and add that position, velocity and accelera-
tion can not change in zero time for the passage of time is crucial in the connections
between all of these quantities. For students, time as a connecting quantity is often
not a trivial consequence of the definitions. Formulas in textbooks suggest static
relations, while the concepts are dynamic.
On top of this, the kinematic and dynamic aspects of velocity and acceleration (e.g.
the trajectory of a thrown ball) are often treated in different chapters of textbooks.
Consequently, these aspects are linked with different kinds of problems and situa-
tions. It appears that both aspects are mingled in students’ intuitive reasoning. This
mix is not explicitly unravelled by the textbooks (Dall’Alba et al., 1993). Dall’Alba
et al. saw mainly operational definitions in textbooks, not conceptual explanations.
The textbooks usually offer algorithms for solving quantitative problems, while
exploration of the qualitative meaning is largely overlooked. It appears that students
15
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can apply kinematical formulas in calculations, but in their reasoning about motion
they stick to their intuitive notions. The introduction of quantitative methods in a
formalised language is part of this problem.
Tall (1991) described a similar case in the teaching of calculus. He started with a
mathematician’s general approach by trying to simplify a complex mathematical
topic, by breaking it up into smaller parts. These smaller parts can then be ordered
in a sequence that is logical from a mathematical point of view.

From the expert’s viewpoint, the components may be seen as part of a whole.
But the student may see the pieces as they are presented, in isolation, like sep-
arate pieces of a jigsaw puzzle for which no total picture is available. 
(Tall, 1991, p. 17)

It may be even worse, Tall continued, if the student does not even realise that there
is a big picture. The student may imagine every piece in isolation, which will
severely hinder synthesis. The result may be that the student constructs an image of
each individual piece, without ever succeeding in bringing all the pieces together in
one whole. As an example, Tall described an average textbook sequence for
differentiation. To be able to understand the derivative f’(x), one has to have a con-
cept of the limit, because one has to take the limit of the difference quotient (f(x+h)
− f(x))/h, where h tends to zero. Thus the concept of a limit has to precede the deriv-
ative. Furthermore, one might decide that it is easier to take the limit in the case
where x is fixed. The next step would then be to let x vary, to introduce the idea of a
derivative. For the student, however, the introduction of the limit concept suddenly
appears for no reason, with all the cognitive problems this may bring. The next big
problem is in the shift from a limit with a fixed x to a varying x, since taking a limit
at one point is substantially different from perceiving f’(x) as a function of which the
values describe the gradient of a graph of f(x).
When we return to Lijnse’s distinction between the street image and school image
of science in the previous section (p. 14), we conclude that in school we teach veloc-
ity with a clear frame of reference, while in a street image this frame will depend on
the perception of the situation. In a street image there exists an unclear distinction
between the descriptive and causal use of speed, while in school we teach two con-
nected and consistent theories (kinematics and dynamics). Velocity is used as a
property in a street image, while in a school image it is taught as a compound quality,
a relation between distance travelled and time. A street image deals with real motion,
while the school image deals with theoretical motion in an idealised world.
Mathematical descriptions of calculating change are taught according to a logical
consistency that is unclear to students. It is therefore questionable whether teaching
these topics according to a scientific system actually helps students to learn and
understand the underlying principles.
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In the following two sections we discuss the literature on the role of formal language
and the use of graphs in the teaching of these basic principles. We hope that this will
give the reader more insight into the didactical problems as well as clues for an
approach to overcome these problems.

2.1.3 Formal language
Researchers have paid much attention to conceptual problems with formalisations in
calculus and kinematics (e.g. Barnes, 1995; McDermott et al., 1987; Dall’Alba et al.,
1993). There are a few recurring themes in these studies, which do not appear to have
been solved yet by educational research, such as the relation between algebraic and
graphical aspects, and the limit concept. This section gives an overview of this kind
of problem with the formalisation of the relation between velocity and distance trav-
elled and the mathematics of change. The role of graphs in this formalisation process
is discussed in the next section, because of its special intermediary role in both the
learning of kinematics and of calculus.
It is often pointed out in physics and mathematics that there is a risk in making a too
quick formalisation (Dall’Alba et al., 1993; Roschelle, 1998). Textbooks do not
make clear the relationship between students’ ideas and the formulas relating to a
physical concept, but rather focus on the algorithmic aspects: “Textbooks focus on
knowledge in the form of equations” (Roschelle, 1998). As a result, students have to
‘guess’ what knowledge is aimed at and what the relation is with their ideas and
experiences (if they try to establish such a relation). Velocity is often introduced in
a uniform motion as a compound quantity with the formulas v = ∆s/∆t or v = (s(final)
− s(initial))/t. Both formulas have their connotations and use for scientists. However,
for students it is not directly clear why a function-notation like s(initial) is necessary.
It becomes even more obscure when the instantaneous value of a changing velocity
v is defined as the limit of ∆s/∆t. In student activities, practising working with these
formulas takes a central position. The choice of the formulas is often triggered by
the values of the quantities that are given and the missing value that is asked for, or
by expressions like ‘uniform’ or ‘uniform accelerated’.
Freudenthal (1973) pointed out implicit conventions behind the formal language in
kinematics and calculus. In mathematics, characters like f, g, h, ..., are used as func-
tion symbols, while a, b, c, x, y, ..., represent quantities. These characters are used in
specific situations with specific operations, that differ from their use in physics. In
physics the characters s, v, and a have both roles, representing both quantities and
functions. The physicist sees the situation through the formula, and knows what
interpretation makes sense.
Another issue of confusion is in the formalisation of average velocity. The quotient
∆s/∆t is related to calculating average velocity, while students in mathematics
classes learn to calculate an average by adding values of one quantity and dividing
by the number of these values. The resulting average value has the same dimension
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as the added values. From this point of view it is not strange that students might think
that the division ∆v/∆t also has average velocity as a result. Freudenthal (1983)
added to this that the quotient ∆s/∆t refers to an external proportion, a relation
between two different quantities, which is conceptually much more difficult to
understand as internal proportions. In the next section on graphs we will return to
this issue.
Orton (1983b) and Thompson (1994b) also stressed the importance of the notions of
ratio and proportionality. They concluded from studies on students’ understanding
of differentiation that it is necessary to intertwine the learning of rate of change
together with developing an understanding of ratio, proportion, and of graphical rep-
resentation. This seems necessary to overcome problems with the interpretation and
use of variables in difference quotients.
The mathematical formalisation of a difference quotient introduces an extra prob-
lem. The quotient is often introduced in the physical context of dividing change of
position by change of time. After this introduction, a quick step ahead is made from
∆y/∆x to its representation with function symbols: (f(x+h) − f(x))/h. Students can see
and understand the meaning of the intervals ∆y and ∆x in a given situation as the
increase of given quantities. The values of these intervals can be determined in arbi-
trary order, while in the formula (f(x+h) − f(x)) / h the x has disappeared from the
denominator in the quotient, and the order for calculation is fixed, in the sense that
you have to determine an x and an h before you can calculate function values. More-
over, the intervals ∆y and ∆x refer to change or increase, and it is not directly clear
why the subtraction in the nominator and the variable in the denominator also refer
to such increments.
In addition to these problems with the difference quotient, Pence (1995) pointed out
a necessary understanding of the variable concept. He noted that many students
starting a calculus course did not realise that 2x is twice as far from 0 as x. They were
not able to locate 2x on a number line when x was already positioned. The students
did understand that 2x represented a multiplication, but were not able to interpret 2x
as representing a quantity twice as large as x. Freudenthal (1984) pointed out the
problem that variables are often taught and understood as placeholders or letters to
be manipulated, so that the kinematic understanding that the letters refer to some-
thing which varies is lost. White & Mitchelmore (1996) found that many student
errors in applying calculus were caused by a weak concept of variable:

Students frequently treat variables as symbols to be manipulated, rather than
as quantities to be related. Three examples of such a ‘manipulation focus’
have been identified: failure to distinguish a general relationship from a spe-
cific value; searching for symbols to which to apply known procedures
regardless of what the symbols refer to; and remembering procedures solely
in terms of the symbols used when they were first learned. 
(White & Mitchelmore, 1996, p. 91)
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The last problem in the formalisation of the basic principles of calculus and kine-
matics which we mention here concerns the formalisation of the limit concept. This
limit concept seems fundamental for differential and integral calculus and for the
formalisation of instantaneous change. However, the many ways to approximate
limits, and the different notations, make this concept hard to teach (Cornu, 1991;
Williams, 1991; Orton 1983a). Monaghan (1991) pointed to differences between
students’ and mathematicians’ interpretation of words like tends to, approaches,
converges and limit. Tall (1986), Rosenquist et al. (1987) and Cornu (1991) pleaded
for an implicit use of the limit concept in an introductory course on the basic princi-
ples of calculus. 
Many researchers have already pointed out the problems of a too quick formalisation
in mathematics and physics:

Rather than being defined, these terms are introduced by exposure to exam-
ples of their use, examples provided by someone who already belongs to the
speech community in which they are current. (Kuhn, 2000, p. 11)

Kindt (1995) and Barnes (1995) stressed problems related to of this focus on ‘expo-
sure of use’ in the teaching of calculus. Kindt pointed out the tension between alge-
braic manipulations and graphically supported concepts. The manipulations are rel-
atively simple in school problems, while the understanding of concepts is difficult
and is often dealt with rather too quickly. Barnes stated that students reacted by
neglecting these conceptual aspects and focusing on the operation of algebraic
manipulations at a rote level. From these problems in the formalisation process, we
can conclude that a didactical implementation is difficult to realise. Such a didactical
implementation often proceeds too quickly, or too far (e.g. the limit concept), the
relation with intuition is not paid much attention, and symbols are introduced with
implicit conventions that are clear for the experts but not for the students. As a result,
students try to focus on the algebraic manipulations.
These conclusions are not revolutionary. However, it is surprising that the problems
are still unsolved, and that there is still not much exchange of knowledge between
physics and mathematics educational research about these problems. Graphs should
have an intermediate role in the didactical implementation of the formalisation, and
in the correspondence between these formalisations from a physical and a mathe-
matical perspective. In the next section we investigate why this has not happened.

2.1.4 The role of graphs
Graphs play a didactical role in the teaching of calculus and kinematics. They should
clarify the concepts described, and connect these concepts with the phenomena they
are referring to. However, graphs are apparently not a solution to the evident con-
ceptual problems, which is why we discuss the role of graphs more thoroughly in this
section. We hope to provide insight into specific problems in the didactical use of
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graphs for these topics, as well as considering whether, and how, these problems can
be solved.
In an extensive descriptive study, McDermott et al. (1987) identified a number of
difficulties that students have in making connections between kinematical concepts,
their graphical representations, and the motion of real objects. They separated diffi-
culties with connecting graphs to the real world, the actual motion it is referring to,
from difficulties with connecting graphs to physical (and in our case mathematical)
concepts. We first focus on the connection with the real world, the understanding of
graphs as models of motion, and secondly on the use of graphs for conceptual rea-
soning.

Graphs as models of motion

A frequently recurring issue in using graphs to describe motion is their interpretation
as representing the actual trajectory of motion (an iconic representation) (McDer-
mott et al., 1987; Clement, 1985; Leinhardt et al., 1990; Dekker, 1991; Monk, 2003).
Clement discerned two problems. The first was that students connected the global
shape of the graph with visual characteristics of the situation (e.g. a bump in a dis-
tance-time graph is associated with a hill in the trajectory). The second problem was
that students tended to associate local characteristics of the situation with corre-
sponding characteristics of the graph. 

figure 2.3 Point of intersection in a distance travelled graph and in a velocity graph

Figure 2.3 shows two examples of this second problem, in which students connect
points of intersection with events in the real world. In the graph on the left, students
associated the same location with the same velocity. When the students were shown
this graph and asked “what can you say about the velocities of a and b at t = 5 sec.?”,
they answered that the velocities were equal because a and b had travelled the same
distance (Halloun, 1985). At that moment, both graph lines have the same height,
which suggests equality. Another well-known example is the right-hand graph, from
which students concluded that a catches up with b after 5 seconds. Leinhardt et al.
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The teaching and learning of calculus and kinematics
(1990) discussed such slope/height confusions extensively. Goddijn (1978), Berg
(1994) and Dekker (1991) discussed iconic interpretations of graphs (the graph as a
literal picture of the situation). We use illustrations in graphs, like cars that drive
along a curving velocity-time graph or the parachute jumper in (fig. 2.4) that refer to
the actual situations and, as a consequence, suggest similarities with the pictured sit-
uation. Goddijn saw the problem not only in the shapes of graphs and these illustra-
tions, but also in the language we use when talking about graphs with words like
‘crossing’, ‘slope’, and ‘rising’.
Dekker (1991) also discussed the interpretation of the word ‘distance’ in distance-
time graphs. Some students described the motion of a walking person with a dis-
tance-time graph with descending parts. Fellow students commented that a descend-
ing graph was impossible, because “when you walk, you don’t go backwards”.
These students interpreted ‘distance’ as the distance travelled, while the students
who drew the graph used it as the distance to a certain point. You can walk farther
away from and return closer to that point. Brungardt & Zollman (1995) found stu-
dents were hindered in their understanding of kinematical concepts by sometimes
using the words ‘up’ and ‘down’ for the value of the represented quantity, and at oth-
er times for the direction of the motion or the graph. 

figure 2.4 Velocity-time graph of a Parachute jumper (Biezeveld & Mathot, 1998)

While working on questions about a parachute jump described by a graph (fig. 2.4),
a student responded:

After 10 seconds he is at his highest point ... 
The distance fallen is 50 squares, which is 250 cm2.

It appears that not much attention is paid to the question why in teaching. Dekker
(1991) observed, for instance, that after students saw a relation between straight dis-
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tance travelled-time (s-t) graphs and constant velocity, the teacher confirmed this re-
lation, but did not ask why this relation exists. Ainly (2000) stated that using graphs
has the risk of a ‘false construction of metaphoric resonance’ between visual char-
acteristics in the situation and in the graph. Graphs can be misleadingly suggestive.
The danger of using graphs is that understanding stays rooted at a visual level. These
visual resemblances might lead to the problems outlined above.

Graphs as models for conceptual reasoning

Graphs as models of motion are often the starting point for formalisation in kinemat-
ics and calculus. Reasoning about distance travelled with velocity-time graphs pro-
vides meaning to the area under the graph line. The gradient of distance travelled-
time graphs supports the understanding of instantaneous velocity. Both issues are
discussed below.
A v-t graph is used to explain how area is related to distance travelled as well as the
relation with average velocity. An object that travels with a changing velocity covers
the same distance as an object that travels with a constant velocity vav (fig. 2.5).  

figure 2.5 Area and distance travelled in a velocity graph

The line of reasoning is that the distances travelled are the same, because the area
under both graphs is the same. Moreover, velocity vav is the average of the velocities
of the other object. However, it is crucial here that vav is not the average of vinitial
and vfinal, but that vav really is the average of all velocities of the other object. It is
rather difficult to connect the area-calculation of an average quantity with the usual
calculation of averages: (n1 + n2 +... + nk)/k, where ni represent k values of a quan-
tity. Students are not used to connecting such computations with thinking about dif-
ferent quantities, and external proportions. It becomes even more difficult for them
to distinguish the different calculations after they learn to use intervals to calculate
an average velocity: ∆s/∆t. The v-t graph and this division might suggest that an av-
erage velocity can be found by ∆v/∆t.
In addition, the constantly increasing graph also implies: vav = (vinitial + vfinal)/2;
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The teaching and learning of calculus and kinematics
which is difficult to relate with the area-reasoning that deals with infinitely many dif-
ferent velocities at infinitely different instants of time. However, this last quotient
only works in the case of a uniformly accelerated motion.
Notice that we, as experts, use specific reasoning with specific graphs. We do not
ask ourselves what the meaning is of the area below an s-t graph, or the meaning of
average distance travelled. Such questions are hardly ever posed in textbooks. 
The question about the meaning of area and average values becomes even more dif-
ficult in the v-s graph below. It may seem cumbersome to put distance travelled on
the horizontal axis. However, it can represent the road, the very place where you
measure the velocity which you put on the vertical axis. It was found that many stu-
dents initially use the horizontal axis for position when they have to draw a graph of
motion (Boyd & Rubin, 1996). This can also be influenced by graphs in sports: ‘it
takes y seconds to arrive at position x’. In sports graphs the position often appears as
an independent variable displayed along the horizontal axis (e.g. see figure 2.6). 

figure 2.6 The course taken by two speed skaters in a 5 km race

Streefland (1981) analysed problems with interpreting area related with kinematical
concepts. He noticed that students must be able to disconnect the direct inter-
pretation of area. Area has a mediating role. The goal is to determine the distance
travelled, a one-dimensional quantity that is ‘accidentally’ represented by the area
under the graph.
Similar problems come to the fore in reasoning about slope. In the previous section,
we discussed resemblances between slopes in a distance travelled graph and hills in
the actual motion, and the slope-height confusion. This is especially difficult for stu-
dents reasoning about increasing or decreasing slope. A decreasing positive slope

splittimes of de Jong and Romme compared with a reference time of 6.19.00
(with constant laptimes of 30 seconds)
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can be associated with speeding-up (McDermott et al., 1987), and an increasing neg-
ative slope with a ‘decreasing gradient’ (Orton, 1983b).
Orton (1983b) also pointed out that students found it difficult to understand the
principle of a tangent as a limit of chords (or secants). He found that students had
difficulties in understanding that the rate of change is based on proportionality, i.e.
the rate of change of a straight line is always the same, no matter how large the inter-
vals for calculating this rate.
Students also had problems with the difference between rates of change of straight
lines and of curves. The average rate of change over an interval is calculated in the
same way for both graphs, but the instantaneous rate of change is not. For curves
you have to take a limit, draw a tangent or derive a function, while for straight lines
all instantaneous rates of change are identical to the average rate of change.
The problems in working with slopes become even more difficult when different
kinds of notations are used. The left-hand graph below is copied from a mathematics
textbook, while the right-hand one is from a physics textbook. In mathematics the
focus is on how to approximate change with formulas, while in physics it is focused
on sketching a tangent to approximate instantaneous change (fig. 2.7). 

figure 2.7 On the left: mathematics textbook (Staal et al., 1998, p. 189)
On the right: physics textbook (Kortland et al., 1998, p. 197)

This example illustrates the different goals of physics and mathematics education in
the use of notations and words, such as slope, rate of change, gradient, chords,
secants and tangents. The physics textbook aims at working with global graphs
(resulting from a number of measurements) and sketching tangents, while the illus-
tration from the mathematics book aims at differentiating functions.
Nemirovsky & Rubin (1992) pointed out a recurring heuristic of students to assume
resemblances between graphs of a function and graphs of its derivative. Students
tried − even at the end of a teaching programme − to match global features of the two
graphs, like increasing, decreasing and sign, instead of their actual relationship.
24



The teaching and learning of calculus and kinematics
The last problem we will consider here concerns differences in graphical and phe-
nomenological patterns. Standing still and moving with a constant velocity are sim-
ilar from a graphical point of view. Both graphs have a horizontal velocity-time
graph. But from a phenomenological perspective both situations are different. Using
this example Boyd & Rubin (1996) showed that there is a difference between scien-
tific discourse with graphs and everyday experience.
We select graphs with horizontal time axes, and use these graphs because they illus-
trate the relation between distance travelled and velocity, and the fundamental quan-
tity acceleration. We think that graphs are helpful for understanding this, but we for-
get that these graphs are selected very carefully, and this aspect often remains
implicit.

In fact, in most math classrooms, the conventional format for distance/time
graphs is taught as if it is the only way to express the relationship between
these two variables. (Boyd & Rubin, 1996, p. 77)

2.1.5 Conclusions
Students’ conceptual problems which we have sketched in this section concern the
concept of velocity, instantaneous change, and the concept of limit. In addition, we
noted differences in notations between physics and mathematics education, quanti-
tative methods, and the use of graphs. Intuitively, velocity is understood as a prop-
erty of a moving object and causal and descriptive aspects of velocity are mingled in
everyday reasoning. Velocity is taught as a compound quantity, with respect to a
frame of reference. However, students find it difficult to understand velocity as an
external proportion and to calculate an average with such a proportion.
In the use of graphs we have pointed out resemblances between the global shapes of
graphs and the characteristics of the phenomena they describe, and the graphing con-
ventions needed to understand the concepts that can be derived from them. These
conventions differ between mathematics and physics, and remain implicit; with the
risk that students’ understanding stays rooted in visual characteristics. Arguments
that recur in discussions about problems in teaching calculus and kinematics are:

– almost no connections with day-to-day reasoning,
– use of implicit conventions and connotations that students do not recognise,
– differences between notations and goals in maths and physics classes, and
– a transfer of quantitative methods, building on graphs that are not as transparent

as intended.
The gap between a street image and a school image of science, or, in other words,
between intuition about motion and the formal theory of change is an example of
what Kaput calls “the island problem in mathematics education” (Kaput, 1994b).
This gap between the island of mathematical representations of motion and the
mainland of everyday experience is not bridged by the use of graphs.
25



Chapter 2
Graphs are meant to connect motion phenomena and quantitative methods. How-
ever, on this boundary between scientific representations and everyday experience,
conceptual problems become visible: graphs are used to refer to the expert’s frame
of reference; apparently, they do not function as a tool for students to picture and to
order the students’ ideas and knowledge.
To overcome this gap we discuss recent alternative approaches to the learning of cal-
culus and kinematics. These approaches take modelling motion as their central idea
and use computer tools for supporting the students’ modelling activities. Physical
and mathematical perspectives are integrated in these approaches.

2.2 Approaches to the learning of calculus and kinematics
Analyses of students’ conceptual problems are often accompanied by recom-
mendations for education. These recommendations point to new approaches for
research and lead to new developments in the teaching of calculus and kinematics.
In this section we discuss some recent approaches in teaching that enable students to
use computer tools for modelling activities.
The discussion of the approaches is split into two parts: discovery-based and inven-
tion-based approaches. With discovery-based approaches we refer to trying to make
formal concepts accessible to students by presenting visualisations of concepts in
specially designed environments. Students can use these environments for real
experiments or exploring simulations. While doing so, they should be able to dis-
cover the related concepts. In contrast, invention-based approaches present a learn-
ing trajectory by way of model-building, to encourage students to construct the for-
mal concepts by working from intuition to intended model.
This separation of approaches can be illuminated with a distinction between explor-
ative and expressive modelling made by Doerr (1995, 1997). She characterised two
kinds of student activities in computer-based learning environments. Explorative
modelling can be associated with students’ discoveries while they explore relations
between representations. Literally, students discover a meaning by exploration, a
meaning that was previously covered up by the instructional designer. An explora-
tive modelling approach models a domain using representations in the experimental
setting or in a computer program. The model that is enclosed in the environment
determines the boundaries of the domain and describes relationships between varia-
bles. The variables are presented to the student in a simulation or with representa-
tions like tables, graphs, or value entries. By changing the values or properties of a
variable they can observe the effect on the other values. This connection between
representations helps students discover the connection between formal concepts and
perceived experiences during exploration (Hulshof, 2001).
Expressive modelling stresses the importance of students’ constructions and the pro-
gressive development of these constructions from intuitive to formal.
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In an expressive modelling approach, the students’ initial inventions are the starting
point for a model building trajectory from intuitive interpretations towards formal
concepts.
Thus, there is a difference between these approaches in the character of the mathe-
matical model and the character of the students’ modelling activities. In the explor-
ative approach, the mathematical model is the final, formal model that has to be dis-
covered by the students. For instance, this model determines the motion of the
objects in a simulation and its graphical representations, or it determines how real
motion can be represented with distance, velocity and acceleration graphs in the
graphical software connected to a motion detector.
In the expressive approach, the mathematical models are temporary, tentative mod-
els in a trajectory that might vary from informal to formal models. The program
offers students didactical models for describing relations within the described situa-
tion and can be used to solve the problems presented.
Gravemeijer et al. extended Doerr’s distinction between expressive and explorative
modelling (Gravemeijer et al., 2000). Explorative modelling is associated with dis-
covery-oriented approaches and characterised by the implementation of an expert
model that the students have to discover. Expressive modelling is associated with
learning trajectories from students’ inventions to the final, intended models.
The previous section 2.1 ended with Kaput’s ‘Island Problem’: the gap between the
island of formal concepts and the mainland of human experience. In short, you could
say that the discovery principle is an attempt to make the island accessible with envi-
ronments (e.g. realistic simulations) in which students can connect formal concepts
with their everyday experiences (on which their ideas are based). The invention prin-
ciple tries to prevent the gap from appearing by progressively building on students’
intuitive reasoning.
In describing and discussing the approaches below, we encountered a problem in
collecting information of both the instructional sequences and empirical findings. It
was therefore often difficult to clarify a didactical implementation of an approach
and to relate it to research results.

2.2.1 Discovery learning approaches
The approaches to calculus and kinematics discussed in this section share a common
aspect: the intended target concepts are made accessible by linked representations:
formal representations, like graphs, are connected to realistic simulations or experi-
ments. These linkages are implemented in an environment for experiments or in a
computer simulation. The connections illustrate the relationship between the repre-
sentations and the phenomena. As a result, students can explore the educational set-
ting, pose questions, test (intuitive) ideas and, in due course, discover these relation-
ships and the underlying concepts. Firstly, we discuss discovery approaches using
simulations, and secondly, using motion detectors connected to graphing software.
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With computer simulations

Simulations are less realistic than real experiments or video recordings, but they
have an extended functionality. Simulations enable students to not merely model
phenomena, but also to generate phenomena using mathematical notations and con-
trols (Nemirovsky et al., 1998). Kaput felt that today’s students can have access to
calculus thanks to technological possibilities like realistic simulations (Kaput,
1994b). He emphasised the relationship between mathematical symbol systems like
graphs and everyday reality, and thought simulations could be a solution for the ‘is-
land gap’. To bridge the gap, Kaput looked for situations in which students could
most exploit their own authentic experiences for investigating and coming to grips
with formal representations and the related concepts. He tried to create such a situa-
tion with software developed in the Simcalc project (www.simcalc.com). The power
of the device lies in the internal link between the various display systems. In this
way, the everyday experience of motion can be linked to formal graph representa-
tions. This link offers students the opportunity to test the ideas they develop about
the graphic representations.

figure 2.8 Elevators in Simcalc

Figure 2.8 shows a screen dump of Simcalc. Changing the velocity graph affects the
motion of the elevators. According to the graph, the elevator rises in the first second
with a velocity of 4 floors per second. Every second thereafter, the velocity decreas-
es. Students can predict at which floor the elevator will finally stop and then they can
view an animation of the elevator’s motion. Another elevator can be added to inves-
tigate what constant velocity graph is needed to let the second elevator move the
same distance as the first. The task (teaching material retrieved from http://
www.simcalc.umassd.edu in October 2003) focuses the students on understanding
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the relation between an average velocity and a varying velocity. This graphical ap-
proach illustrates how the variation across the average balances out: the total area
above the average velocity equals the total area below the average.
The designers stated that this approach makes it possible to build on students’ intu-
itions about areas and averages. Their goal was to engage students in modelling sit-
uations that enable them to approach the idea of average velocity in relation to a
same distance constraint and a same time constraint. In the teaching material, the re-
lation between area, average velocity, and distance travelled is summarised in the
graph of (fig. 2.9).

figure 2.9 Relation between area and average velocity

The effect of Simcalc has been investigated in formative studies that conclude that
the software motivates students, and helps them to reason intelligently about slopes
and areas of graphs (Kaput & Schorr, in press). Moreover, the dynamic images make
a lasting impression, to which students can refer in describing their reasoning during
lessons held after they have used the software. However, it is not clear from these
studies whether the students are able to use the related concepts in new situations.
The reasoning presented by the students was related to questions that varied only in
complexity of shape from the Simcalc graphs and situations.
A similar idea can be found in the Trips software. The Trips software uses an ani-
mation of two running children whose motion is linked to a speed indicator and a
graph (fig. 2.10). These links should enable students to correctly interpret the rela-
tion between motion and distance travelled graphs. On the same web site, the ease
of using the software is emphasised: 

This computer simulation uses a familiar context that students understand from daily
life, and the technology allows them to analyse the relationships in this context deeply
because of the ease of manipulating the environment and observing the changes that
occur. (retrieved from: http://standards.nctm.org/document/eexamples/chap5/5.2/in-
dex.htm in September 2002) 
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However, the problem may not be how easy it is to manipulate the software, but how
easy it is to interpret the graphical relationships. The question is whether students
understand these relationships? It could be that being able to connect graphical prop-
erties, such as slope, to what is happening in the animations may not be based on un-
derstanding, and therefore may not prevent reasoning like in the examples of con-
ceptual problems in interpreting graphs (see section 2.1.4).

figure 2.10 Trips

In addition, we must note that instruction is not based on the presentation of and
activities with only one tool. Noble et al. discussed the importance of using different
environments (Noble et al., 2001). They investigated the relation between the math-
ematical tools in these environments and the students’ reasoning and strategies. In
an instructional unit, the Trips software was one of these environments. Within each
environment, the students developed mathematical reasoning, but it is not clear from
their report to what extent the students understood why and how their reasoning was
related. The researchers seemed to think this was a follow-up of the students’ work
in the different environments:

Of course it is sometimes important for a teacher and her or his students to
step back from a diverse set of activities and ask what they have in common
and to reflect on the general mathematical principles that describe the activi-
ties. However, we argue that these general principles become meaningful and
relevant only to the extent that they are rooted in an ongoing background of
experiences. (Noble et al., 2001, p. 106)

De Jong et al. (1998b) noted that much research is needed to understand how the
implementation of such tools is related to a didactical embedding in education. We
reflect on these approaches at the end of this section, but first we discuss discovery-
oriented approaches with motion detectors connected to graphing software.
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With motion detectors

Simulations refer to reality, but are not directly connected with it. Motion detectors
enable a direct connection to be made between actual motion and graphing software
or graphing calculators. In the case of a connection with a computer, such an educa-
tional environment is called a ‘computer-based laboratory’ (CBL). This technology
offers real-time data acquisition, displays in various representations, and tool analy-
sis.
CBL allows students to perform and to repeat experiments. They can choose the rep-
resentations for the data display and which tools they use for their analyses. Theo-
retical concepts can emerge from experiments, experiences, observations and mod-
elling activities when the appropriate educational material is used (Schecker, 1998).
For example, body motion that is traced by detectors and displayed in graphs on a
computer screen allows students to see how their motion influences the construction
of the graph. Students can experiment with their ideas about the relation between
real motion and those graphs. According to McDermott, this resulted in a better
understanding than traditional methods (in Tiberghien et al., 1998).
The difference between using software with simulations like Simcalc and using
motion detectors is that in Simcalc the link works in two directions: it is also possible
to create simulations by adjusting the graphs. Nonetheless, motion detectors are con-
nected to real motion, while simulations remain artificial microworlds.
Thornton and Sokoloff (1990) described an CBL-based curriculum, which starts by
looking at velocity graphs in which students walk quickly and slowly, towards and
away from a motion detector. In these tasks, students learn to relate velocity graphs
to various kinds of motion. The tasks are supposed to clarify sign conventions for
velocity and the relationship between the course of an actual velocity and the vertical
distance of the graph to the horizontal time axis. After the activities students were
asked to move in such a way that they matched a graph shown on the screen. Figure
2.11 shows a student’s third attempt to match a given velocity graph.

figure 2.11 Student’s attempt to match her body motion to a velocity graph 

. . . . .
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In the subsequent tasks the students were asked to predict piecewise constant and lin-
ear distance, velocity or acceleration graphs, when one of the other graphs was
given. They could check their predictions by creating the given graph with their
body motion, and comparing the other graphs in the CBL to their prediction.
The situations in the tasks became more complicated and increasingly made use of
changes in sign of velocity and acceleration. During these activities students could
also use a cart moving along an inclined ramp. At the end of the CBL-based curricu-
lum there is a focus on quantitative aspects of modelling motion. Students had to
compare values of acceleration and velocity by using slopes in distance and velocity
graphs. This curriculum can be incorporated into a traditional introductory physics
course.
The educational results of using CBL have been investigated in summative studies,
for which Thornton & Sokoloff (1998) designed the ‘Force and Motion Conceptual
Evaluation multiple choice test’. They used the test to compare traditional teaching
methods with CBL-based methods. These studies strongly indicate that students from
CBL-based methods scored better. Figure 2.12 shows a part of a test item. The item
was introduced with a story about a car driving along a line. Students had to connect
possible car motions with the graphs in a multiple choice test. 

figure 2.12 Part of an item from the Force and Motion Conceptual 
Evaluation multiple choice test

Many of the test items appear to be similar to the carefully designed motion activities
in the CBL curriculum: motion with constant or linear distance, velocity, and accel-
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2. Which velocity graph shows the object reversing direction?
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eration graphs that students have to relate to each other. It might be the case that stu-
dents mainly focused on using iconic characteristics for the relations between the
motions and the graphs. 
Hand-held technology, like the graphing calculator TI-83 and Texas Instruments’
Calculator-Based Ranger (CBR), opens up even more possibilities. Body motion, like
walking and waving hands in or outside classrooms can be recorded by a CBR. The
calculator shows graphs or tables of these recordings. It is assumed that body mo-
tion, language and the use of technology will mediate and support students’ tran-
sition from perceived motion to symbolic representations. Students connected live
experiences through gestures and words with the data representation (Arzarello &
Robutti, 2001). They had to walk from a sensor to a red line, stop there and return to
the sensor (see figure 2.13 for the task and the resulting graph on a calculator). 

figure 2.13 Graphing calculator and motion detector

When the students tried to interpret the linear part of their distance graph, Arzarello
et al. (2001) revealed how their reasoning changed. Their first reactions were: ‘steps
in the same time interval’, ‘the same pace’, ‘walking the same distance’. Then Fabio,
one of the students said: ‘to always keep at the same speed’, a remark eventually
reformulated as constant speed. This is an example of language development since
graphical and conceptual ideas were mingled in the beginning but each became
clearer. Brungardt et al. (1995) found that students had difficulty in connecting
graphs to motion because they “tended to consider every little bump on a graph as
significant, ignoring the fact that irregularities are often due to the many error
sources inherent to recording motion.” Brungardt et al. think this problem is rein-
forced by text books which often have smooth kinematical curves that make realistic
curves harder to interpret. Beichner (1990) and Mokros & Tinker (1987) pointed out
that the kinesthetic feedback and real-time graph construction of CBL materials con-
tributed to its success in kinematic studies.

The CBR will record your position with respect to time
and will collect the data in a graph and in a table. The
data are expressed in seconds (s) and in meters (m)
respectively. Each 1/10 s a couple of data (time and
position) are collected.
a. Describe the kind of motion you made in the corridor.
b. Using the graph and the table, describe how space
changes with respect to time (increase, decrease, . . .).
c. Analyse the graph. Is it like a line? Is it like a curve?
Does that curve increase? Does that curve decrease?

Consider the ratio: and use it to describe

mathematically the graph of your motion (t1 and t2 are

two subsequent time data and s1 and s2 are two subse-

quent position data).

m
s2 s1–

t2 t1–
-----------------=
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A recurring issue seen in these studies is that students are better motivated and dis-
cuss the situations and relations with the graphs more vividly than in traditional
approaches that do not use such technologies (Brungardt et al., 1995; Nemirovsky,
1994). Hand-held technologies make these curricula more accessible in classroom
situations. However, the practical problems of implementing such activities are not
yet fully solved. The instructional setting demands tremendous effort and is essential
for the students’ activities, like hypothesis generation, reflection, and generalisation
(Beichner, 1996).
Similar comments to those made for the simulation approaches can be given for this
approach. Even when the instructional setting is optimised, understanding the rela-
tion between graphs and motion might be mainly based on visual relationships, with-
out understanding of the underlying concepts. It is argued that establishing a
dynamic connection between a phenomenon and the construction of graphs does not
guarantee that students will interpret all the graphs’ features correctly. There is a
danger that interpreting and using graphs does not necessarily clarify the conven-
tions for students, for example, how carefully chosen quantities for the horizontal
and vertical axes can give more meaning to graphical features like slope and area
(Brungardt et al., 1995; Kanselaar et al. 1999).
Testa et al. (2002) observed this problem in the teaching of kinematics through read-
ing and interpreting continuous real-time graphs. They compared novice and
advanced students’ reasoning about real-time generated kinematics graphs. They
found that the students’ previous graphing experience influenced their reasoning.
Novice students did not have the cognitive ‘lenses’ of the expert, which made it dif-
ficult for them to understand what they were supposed to do in the experimental set-
ting. Testa et al. concluded that to overcome kinematic-related and iconic difficul-
ties, an effort to address both these difficulties simultaneously is needed. This effort
should address a shift from observing and exploring phenomena and searching pat-
terns and regularities to be modelled from a certain perspective, to theoretical extrap-
olations in ideal cases.
Nemirovsky (1994) described a qualitative study with one student, Laura, working
in an CBL environment. He described how Laura was grasping the meaning and
representation of negative velocity. Her learning was triggered by a graphical feature
that did not correspond with her expectations. As a consequence, she tried to inter-
pret the graph in another way to become familiar with a new field of knowledge. She
had to refine her idea in order to develop a new approach to graphing motion in
which the computer representation made sense. She used hand gestures and tested
ideas during her attempts. It was not the CBL curriculum, but her own actions and
ideas that led to her development. According to Nemirovsky, the learning environ-
ment offered Laura opportunities for symbol use that encouraged her to revise what
she knew and expected, to re-conceptualise the situation symbolised. However, the
reasoning underpinning her revision seemed to remain implicit.
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Reflection on discovery approaches

An important aspect in the discovery approaches described in this section is the com-
puter-based link between formal knowledge of graphs and everyday reasoning. The
software and the link with motion detectors seem attractive for students and are easy
to use. The question is whether students can understand the graphical relationships?
The ease of seeing patterns in various situations might hold the danger that connect-
ing graphical properties such as slope or area to what is happening with motion, is
not based on a true understanding of the underlying concepts, but on guess and check
strategies. In these cases their understanding is jusitfied because they did not
encounter a contradiction yet.
The mechanism that creates velocity graphs in the simulation-based software and in
the micro-computer-based laboratories remains invisible to students. In addition, the
computer tools take a ready-made symbol system of two-dimensional continuous
graphs as a point of departure. This system is consistent with an expert concept of a
mathematical system and the physical relations between velocity and distance trav-
elled, which can be quite distinct from everyday experiences.
We do not want to argue that these approaches are non-productive or incorrect. They
are used by a large number of researchers and need further investigation, especially
with respect to the didactical possibilities of new technologies. Such research should
focus on the students’ learning, the role of the teacher, and the way in which using
these technologies supports the learning and teaching of kinematics.
However, the teaching trajectories based on an extensive use of explorative tools do
not seem to focus on creating a trajectory from everyday reasoning and informal
symbolism to the formal concepts and symbols in the software. The implementation
of explorative tools aims at visualising theoretical concepts, and connecting these
concepts with real-life phenomena and reasoning, in order to bridge the gap between
formal knowledge and everyday reasoning. Questions like how to understand veloc-
ity as a compound quantity, and how to measure velocity, do not seem to be
addressed. Moreover, in the teaching process, the importance of the choice for a hor-
izontal time axis might well be overlooked. Finally, the microworlds suggest a real-
ity that cannot be found in real life: smooth graphs cannot be realised in real-life sit-
uations. The microworlds are idealised fiction, and the step from real situations to
fiction is great.
These discovery approaches have similarities to the long didactical tradition in
which instructional designers have tried to make abstract mathematics accessible for
students by presenting concrete representations of mathematical structures. The
designer takes the high level of abstract mathematics as a starting point and tries to
bridge the gap with the students’ level by using so-called structuring materials. Stu-
dents are supposed to discover the mathematical relationships that were previously
hidden (Freudenthal, 1991). We could consider that computer tools replace these
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materials in the approaches described; instead of exploring structuring materials, the
students explore environments and graphical relations. These relations are based on
a formal model that describes graphical relations and the system is consistent with
an expert image of the theoretical system. However, it is questionable whether stu-
dents come to understand that this consistency is the result of a long process (Gilbert
& Boulter, 1998). According to Gilbert & Boulter, these computer environments
show how a consensus model works, but education within these environments runs
the risk of skipping the process of reaching a consensus. Students might not gain a
correct understanding of velocity, the goal of the activities, and the constraints of the
knowledge they acquire. Friel et al. commented on graphs structuring situations (e.g.
motion):

Can one interpret data accurately without having a significant level of under-
standing of the context? How do the characteristics of the information (e.g.,
similarity or difference in magnitudes of data values and frequencies) affect
the interpretation? (Friel et al., 2001, p. 152)

The teacher can discuss and problematise such issues as how to measure velocity and
the horizontal time axis. However, it is essential in these discovery approaches that
students uncover the expert’s model.
An alternative is an approach that tries to build on reasoning and informal symbols
invented by the students while modelling motion. Such approaches provide insight
into how students perceive motion phenomena and what they judge as relevant,
which could then be used for developing the formal concepts. These invention
approaches stress the importance of trying to get the students to experience the learn-
ing process as if they could have invented the new concepts and symbolisations
themselves. In this sense, they differ fundamentally from the discovery approaches.

2.2.2 Invention approaches
The starting point for invention approaches lies in trying to create situations in which
students invent symbolisations by themselves. These approaches try to build pro-
gressively on these inventions towards the formal concepts and symbol systems. In
this section we discuss two invention approaches.
DiSessa et al. (1991) and Sherin (2000) described an approach that focuses on stu-
dents’ graphing inventions for modelling motion. They looked at lessons in which
the students created graphs to describe and represent motion of a car which slows
down and then speeds up (fig. 2.14).The students had been programming simula-
tions of real-life motion with a Logo-like turtle that left a trail of dots across the
screen. Next, the students were asked to come up with a paper-and-pencil way to
represent the motion history of one of the simulations they had worked on. The stu-
dents’ solutions, which were to some extent inspired by the dot-tracking of the com-
puter simulation, formed the starting point for a series of discussions and activities
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in which a graph-type representation of the motion history emerged. Sherin (2000)
analysed the students’ solutions and their reasoning, focusing on the developing ge-
neric symbolising competences of the students. 

figure 2.14 Creating graphs to model motion (from DiSessa et al., 1991)

He contrasted this with their capabilities related to specific representational forms as
seen in the discovery approaches. Instead of bridging a gap between everyday rea-
soning and formal knowledge, Sherin argued that such generic competences are use-
ful and meaningful resources for the students. This graph drawing approach makes
it possible to discuss with the students why a particular representation takes the form
it does, what situation it is appropriate for, and relate it to the adequacy of alternative
representations. Moreover, giving students the opportunity to express their creativity
is important for developing a scientific attitude, and for developing the skills needed
for an intelligent use of computers with a wide variety of representational facilities.
Sherin also stated that such an invention approach places strong demands on the
teacher:

The teacher must be prepared to respond flexibly to a wide range of student
inventions and ideas. It requires, at a minimum, that the teacher knows some
of what to expect as the class proceeds: what kind of inventions students
might offer, which inventions offer productive avenues to follow, and how to
guide students in these productive directions. (Sherin, 2000, p. 438)

Sherin’s analysis did not give answers on how to guide the students, but does make
an important contribution to the problem of how to move from students’ reasoning
to formal knowledge.
A similar approach focusing on students’ construction of graphs and based on
interactive video instead of computer simulations, was investigated by Boyd &
Rubin (1996). They found that students did not automatically construct a two-di-
mensional graph with a horizontal time axis and a vertical distance axis. This sur-
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prised the authors, given the students’ prior education, which included a lot of two-
dimensional graphing activities. In earlier studies with more explicit questions in
this direction, it appeared that many students constructed graphs with a horizontal
position axis and a vertical time axis. This choice was probably inspired by the
graph’s resemblance to a horizontal road, but we found students made the same
choice in situations where they had to describe data on free fall. 
Boyd & Rubin used a video of motion in their research. Video has the disadvantages
of providing no physical experience (unlike motion detectors) and the students can-
not influence the motion by adjusting the graphs, as in Simcalc. However, the ad-
vantage of video is that it can be played frame by frame. The starting point in Boyd
& Rubin’s research was that students were asked about the motion shown in the vid-
eo, and to create graphical models of the motion to solve the questions: 

(...) students need to use their prior knowledge and mathematical sense-mak-
ing skills to create their own representations. (Boyd & Rubin, 1996, p. 62)

The authors chose a setting in which students had to draw graphs by themselves after
working with software that enabled them to create trace graphs of Quicktime mov-
ies. They could drag the ball on a snapshot of the movie in order to trace the motion.
This has similarities with educational environments in which video is integrated
with mathematical software (e.g. Measurement in Motion). However, software like
VideoGraph is essentially different from such a setting, because it immediately gen-
erates conventional graphs like two-dimensional position, velocity and acceleration
graphs, and also tables after tracing a point in every frame.
The authors observed a 6th grade student (age 12) in more detail: after working with
the video and the software, her first problem was to create a graph that she could use
to explain the motion of a ball that was slowing down in the video to a third person.
She constructed the following one-dimensional trace-graph (fig. 2.15).

figure 2.15 First trace graph (from Boyd & Rubin, 1996)

Boyd & Rubin concluded that the interactive video focused her attention on change
of position in equal time intervals or video frames. Although, it could be that she did
not realise that the equal time intervals were a consequence of her focusing on dis-
placements between frames. 
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In her reasoning she mainly used the distances between the crosses on her graph.
These intervals appeared to be a basic structure element of both the motion and its
representation. In drawing her graph she used her previous knowledge of graphs, e.g.
a conventional horizontal axis (although the motion was vertical). What was striking
was that she did not feel the need for a second axis to indicate how time related to
distance (see section on conceptual problems). When the observer asked her to show
how the ball slowed down and to display time, she did not draw a two-dimensional
graph, but adjusted her first graph (fig. 2.16). 

figure 2.16 Adjusted graph (from Boyd & Rubin, 1996) 

With her adjusted graph she developed language for reasoning about the motion and
her representations. She talked about speed as: ‘how long it takes to cover a certain
distance,’ a characteristic kind of reasoning in sports. This differs from the conven-
tional formulation: “how much distance is covered in a certain time interval”. Her
formulation is remarkable given that the constant time intervals between the video
frames might have focused her attention on time as an independent variable.
During the subsequent discussion her reasoning gave clues to the way she construct-
ed the graph. When the observer asked: “can you tell what speed is?”, she reformu-
lated the question with time needed for covering the total distance, instead of refer-
ring to how far the ball goes in a certain amount of time. When the observer asked
her to draw a graph from which you could read the change of speed during the mo-
tion, she drew a two-dimensional graph (fig. 2.17). 

figure 2.17 Two-dimensional graph of movements (from Boyd & Rubin, 1996)
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These activities changed her reasoning with displacements to reasoning with dis-
placements and time intervals, during which an interpretation of speed as a com-
pound quantity emerged. Boyd & Rubin argued that the need to represent a different
quantity made her move away from her trace graph. Actually, speed is represented
in this graph as movement in a time-interval. After the observer asked about the pre-
cise value of the speed at any moment, she reformulated her definition of speed to
miles per hour.
Boyd & Rubin concluded that these activities are important, because they reveal
ways to learn about conventional graphs from intuitive interpretations of and reason-
ing about motion. Moreover, the relationship between an actual motion, a graph of
total distances, and a graph of movements in subsequent time intervals, is central to
the learning of calculus. However, it is not clear to what extent the student had, so
far, really experienced this relationship.

Reflections on invention approaches

These invention approaches give insight into students’ reasoning that might form
possible starting points for a learning trajectory from everyday reasoning to formal
concepts. If it is possible to design such a trajectory, the gap between reasoning and
formal knowledge will not arise.
It is remarkable that the students (especially in Boyd & Rubin’s research) drew more
primitive graphs than expected given their previous training. The graphs appear to
be sufficient for expressing the students’ thinking about the problems they were pre-
sented with data of subsequent positions. Apparently, it is not obvious to the students
that they could calculate velocities from the data and draw velocity graphs.
Such analyses are valuable for gaining insight into students’ intuitive reasoning and
ideas with respect to the problems presented. Their descriptions provide a paradigm
that can aid further research and design. Their development of making sense, of lan-
guage and gestures is related to their development of the graphical models of motion. 
A difficulty with invention approaches concerns the strong demands made on the
teacher. Students cannot be expected to arrive at all the target knowledge by them-
selves. Sherin (2000) pointed out that the teacher must be able to value the students’
contributions along the learning trajectory. In classroom situations, this means the
teacher must know what kind of strategies students may come up with, and ways to
build productively on such strategies. The teacher must be able to think flexibly
within a certain range along the intended trajectory, in order to value the students’
contributions and to provide them with content-related motives to aid their progress.
Consequently, realising invention approaches in a classroom situation demands a lot
from both the teaching materials and from the teacher.
40



The teaching and learning of calculus and kinematics
2.3 Conclusions and discussion
We have discussed students’ conceptual problems in calculus and kinematics, and
described the gap between their everyday reasoning about velocity and the formal
knowledge that is the starting point for teaching these subjects. Intuitively, velocity
is understood to be a property of a moving object, but velocity is taught as a com-
pound quantity with accompanying calculations. Graphs play an important role in
teaching because they help to illustrate concepts, but it appears that students often
focus on similarities between the global shapes in graphs and the characteristics of
the phenomena described. Graphing conventions remain implicit, although they
need to be dealt with explicitely for understanding the concepts that can be derived
from them. Moreover, the conventions differ in mathematics and in physics. Stu-
dents’ understanding stays rooted in visual characteristics and in guess-and-check
strategies.
Next we described two different approaches – discovery and invention – that aim to
reduce the gap between students’ everyday reasoning and formal knowledge by
modelling motion with computer tools. In discovery approaches, these tools are
designed to constitute productive learning environments. The tools allow students to
discover the meaning and use of graphical models of motion, like time-distance
graphs, by linking them to referents (in animations or with real motions). However,
it is unclear whether students’ understanding of velocity is sufficient for correctly
interpreting the graphs.
The focus in the alternative invention approaches is on the contributions of individ-
ual students. Although the reasoning of these students change, it is not clear from
these studies how taken-as-shared meanings about calculus and kinematics will
evolve in classroom situations or to what extent the teacher can guide and influence
the invention process. Nevertheless, we argue that, if it were possible to have the stu-
dents invent distance-time and speed-time graphs by themselves, the gap between
formal mathematics and authentic experience would not arise, because mathematical
ways of symbolising would emerge naturally in the students’ activities, and the
accompanying formal mathematics would be experienced as an extension of their
own authentic experience.
We have discussed discovery and invention in their pure forms, but in educational
practice they can be mixed or be close to each other. Nonetheless, it seems there is
a fundamental difference between starting from each of the two underlying princi-
ples. This difference between these ideas was also addressed by Clement in his arti-
cle on model-based learning as a key research area for the teaching and learning of
science. In this article he distinguishes between learning with models that are accu-
rate and as rich as possible versus learning via a model evolution process by building
on intermediate models that are only partially correct (Clement, 2000).
Somehow we have to help students learn to see conventional symbols as symbols of
their own developing scientific activity. In the next chapter we will discuss theories
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on symbolising in order to understand how we symbolise and how this is related to
concept development. These theories support an approach to teaching and learning
calculus and kinematics by progressively building on students’ inventions guided by
instructional materials and a teacher. This approach was investigated in our research
project. 
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This chapter describes the didactical and theoretical framework for this research and
the underlying reasoning and design heuristics. The use and the interpretation of
graphs in teaching is situated in a semiotic perspective. This perspective is based
upon a selection of semiotic literature which appears relevant to the didactical and
conceptual problems presented in preceding chapter 2. We cannot present an elabo-
rate semiotic study here, but will outline some recent findings that may explain the
possible causes of these problems. These explanations support an invention oriented
approach to the teaching and learning of calculus and kinematics.
In section 3.1 we consider the relation between perception and interpretation. It is
likely that students do not perceive the same information in graphs as professional
mathematicians do. Students should have an appropriate preparation and a content-
specific motivation to see important and useful characteristics in graphs and for pre-
venting dominating visual resemblances. Knowledge of a phenomenon seems to be
a condition for understanding mathematical descriptions of that phenomenon. In
brief, we use graphs to organise motion and to teach students the relation between
velocity and distance travelled, whereas motion has to be organised in order to cor-
rectly interpret the graphs. This problem is known as the learning paradox and is dis-
cussed in section 3.2.
The learning paradox provokes the question: how can we learn students new repre-
sentations? How do humans develop symbolisations and how is this related to
knowledge development? We discuss research on symbolisation in section 3.3, and
discuss its consequences for the use of symbols in teaching and learning in section
3.4. We conclude that for an alternative approach to the teaching and learning of cal-
culus and kinematics we must look for a dynamic process in which symbols and
meanings develop together. We conjecture that such a process will prevent the prob-
lems observed with these topics. The characteristics of such an approach and the
design heuristics for achieving it are described in section 3.5. Whether this alterna-
tive approach will yield the intended results is addressed as the research questions in
section 3.6.

3.1 Notes on perception and interpretation 
In his contribution to a research companion to the NCTM standards, Monk (2003)
described a shift in mathematics education, from teaching graphs as standard objects
involving skills and procedures towards the graphing activities and use of repre-
sentational forms, like graphs, for giving meaning and forming communicating
processes. Monk referred to an increased awareness of the visual aspects in mathe-
matics, and to an increase in knowledge about how we see things, and how this is
tied to what we know, think, say and do. This influences our thinking about graphing
in mathematics education: 
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This new interest in visuality in mathematics and how changes in the way we
see things can be fostered, has promoted new points of view from which to
address the problem of the persistent errors students make in graphing.
(Monk, 2003, p. 260)

The close reciprocal influences between knowledge, looking and perception are
nowadays generally accepted. What we look at and what we see in a situation is
largely determined by what we know about the situation and by our purpose.
Research in neurophysiological and psychological areas investigates how we men-
tally represent and recognise objects and patterns in various situations. This appears
to be an ongoing process that develops in connection with experiences within a
social environment (e.g. Wallis & Bülthoff, 1999; Jarvilehto, 1999; Goldstone,
1998).
In the next two sections we focus on two aspects of that process. First we discuss the
relation between concept development and perceiving and organising phenomena.
Second, we discuss the relation between perception and the interaction with an envi-
ronment.

Organising phenomena 

Brouwer (2003) investigated how we interpret poetic texts where the interpretation
involves subjective representations of meaning. At first glance, this seems rather dif-
ferent from learning to interpret and use graphs in physics and mathematics. How-
ever, it appeared that the underlying ideas of understanding and concept formation
are useful for understanding the conceptual problems described in chapter 2.
Interpretation is tightly interwoven with knowing. Brouwer refers to the philosopher
Bartsch and describes a process of concept development based on recognising sim-
ilarities and capabilities of association. Concepts are formed through the organisa-
tion of experiences (Bartsch, 1998). The development depends on both the individ-
ual’s processing of the perceptual information, and the individual’s social envi-
ronment. To this second aspect, Bartsch adds that learning involves a process of
expressing ideas and correction and approval within a community. Common ground
is created by the shared experiential grounding for the conceptual system, the causal
relations between concepts and perceptually processed properties of reality, and by
social interaction within a community. Cunningham (1992) combined these individ-
ual and social aspects of knowledge formation within a culture:

The world, as we know it, is culturally coded. What we experience as reality
is really prior cultural and personal codings, prior structures invented (not dis-
covered) both collectively by our culture and individually by us. 
(Cunningham, 1992, p. 170)

The organisation of experiences is structured in so-called similarity classes. Some-
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thing is understood as a collection of situations gathered under similarities, which
can vary from perceptual to structural similarities. The formation of a concept thus
consists of an evolving structure of collections of experienced situations, while what
is perceived as a similarity depends on the knowledge of the observer. According to
Bartsch (1998), this organising process presupposes the availability of pre-cognitive
perspectives and dispositions that take care of selecting relevant similarities and can-
celling out irrelevant ones. The notion of perspective can be understood as a guided
path of associations, guided by the individual’s intentions or by the collective
intentions of a community (Searle, 1995). Brouwer added to this with respect to
learning language:

Generally, when learning language, we copy behaviour by tentatively apply-
ing expressions to new situations, all the while meeting approval or objection.
(...) not the meaning but the symbol itself is perceptually processed. 
(Brouwer, 2003, p. 190)

In the following sections we will return to the role of symbols in learning. In this sec-
tion we focus on the dialectic process of organising experiences as a fundamental
drive for perception and learning. Organising seems the core of mathematical and
physical practices. In the beginning of the 20th century, the mathematician L.E.J.
Brouwer described such a process when referring to mathematical activity:

People succeed in detecting a regularity in a restricted area of phenomena
independent of other phenomena, that can therefore remain completely latent
during an intellectual consideration.
To preserve the certainty of a perceived pattern as long as possible, people try
to isolate systems, i.e. ignore the aspects interfering with the pattern; in this
way man creates many more regularities in nature than originally occurred; he
desires these patterns, because they strengthen him in the struggle for life, by
allowing him to make predictions and to take measures. 
(Brouwer, 1907, p. 82; translated from Dutch)

From these findings we may conclude that students’ intentions, as provided within
an educational setting, are important for concept formation. The studies described
above present a dynamic and situational view on learning governed by our experi-
ence. Traditionally, concepts are thought of as standing for something in an ideal
sense, such as the mental object ‘tree’ that refers directly to the physical object of a
tree, independent of the situation where it is used. Instead, nowadays concepts are
thought of as dynamic structures by which mental representations are associated. In
this dynamic view, concepts emerge as cognitive representations in relation to other
cognitive representations. A tree becomes meaningful when it can be connected to a
mental representation according to certain similarities of the object and situational
relations. Trees are perceived as trees when these representations can be triggered.
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Perceiving a tree is processing something as being similar to previously perceived
objects according to similarities that are individually and socially determined (e.g.
trunk, leaves, needles, forest). Representations can be perceived or retrieved in such
a process of conceptualisation. All are triggered through focusing in perception,
which is through attention. Conceptual associations connect mental representations
to one another in a conceptual network. This seems to be related to Skemp’s (1979)
notion of cognitive nets in the learning of mathematics. The constructed net of con-
nections determines mathematical actions in a given situation. This net shapes our
existing knowledge and frames our aims, expectations, and perception associated
with a concept. It acts as a tool for learning by making understanding possible and
assimilating something to an appropriate position in this net (Kemme, 1990).
Finally, we would like to mention Bartsch’s claims on stability with respect to her
dynamic model of concept formation. Concepts resulting from associative structur-
ing are not necessarily stable, since they may result from coincidentally activated
mental representations, yielding associations that could be momentary or situational,
and which might never be reinforced. However, understanding aims at keeping sta-
ble structures intact. When an utterance or a visual characteristic cannot be proc-
essed coherently, we have three strategies available before destabilising a stable con-
cept: (i) discard the situation as nonsensical, (ii) discard it as false, or (iii) create a
new ‘quasi-concept’ for this particular situation, by combining some similarities.
When recalling the conceptual problems on graphs in chapter 2, we might say that
students’ focus on similarities between graphs and situations being modelled −
iconic interpretations − is probably the result of insufficient intentions or prepara-
tions. With an insufficient preparation, we refer to a conceptual network that does
not afford the intended extension of this network. Students probably use this third
strategy to process the graphical symbol and to keep their conceptual network stable.
It is not the use of slope and area that they focus attention on, because these relations
are not developed yet. Their prior work with graphs (rising is associated with some-
thing going up) makes them focus on iconic similarities between the graphs and the
problem situations.
The same can be said about their notion of velocity as an undifferentiated property
of moving objects. In a school situation they are presented with algorithms for cal-
culating average and instantaneous velocities that are hardly connected to their
notion of velocity. These differences might result in the dichotomy between street
and school use of kinematical notions, and of notions of the mathematics of change.
Consequently, it is not amazing that when we present students with a series of tasks,
their learning is triggered by the variation in these tasks. When they do not under-
stand the principles that govern the rules they have to apply, they can only focus on
how to perform the algorithms, without understanding why, and without connecting
them with related notions. Whether the discovery and invention-oriented approaches
will solve this problem is discussed in section 3.4.
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Interacting with an environment and tool use

Past experience and intentions within a (social) context play an important role in
knowledge formation. Recent research has shown that past experience even influ-
ences our processing of stimuli. Jarvilehto is a behavioural scientist who investi-
gated this connection between our senses and knowledge (Jarvilehto, 1999). He
specified the relation between knowledge formation and perception from a neuro-
logical perspective:

Every organism ‘assumes’ something about its environment in the sense that
it has a structure into which only certain parts of the environment may be fit-
ted. This idea was expressed several hundred years ago by Spinoza (1677),
who stated that perception is a truer reflection of the structure of our body than
any outer object as such. (Jarvilehto, 1999, p. 98)

Evidence for this idea comes from neurological studies. Recent studies have shown
that neural responses did not simply follow the given stimuli. A dynamic organism-
environment system is central to his study: receptors of stimuli are not simple trans-
mitters of information, but give the possibility of direct contact to the environment,
which is necessary for successful behaviour. This possibility is given by the struc-
ture of our present knowledge of the situation. Knowledge frames our intentions and
expectations about a certain situation within an environment. 

The stimulus is a part of the process of reorganisation of the structure of the
organism-environment system, which forms the basis of new knowledge.
(Jarvilehto, 1999, p. 97)

Gibson (1979) emphasised the role of the environment in perception and interpreta-
tion. An individual does not simply assume something about the environment. It is
the desired interaction with this environment that plays an essential role in his per-
ception. Gibson called the perceived possibilities for interaction the affordances of
the environment. An affordance is a resource or support that the environment offers.
An affordance is perceived when it fits a purpose or activity and when you have the
capacity to detect it. Examples of affordances include objects that provide actions
(e.g. doorknobs, ripe blackberries). Before you are able to perceive such an
affordance, you must have learned to detect the information and the intention to uti-
lise the possibilities that are afforded to you.
Pea (1993) uses the notion of affordance-fit for tool-use related to learning. The
knowledge carried out in tools may be exploited in activity by a new learner through
a variety of paths: through observed use by others and attempts to imitate it, through
(playful) discovery of its affordances in solitary activity, and through guided partic-
ipation in its use by more knowledgeable others. As an illuminating case, Pea used
the example of a forest ranger who each year measures the diameters of trees in a
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forest to estimate the amount of lumber. With a conventional tape measure he has to
remember circumference as a measurable property of the tree, related to the diameter
of the tree by a formula. This procedure for determining the diameter is prone to
error and effort. As a result a new tape measure might be invented with the numbers
on the new tape scaled so that the algorithm is built into the tool. When the new tape
measure is wrapped around the tree, he can read off the diameter directly. The
affordances of the tool parallels the achievements of the forest ranger.
Cobb (1999) underlines this interpretation of affordances as a person’s achieve-
ments. An affordance is not an objective property, perceiving it is a personal
achievement. We should add that the forest ranger’s colleagues can use the new tape
measure without understanding the algorithm that is built into the tool. Nevertheless,
for using the tool in various situations, it is necessary to understand that the scale is
related to the shape of the tree. It is not evident from the tool whether it can also be
used for measuring the diameters of square rafters or lamp posts.
Kuhn (1970) described this subjectivity with respect to scientists working within a
paradigm. The use and meaning of concepts and tools change within different para-
digms after a ‘scientific revolution’. Scientists practice their trades with different
interpretations of the same words (like force, mass, etc.) and see different things
when using the same tools. Kuhn wrote of such paradigms as incommensurable.
Instead of thinking of incommensurability as a relation between concepts, Klaassen
& Lijnse (1996) emphasized changes of discourses in which vocabulary and inter-
pretation have different meanings and conventions. Scientists see and interpret phe-
nomena in a particular way, taking a certain perspective with a certain goal accord-
ing to a paradigm. These perspectives and goals differ within different paradigms.
In education differences in the way in which teachers and students see and interpret
the same situations can be seen. We should be aware of these differences and of the
relation between intention and perception in order to understand how students expe-
rience affordances of tools within a certain situation.

Conclusions

Our senses are not objective windows for the transmission of knowledge. Prior
knowledge and our intentions for the process of organising and reorganising phe-
nomena determine how we receive and process stimuli and recognise affordances in
presented tools. Therefore, prior knowledge and intentions constitute learning, and
concept development is a dynamic, context-dependent process. In this process,
classroom communication plays an important role in creating common ground.
As a result of the subjectivity of perception and of this dialectic relation between
knowing and perceiving, one could say that by extending our knowledge, we widen
the range of possibilities of perceiving and interpreting and have more options in
how we act and interact with our environment.
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In education, we have to prepare students in such a way that they perceive the pre-
sented situations and tools as intended, relevant and useful. This is less simple than
we are inclined to think.

3.2 External and internal representations 
External representations are supposed to make certain notions accessible for stu-
dents and are often used in education. Such representations reflect structures or
characteristics of expert knowledge. The idea is that students adopt this knowledge
by working with the representations. In mathematics education, this idea is also
referred to as a representational view of mathematics education (Cobb et al., 1992).
In this section we consider this representational view and discuss Cobb et al.’s com-
ments on it. This discussion leads to an understanding of ways to prepare students
for working with external representations in a meaningful way.

The representational view

Continuous distance-time and velocity-time graphs are used in kinematics education
as ‘instructional representations’. We − as mathematics teachers − see the relevant
characteristics for the relation between velocity and distance travelled in these
graphs. The graphs are object-like and transparent entities for us as expert users, and
are immediately connected to our understanding of the notion of slope, and to dif-
ference quotients as a rate of change. A resemblance to the actual trajectory of the
motion does not come into our mind. Cobb et al. (1992) and Gravemeijer (2002a)
argue that this is because we ‘automatically’ see the mathematical and kinematical
relations, and constantly experience that we can easily reason and communicate with
these objects. For students, however, it appears that this transparency is not self-evi-
dent. 

figure 3.1 Dienes’ blocks representing the decimal place-value notation of 1111

As an example we will discuss the use of Dienes’ blocks in arithmetic education. The
blocks were thought to be transparent for students, in the sense that students were
expected to see the benefit of tens and ones in the material (fig. 3.1).
The Dienes’ blocks were designed to function as an instructional representation of
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the place-value notation. The prescribed actions with the blocks could be mapped
with steps of written algorithms for adding and subtracting numbers. Students used
the blocks for operations on numbers, and while doing so they were supposed to gain
understanding about the written algorithm. However, it was found that students who
already knew how to perform the written algorithm could see the connection
between the Dienes’ blocks, the numbers and the algorithm, whereas students who
did not understand the place-value algorithm, also had no clue how to solve the prob-
lems with the blocks (e.g. Holt, 1982).
The fact that the Dienes’ blocks represent a place-value system is not discovered
simply by looking at and manipulating the blocks. This is what makes mathematics
so hard for students: visible objects refer to invisible mathematical concepts or rela-
tions that are still to be constructed by the students (Bakker, 2004). From the experts’
point of view, the external representations make their knowledge accessible and
communicable. However, the example of the Dienes’ blocks shows that this might
not be true from the students’ perspective.
It is possible that there is the same problem, the same difference between expert
knowledge and students’ view, with the use of graphs in calculus and kinematics.
Graphs may be thought of as transparent objects; in the sense that students are
expected to see the benefit of, for example, the horizontal time-axis in distance trav-
elled graphs. On the basis of this transparency, students have to understand tangents,
average and instantaneous velocity, and difference quotients. Thus, the problem
might be that students cannot see the mathematical and physical relationships in the
graphs because these relationships are more sophisticated than their current under-
standing. 
When we take into account both the traditional role of graphs in the teaching of cal-
culus and kinematics, and the dialectic relation between knowledge and perception,
we could claim that students hardly exploit the specific characteristics that are put
into the graphs. With respect to this, Roth & Bowden (2001) pointed at the know-
ledge students should have of the situation and the pattern or regularity that is rep-
resented:

(…) competent readings are related to understanding of both the phenomena
signified and the structure of the signifying domain, familiarity with the con-
ventions relating the two domains, and familiarity with translating between
the two domains. Graphs are not significant (signifying!) signs on their own.
(Roth & Bowden, 2001, p. 189) 

Students will probably use regularities in the situation that fit their thinking for inter-
preting graphs. In calculus, the structure of the signifying domain concerns a meas-
ure for the slope of a graph to quantify change. Velocity, as a compound quantity, is
used for teaching a way to measure the slope of a graph. The result of this seems to
be that students should have a thorough understanding of velocity for interpreting
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graphs and for developing the notion of a measure for the slope of graphs.
Continuous velocity-time and distance-time graphs are models of motion, which are
probably not as transparent to students as we would like to think, because they have
not yet organised motion sufficiently. For correct interpretations of these graphs,
students should bear in mind that time and distance are primitive quantities, and that
pieces of a graph can be associated to horizontal and vertical intervals which refer to
increases of corresponding quantities. Moreover, areas and slopes in the graphs can
be calculated with the lengths of these intervals, and these calculations can have a
meaning in the context of motion. Without this understanding, velocity and distance-
travelled graphs are not self-evident in supporting the concept-development of
slope, the difference quotient, and of instantaneous change.
A teacher may spell out the relations between the graphs and the calculations, and
students may be able to check and copy them. However, in such cases their under-
standing is not built upon their day-to-day reasoning about motion and might remain
restricted to classroom solution procedures.

Signifiers and the signifying domain 

Lemke (in press) gave an example of the complexity of graphing conventions in sci-
entific publications. He claimed that such pictures are not iconic representations but
refer to related verbal language and mathematical concepts. One of the pictures he
discussed illustrates the change of temperature through a fluid (fig. 3.2). 

figure 3.2 Change of temperature through fluid 
(from Berge et al., 1984, referred to by Lemke, in press)

The graph on the right shows a relation between position and temperature as if it
were a shape in space. However, this signifier brings a continuous variation in all
sorts of phenomena to the mind of the scientifically educated readers of this publi-
cation. Continuous variation is directly translated into verbal language like “the tem-
perature rises linearly”, or “temperature is proportional to the depth in the fluid”.
With this example Lemke pointed to the dependency between understanding, visual
representations and related verbal language.
The author Robert M. Pirsig discusses the relation between recognising structures
and understanding a manual in his novel ‘Zen and the art of motor cycle mainte-
51



Chapter 3
nance’ (1974). He describes this relation in the context of motorcycle maintenance.
For understanding the manual of a motorcycle, it is necessary to understand the
structure of the signifying domain and to recognise the type of razor used by the
author of the manual to take the motorcycle to bits. He illustrates how beginners do
not recognise either the razor nor the underlying systematics. They cannot connect
it with their knowledge of the machine and, consequently, they have and develop
inert knowledge. This can also be seen with first-time buyers of a computer or a
video recorder who try to understand the manual. An adaptation to knowledge for
beginners can be seen in flora determining cards for children, which use completely
different systematics than a professional flora determination book.
These examples show why descriptions of the structure of a new domain might be a
problematic starting point for learning. We therefore need another approach for
developing these notions from students’ knowledge. 
Cobb et al. (1992) concluded that − in the representational view − meaning is ana-
lysed in terms of fixed mappings between arbitrary symbols and objects or events in
the real world. This view results in using these mappings instead of using students’
purposeful and socially situated mathematical activities as sources of meaning.
Consequently, the representational view constitutes a duality between external and
internal representations by trying to project expert mathematical interpretations into
the students’ environment as mind-independent external representations. In the pre-
vious section we noted a dialectic relation between knowledge and perception, thus
this duality cannot be maintained.

In other words, the assumption that students will inevitably construct the cor-
rect internal representation from the materials presented implies that their
learning is triggered by the mathematical relationships they are to construct
before they have constructed them. (Cobb, Yackel & Wood, 1992, p. 5) 

Moreover, the mappings with external representations will presumably not bridge
the gap, because they are perceived and interpreted differently by students. How can
you see something in an external representation that does not (yet) belong to your
knowledge repertoire?

The learning paradox 

The consequence of the relation between knowledge and perception is that students
must understand specific aspects of motion before they can see how these are dis-
played in graphs. They need to have identified and structured the signified domain
before they can understand and use the signifier. Instead, we use graphs to isolate
time and displacement, and to explicate the relation between these variables. Can we
use graphs when students do not have sufficient understanding of the referring
domain or of the purpose of displaying specific variables? More generally, can con-
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texts, didactical models, or tools have a function in education when students do not
see what they are supposed to discover? This problem is referred to as a learning
paradox (Bereiter, 1985).
It can be argued that it is the teacher’s responsibility to guide the learning process in
such a way that students come to understand these relationships. But the gap
between the students’ understanding of the representations and the related concepts
might not leave the teacher many options other than to spell out the correspondence
between the graphs and the underlying physical and mathematical concepts. This
results in presenting the rules of the algorithm (Cobb et al., 1992) or in patterns in
the teacher-student interaction that disguise real understanding (van den Boer,
2003). The educational questions remain: What is the relation between knowledge
and symbol development? How is knowledge development possible at all? Theories
on symbolising should give us some clues on symbol development and the relation
with construction of meaning.

3.3 Symbolising
In this section we discuss developments in the area of semiotics and symbolising.
The semiotic perspective should help us to understand how the construction of
meaning can be related to solving problem situations. The symbolising we are inter-
ested in concerns the development of representations from a mathematical or phys-
ical perspective, an activity with a tentative and heuristic character. We should real-
ise that symbolising in general is a much more encompassing notion. Almost all our
actions have a symbolising character.
Current ideas about the relation between a symbol, an object and a user are similar
to recent understanding of perception and interpretation as described in section 3.1.
In the past, it was thought that a symbol had a static meaning, independent of the user
or a specific activity. As a consequence, one could spell out its meaning to students.
Nowadays, a more dynamic meaning is assigned to symbols. The meaning of a sym-
bol is evolutionary in a dialectic relation with the knowledge of the user and depend-
ent on a context and the activity (van Oers, 1998). Symbols derive a meaning when
someone thinks about them and works with them in a specific activity. Conse-
quently, the construction of meaning is a dynamic and constructive process.
One of the pioneers in this field is C.S. Peirce (described in Edwards, 1972). Peirce
argued that a symbol is not a static relation between an inscription, sound, or utter-
ance and what it signifies. He claims that ‘someone takes x to be a symbol of y’ rather
than ‘x is a symbol of y.’ A symbol x standing for y for a person P in a context C
implies that when P becomes aware of x in context C, it calls y to mind. What is
required for the interpretation of a symbol is regular practice in using the ‘symbol’
in a certain way.
A symbol has meaning by convention and possibly by character. Similarity between
the symbol and the signified (a possible iconic character of symbols) plays a role in
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connection with the intentions of the producer and the consumer of the symbol.
Moreover, symbols (as concepts) develop in a dialectic growth process. Symbols
organise reality, and as such, they change and shape the perceived reality.
Roth (2002) analysed such an organising process when observing students who were
investigating a balance beam. Piaget investigated the same situation and concluded
that students reasoned in an increasingly sophisticated way with weight and dis-
tance. However, Roth found that the students’ identification of these variables took
some time. Initially, the students focused on the position of the weights along the
beam, followed by paying attention to change of location, size of the change, and
finally to relative distance.

Only when the relative distance was indexed to the fulcrum did these students
perceptually attend to distance as conceived in the developmental literature.
That is, the children did not perceive and act in a world as Piaget and others
understood; rather, the perception of this world in these terms was the out-
come of interactions of a behavioural environment perceived in very different
ways. (Roth, 2002, p. 31) 

Apparently, these interactions resulted in a progressive growth process from what
appeared to be the case on the balance beam and what the students subsequently
learnt.
Roth & McGinn (1998) presented another illustration of such a growth process in
teaching. They studied 8th grade students doing an eco-zone inquiry near their
school grounds. The students’ activities started with digging in soil and finding dif-
ferent properties at different depths. Next, influenced by the teacher’s remarks and
the resource materials, they measured the depths of soil layers and calculated the rel-
ative composition of the samples for comparing their data with others. They col-
lected these numbers in drawings, and then represented the properties in graphical
drawings as dots on charts. Not the eco-zone, but their practices, the changing per-
spectives and the discussions became the context for the graphing. Numbers, draw-
ings and charts were objects of discussions, served their reasoning, and influenced
the way they proceeded. Consequently, in this dialectic growth process of symbol-
ising practices, structuring the eco-zone became part of their activities.
The final example in this section concerns the modelling of a rolling ball, and also
illustrates the relation between reasoning and external representations. Roth &
Tobin (1997) describe how scientists construct inscriptions − e.g. drawings, graphs,
tables − through series of other inscriptions. They used this notion for analysing
translations between inscriptions in a physics lecture. Representations like numbers,
tables, and graphs came to represent a rolling ball in one physics lesson. The trans-
lations between different representations that built on each other in the students’
activities formed cascades of inscriptions. The analysis of the learning process from
this perspective appeared to be a useful tool in understanding how the phenomena
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became represented in a variety of mathematical forms. It appeared that some of the
students’ problems were related to implicit assumptions or conventions in the trans-
lations which the teacher made from one inscription to another (e.g. from numbers
in tables to graphs without asking what should be placed along the axes).
We conclude that the invention and use of inscriptions by students cannot be sepa-
rated from their understanding of the signifying domain − the context − and the prac-
tices in which they are produced. The terms ‘context’ and ‘practice’ are in this inter-
pretation closely related to the way they are used in activity (van Oers, 1998). As a
result of these relationships, students need to appropriate the use of inscriptions by
participating in symbolising practices (Gravemeijer, 2002a).
In the next section we discuss the consequences of these ideas on symbolising, per-
ception and knowledge development for the discovery and invention-oriented
approaches in chapter 2. This discussion should guide us to an alternative approach
for the teaching and learning of calculus and kinematics.

3.4 Reflection on discovery and invention-oriented approaches
This section starts with a reflection on discovery approaches (see section 2.2.1) from
a symbolising perspective. We consider that a central aspect in these approaches is
that the symbols − continuous velocity-time and distance-time graphs − are a starting
point. Secondly, we focus on the invention approaches, and consider that, from a
symbolising perspective, a growth process in symbolising and concept development
can be recognised in these approaches. The question that arises from this discussion
is how to guide such a process of teaching and learning in order to reach the intended
goals.
Nemirovsky et al. (1995) investigated a discovery-oriented approach and focused on
the development of language, gestures and the students’ interpretations of graphs.
They created an educational environment with moving vehicles and a direct link
between the real motion and graphing software. During the activities, Nemirovsky
et al. observed a fusion between students’ reasoning about the shape of the graphical
symbols in the graphing software and their reasoning about the corresponding
motion:

Merging qualities of the symbols with qualities of the signified events or sit-
uations, that is talking, gesturing, and envisioning in ways that do not distin-
guish between symbols and referents. (Nemirovsky et al., 1995, p. 38) 

Nemirovsky & Monk (2000) took fusion as a useful process for construction of
meaning by students. This is an associative process of talking, acting, and gesturing.
The associations are determined by the learning situation and the students’ prior
knowledge. During the activities the students’ associated specific graphical charac-
teristics with specific characteristics of motion (e.g. pointing at a rising graph: ‘here
velocity rises’).
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In discovery-oriented approaches, the starting points are the activities with presented
graphs. This seems to be an alternative for teaching a symbol system. The focus is
on designing activities where symbol use results in understanding (e.g. Nemirovsky,
1994). However, in the approaches of Nemirovsky and Kaput (section 2.2.1), stu-
dents primarily learn the language of graphs. What remains is the teaching of this
language without attention for a conceptual development of underlying notions like
velocity and instantaneous change.
The notion of fusion does not describe a growth process of concepts and symbols.
In contrast with associations between observable events − from the students’ per-
spective − construction of meaning can also be built from mathematical and physical
aspects of modelling motion. From a symbolising perspective, we may conclude that
establishing associations between graphical characteristics and an algorithm does
not necessarily mean: understanding this relation in a mathematical and physical
sense. In addition, we could not find a description of how the students’ hypothetical
ideas of the relations would build upon their kinematical and mathematical notions
of graphs and the signifying domain including velocity. The discovery approaches
remain a risk that students will construct associations through a process of trial and
error, without being able to use or deduce a reasoning for these associations.
Consequently, from a semiotic perspective, it is not clear how discovery approaches
can overcome the conceptual problems as sketched in the previous sections. The
graphical symbols presented do not guarantee a reference to concepts that students
know, but refer to concepts that we assume students will construct. 
Instead of learning to work with presented symbols we advocate a growth process in
symbolising activities. Such a growth process can be recognised in Boyd & Rubin’s
invention-approach (see section 2.2.2), although their example does not show how
this process can be realised in a classroom context. However, it gives some clues for
the way to design such a growth process supported by a series of inscriptions that
might parallel concept development. 
An illuminating example of such a growth process, we refer to the work of Meira
(1995). He studied students while they constructed and used (graphical) inscriptions
without a guiding teacher. His study showed how students’ inscriptions organised
their activity and sense-making in situations involving mechanisms that produced
linear relationships. Moreover, students appeared to conjecture ideas that were based
on the inscriptions they created. According to this dynamic point of view, it is in the
process of symbolising that inscriptions were drawn and developed their meaning.
In this process, notational systems shaped the very activities from which they
emerged while, at the same time, the activities shaped the meanings that emerged.
Meira (1995) proposed an activity-oriented view with a dialectic relation between
notations-in-use and mathematical sense-making. Such an approach is recently
advocated by many educational researchers (Gravemeijer, Lehrer, Van Oers & Ver-
schaffel, 2002).
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We argue that, if it were possible to get the students to invent distance-time and
velocity-time graphs by themselves in a process of organising motion (and problem-
atising velocity), the dichotomy between formal mathematics and authentic experi-
ence would not arise, since the mathematical ways of symbolising would emerge in
a natural way in the students’ activities. The acquired knowledge would be experi-
enced as an extension of their own authentic experience. Such a process could start
by picturing motion with trace graphs as in the study by Boyd & Rubin (1996). The
pictured displacements between the successive positions could gradually acquire a
more graphical than contextual meaning. This could be reflected by the fact that dis-
crete graphs of displacements would start to signify constant or changing velocity
(as a property) and the relation with the total distance travelled. The discrete graphs
together with the notions signified constitute an initial structuring of motion.
Average displacement − calculated as the sum of the lengths divided by the number
of displacements − and instantaneous change can be problematised in order to
develop the notion of velocity as a compound quantity, together with advanced
graphing. It is this emergence of meaning and symbolisations on the basis of mod-
elling motion, which constitutes a dialectic growth process: both developing veloc-
ity as a quantity related to displacements and time intervals, and graphing practices
from trace graphs to two-dimensional graphs of motion.
The challenge is to arrange classroom practices in which the tentative inscriptions
and ideas of the students involve the intended characteristics of the signified target
situation (in our case motion), and are the subject of discussion. Inscriptions and
ideas which develop in these practices from the relevant prior knowledge into the
notions aimed at.
In such learning processes, students do not have to subtract from what they already
believe, but will mainly have to build on, and extend, their reality from a mathemat-
ical and physical perspective. According to this view, learning is a process that
involves changes of intention and meaning, and developing an experiential base,
with the aim of organising and explaining natural phenomena (Klaassen & Lijnse,
1996).

Concluding remarks

We are now in a position of having a better understanding of how to resolve the
learning paradox. Knowing, symbolising and perceiving are tightly related. We can
deduce that the variable velocity as a compound quantity (distance travelled divided
by travelling time) was invented to organise motion. This notion of velocity frames
the perception of motion and of motion graphs.
In their education, it is possible that students do not feel the need to mentally con-
struct this variable to organise their experiences on motion, because they already
have a vague and undifferentiated notion of velocity that seems to be sufficient. As
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a consequence, the teaching focuses on presenting the rules for calculations with the
formula v = s/t and relating it to calculating average velocities. The students’ vague
notion of velocity remains separated from these calculations and the graphical rela-
tions.
Thinking in terms of sequences of inscriptions seems to be helpful for planning a
learning trajectory that fosters a growth process in learning. This is an alternative for
presenting continuous graphs and spelling out the relation between velocity, dis-
tance travelled and the mathematics of change. If it were possible to bring students
into a position where they understand the need for extending their knowledge, and
are able to construct the intended notions, then the dichotomy between their street
and school understanding and use of these ideas could be avoided. One question that
remains is how do we know that students understand and use the graphical represen-
tations as intended? A planned or partly planned sequence should be the subject of
a hypothetical teaching and learning trajectory that could be analysed in classroom
situations. This analysis should focus on the way in which students’ inventions run
parallel to, or anticipate, the series of inscriptions, and whether their accompanying
reasoning makes good sense. Design research has shown to be a research methodol-
ogy which can be used for such analyses (see chapter 4).
We are aiming at a process of teaching and learning in which the evolution of stu-
dent-generated inscriptions and of students’ reasoning is part of a process of progres-
sive mathematisation and physicalisation of motion phenomena. The notion of
guided reinvention seems to offer opportunities for creating such a process. It aims
at a process of teaching and learning that can be characterised as invention, guided
by both the teacher and instructional materials. 

3.5 Towards a solution: guided reinvention
An alternative approach should aim at a process in which the mathematics remains
connected with students’ physical and experienced properties of motion, like the
relation between velocity and distance travelled, and that emerges from the students’
modelling activities. Such a process is also the objective of Realistic Mathematics
Education (RME), an approach which has its origins in the 1970s, in the work of Hans
Freudenthal (Freudenthal, 1973, 1991). According to this approach, instructional
design aims at creating optimal opportunities for the emergence of formal mathe-
matical knowledge. The learning of mathematics is characterised by organising phe-
nomena from a mathematical perspective through progressive mathematisation.
Organising phenomena seems precisely what Cunningham (1992) pointed to when
he described how we build structures through our experiences. The students’ under-
standing of mathematics should stay connected with, or as Freudenthal would say,
should be rooted in their understanding of the phenomena that are being organised.
As a prerequisite, students should experience these phenomena as meaningful and
relevant, in other words: as experientially real.
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Students will not spontaneously be active or produce productive results from a math-
ematical perspective. A teacher and instructional materials are essential for creating
a process of teaching and learning in which students experience a balanced mix of
freedom and guidance. The guidance consists of handing out activities (for which
there are, as yet, no standard procedures) and motivating students to construct their
own solution procedures. These procedures are compared in teacher-guided class-
room discussions, and the teacher evokes reflection and instigates the students to
contribute arguments concerning elegance, adequacy, and sophistication. The activ-
ities and discussions are delineated in a trajectory, which leads to a – hypothetical –
guided reinvention learning process.
The main idea of guided reinvention is to allow learners to come to regard the knowl-
edge they acquire as their own private knowledge, knowledge for which they them-
selves are responsible. As a result, the gap between a street image and school image
of science and mathematics should not arise. Various design heuristics have been
developed for stimulating productive inventions and realising guidance, among
them didactical phenomenology, emergent modelling, and problem posing.
Mathematical phenomenology refers to how mathematical ideas structure and
organise phenomena. A didactical phenomenology refers to looking for situations
that create the need to be organised by the students. Such an analysis investigates
how the concepts we want to teach help organise these situations, and how they can
be problematised for the students. These phenomena (‘that beg to be organised’) are
the starting point for education, rather than the targeted symbol system. In this
research project, we took motion as the phenomenon for developing both calculus
and kinematics. History and prior research point at the opportunities offered by
motion. In chapter 5 we elaborate this choice and focus on specific motion phenom-
ena that seem to foster the reasoning we target in the students.
The emergent modelling heuristic concerns guiding the students with didactical
models which connect to their tentative reasoning and which have the possibility of
emerging into the targeted models. This heuristic seems helpfull for supporting stu-
dents in a growth process with a series of graphical inscriptions. The problem posing
heuristic aims at guidance that focuses on ways to provide students with content-
related motives for proceeding in an intended direction. These motives should frame
the students’ intentions for structuring motion. In the following sections we will dis-
cuss these two heuristics in more detail, together with the possibilities of computer
tools.
Neither guided reinvention nor the design heuristics are new, nor are they a direct
consequence of the semiotic topics discussed in this chapter. However, they seem to
gain in interest as a result of these semiotic insights and their relation to education.
The heuristics of emergent modelling and of problem posing try to offer students
guidance that fits with an evolutionary and dialectic relation between framing inten-
tion, construction of meaning, and the development of inscriptions.
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3.5.1 Emergent modelling
Research on the design of primary-school RME sequences has shown that the concept
of emergent models can function as a powerful design heuristic (Gravemeijer, 1994,
2004a). Here, the point of departure is in situation-specific solution methods, which
are subsequently modelled. First, context problems are selected that offer the stu-
dents the opportunity to develop situation-specific methods and symbolisations.
Then, if they do this, these methods and symbols are modelled from a mathematical
perspective. In this sense, the models emerge from the students’ activity.
The model first comes to the fore as a model of the students’ situation-specific strat-
egies. While working within more situations and discussing strategies in the class-
room, the model gradually becomes an entity in its own right and starts to serve as a
model for mathematical reasoning to foster higher level ideas. This shift from
‘model of’ to ‘model for’ changes the students’ reasoning, and results in the con-
struction of a new (mathematical) reality (Streefland, 1985). In reverse, constructing
this reality made it possible for the model to change in character.
The labels ‘emergent’ and ‘modelling’ in this context may need some clarification.
The continuous progression in this modelling process is emphasised by the label
emergent. It refers to the fact that the model emerges from the students’ activity,
together with the mathematical reasoning targeted. Consequently, emergent refers
both to the character of the process by which the models emerge and to the process
in which these models support the emergence of mathematical knowledge.
The label modelling refers to an activity of trying to organise and structure a problem
situation or a phenomenon. Traditionally, mathematical modelling is seen as trans-
lating a situation into available mathematics, reasoning about it mathematically, and
translating the results back into the original situation. In education, this view on
modelling requires the students to be able to mathematise a situation, have the appro-
priate mathematical tools at their disposal, and to be able to step back and judge the
adequacy of the model they use. The modelling we refer to precedes this kind of
modelling and serves mathematical development (Gravemeijer, 2004b). The
inscriptions that students develop in a problem situation where they do not have
standard procedures at hand may have a tentative and temporary character. The
model that is referred to in this emergent modelling heuristic is shaped by their activ-
ities and discussions into a series of consecutive inscriptions and ideas. From a more
global perspective, these inscriptions can be seen as various manifestations of the
same model. So when we speak of a shift in the role of the model from ‘model of’
to ‘model for’, we refer to this global perspective.
While identifying relevant characteristics in a situation and describing patterns,
structures or relations, we leave out other aspects of the situation. Consequently, the
more mathematical (and general) these descriptions are, the less we will recognise
of the original situation. This holds the danger that mathematical notations and
manipulations are going to be seen as an artificial game with no connection to day-
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to-day life. To prevent this from happening, it seems to be necessary to trace the ori-
gins of these notations and concepts regularly.
An important criterion for emergent modelling is in the models’ potential to support
mathematising in line with the students’ thought processes (Gravemeijer, 1994,
p. 188). The idea is to look for models that can be generalised and formalised by the
students to develop into entities of their own, which can become models for mathe-
matical reasoning. During the students’ modelling activities consensus can be
reached, or manifestations of these models can be introduced, at well-chosen
moments to preserve the connection between mathematical notions and the situa-
tions or activities that they describe. Ideally, the students experience this process as
if they invented or could have invented the model by themselves.
Note that there will always be tension between a bottom-up approach that capitalises
on the students’ inventions, the need for teachers to be able to plan instructional
activities in advance, and the need to reach certain educational goals. As a con-
sequence, a top-down element is inevitable in instruction. Our key consideration,
however, is that the students experience these top-down elements as bottom-up, i.e.
as solutions they could have invented for themselves. For the instructional designer,
this implies striving to understand students’ image of inscriptions and to keep the
distance between ‘where they are’ and what is being introduced as small as possible.
In this research project we used an instructional sequence to investigate how this
could be realised for the teaching and learning of the basic principles of calculus and
kinematics.

3.5.2 Problem posing
The problem posing design heuristic was developed and applied in various studies
in physics education (Klaassen, 1995; Kortland, 2001; Vollebregt, 1998). The heu-
ristic addresses the problem of guiding students from a content-related motivational
perspective. It contributes to finding an adequate balance between the freedom
offered to students for their inventions, and the guidance needed to enable them to
construct the targeted concepts in a progressive growth process. If this process is to
make sense to them, students must understand what they are doing and why they
should extend their knowledge in a certain direction. It then becomes more probable
that they are aware of the connections with their conceptual network, will construct
the targeted knowledge, and will perform this based on a foundation that they under-
stand.
The emphasis of a problem posing approach is thus on encouraging students to reach
a position where they come to see the point of extending their existing conceptual
knowledge, experiences and belief system in a certain direction. They should be pro-
vided with content-specific motives, so that they control the direction to proceed.
The main idea of this heuristic is to introduce a problem situation which students
experience as relevant, and which involves more than a few activities.
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This overarching problem situation should offer an orientation for students on a new
issue, and evoke an interest in, and content related motives for, further investigation
of this issue. From there on, students should be led into positions where they feel the
need to extend their knowledge in the intended direction (Klaassen, 1995). The stu-
dents’ activities and classroom discussions should evoke reflections, and – when
these are successful – the students should be able to pose the problems that have to
be solved to proceed in a promising direction with respect to the problem which has
been introduced.

At any time during the process of teaching and learning, pupils should be able
to see the point of what they are doing. A problem posing approach attempts
to arrive at such a situation by providing pupils with content specific general
and local motives for subsequent learning. (Vollebregt, 1998)

As with the emergent modelling heuristic, this heuristic has implications for the
teacher’s role. The teacher should try to arrange the classroom discussions in such a
way that students are challenged to contribute to the direction to proceed.

3.5.3 Computer tools
The use of tools influences the process of students’ mathematical sense-making (see
p. 47). Cobb (1999) illustrated this by describing an interplay between the students’
ways of symbolising and the development of mathematical meaning in terms of
chains of signification. In relation to the integration of a series of computer tools in
teaching materials for statistics, he used the notion of affordances. The tools
afforded the students’ reasoning on statistical problems. This implies that instruc-
tional designers should take into account how students might reason with represen-
tations in such computer tools as they participate in a sequence of mathematical
practices (see also Bakker, 2004).
We expect computer tools to afford reasoning and experimenting in various situa-
tions and to be useful for realising emergent modelling in classroom situations.
Thanks to the visual and dynamic possibilities, students can investigate many situa-
tions and work with model representations more frequently for anchoring recognis-
ability, expressing new ideas and supporting level raising (e.g. Drijvers & Doorman,
1999; Pijls et al., 2003; Ruthven, 1990; van Streun, 2000).
Note that the danger of the problems discussed with the discovery approaches – stu-
dents have to guess the meaning of the representations presented to them – is also
present here. At any time in the teaching and learning trajectory, we should be able
to argue that the representations will fit students’ thinking, and that they are able to
trace meanings, possibly through a series of inscriptions that has been built during
the sequence and that bears the history of concepts and representations. The
affordances of the tools are not just tool characteristics that are objective features for
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every user. These features only become an affordance for students in problem situa-
tions. The use of this affordance is achieved by the student as a result of their pre-
ceding learning process.
In addition, research into the use of hand-held calculators and computer tools also
points at the importance of the teacher’s role for the appropriate use of previously
designed tools for education, and as a consequence, for the students’ learning. Math-
ematical ideas and ways of tool use are closely related, and their development is
intertwined. Such a process of tool appropriation, learning, and reflection on tool use
has both an individual and a collective aspect, and needs guidance by the teacher
(e.g. Artigue, 2002; Doerr & Zangor, 2000; Drijvers, 2003; Hoek & Seegers, in
press).

3.6 Research questions
The goal of this research project is to find out how students can learn the basic prin-
ciples of calculus and kinematics. The idea is that the students’ problems with these
topics arise in a use of graphical representations without problematisation of the con-
cepts that the representations refer to.
An alternative approach of guided reinvention tries to realise a learning process
within which graphical representations and concepts develop together in a dialectic
growth process. The design heuristics of emerging modelling and problem posing
can be used for designing such a reinvention process. In this project we investigated
how these ideas can be implemented, how computer tools can support the students,
and how they can learn calculus and kinematics in an integrated course in upper sec-
ondary education. The questions that arose were: how can students invent and use
graphs, and how can we provide them with tools − possibly in computer-environ-
ments − that are both meaningful and that foster advanced reasoning? Thus, the main
question of this project was:

How, and to what extent, can the teaching and learning of the principles of cal-
culus and kinematics be integrated in a guided reinvention course on model-
ling motion using computer tools?

The a priori paradigm of this research project was posed in chapter 1 and describes
learning processes aimed at. Characteristics of these processes are that students
experience learning as extending their day-to-day reasoning and that they regard the
knowledge they acquire as their own knowledge. These processes are supported by
problems which are experientially real for the students and evoke productive solu-
tion strategies. The analyses of conceptual problems in calculus and kinematics and
the discussion of symbolising point to such an approach for these topics. We there-
fore need to design a learning trajectory that brings students to invent the principles
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of calculus and kinematics, and to experience these inventions as rooted in their day-
to-day reasoning.
To design such a reinvention course, building on theories on symbolising and tool
use, our choices are the design heuristics related to (i) emergent modelling and (ii)
problem posing, and the use of (iii) computer tools that afford students ways of rea-
soning. We try to understand how our paradigm and these choices can be used, to
design and analyse a learning process in which students contribute to the constitution
of mathematical symbols and understand what they refer to. Moreover, we hope to
gain insight into how computer tools can be used for the emergence of symbolisa-
tions of motion and change. Finally, we aim at a better understanding of the relation
with theories on symbolising and perception.
Consequently, the main question of this research project was split into two research
questions. The first research question concerned the aims of the designed process for
teaching and learning, and whether we succeeded in preventing the conceptual prob-
lems described in chapter 2. The second question concerned the choices underlying
the design of our process:

1 How can students develop the basic principles of calculus and kinematics in a
process of teaching and learning that can be characterised as guided reinven-
tion?

2 To what extent does the course of this process empirically support the adequacy
and the understanding of our choices: the role of computer tools and of the de-
sign heuristics related to emergent modelling and problem posing? 

Together with an instructional sequence, we described why we think our design
works, how it works, and which observational criteria support these assumptions and
our research questions. A global description of these criteria is presented in table 3.1.
The first question in the table is related to the first question above. The next three
questions are related to the second question and distinguish between emergent mod-
elling (2 EM), problem posing (2 PP) and the use of computer tools (2 IT).
In chapter 5 the design of the teaching and learning materials is described, together
with an explication of the relation between the observational criteria and the research
questions. In the following chapter 4 we describe the research methodology of
design research. 
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table 3.1 Operationalisation of subquestions 

Questions Observational criteria

1: Do students perceive the problem
situations as intended, contribute to
the guided reinvention process, and
reach the intended goals?

The initial (intuitive) reasoning of the students
touches the intended concepts and pinpoints the
significant elements in the situation as intended.
Their inscriptions and reasoning are shared and
form the basic input for classroom discussions and
can be used for the way to proceed.
Finally, the students master the intended principles
of calculus and kinematics.

2 EM: Does the previously planned
sequence of graphical tools fit stu-
dents’ thinking and foster advanced
reasoning by a shift from model-of to
model-for?

The way they reason with the tools changes from
context-oriented to concept-oriented. This change
provides the imagery for the following steps in the
learning process.

2 PP: Are students aware of a global
problem that is being solved, and do
the local problem situations provide
the students with content-specific
motives to proceed in the intended
direction?

The students show understanding of the relation
between their activities and a global problem. The
questions they pose fit the direction to proceed.
Students participate in classroom discussions, and
the teacher has opportunities to share remarks and
pose questions, and use their contributions for
evoking the need to proceed in the intended direc-
tion.

2 IT: Do the representations in the
computer tools fit prior reasoning
and how do they afford advanced
reasoning and sense-making?

Students initially use and give meaning to the tool
with reference to prior activities. During the work,
their thinking and reasoning changes to using and
discussing the intended mathematical and physical
relations. In discussions afterwards, students refer
to the (dynamic) representations of the computer
tool as signifying a mathematical or physical con-
cept.
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4 Methodology 

This chapter describes the research methodology for answering the research ques-
tions (section 3.6). The relation between the character of the questions and the meth-
odology is discussed in section 4.1. The questions suggest using a design research
method. Section 4.2 describes the design research for our project and its three
phases: the preliminary instructional design phase, the teaching experiments, and the
data analysis phase. These phases are addressed in sections 4.3 - 4.5, respectively. 

4.1 Consequences of the research questions
The aim of this research project was to investigate (i) the process of students’ learn-
ing in the domain of calculus and kinematics, and (ii) the means of supporting and
organising that learning process.
We started with analysing literature on problems in the teaching and understanding
of the principles of calculus and kinematics (see chapter 2). The main conclusions
concern the interplay between using and interpreting graphical inscriptions on the
one hand, and organising phenomena on the other. This interplay between graphs
and the signified situations became the starting point for our need to gain more
insight into the development and use of inscriptions as an aid to learning. In chapter
3 the analysed literature on this topic is discussed. We reasoned that didactical prob-
lems in the teaching of calculus and kinematics might have their origin in overesti-
mating the power of graphical symbols, and insufficient attention being paid to stu-
dents’ symbolising activities. We proposed an alternative approach to the teaching
and learning of calculus and kinematics. This approach is based on the claim that
graphical symbolisations and understanding of motion can co-evolve in a planned
process of teaching and learning, a process that is characterised as guided reinven-
tion (see section 3.5). At the end of chapter 3 we formulated the research questions
for our project.
The key issues in our approach are the role of computer tools and the design heuris-
tics related to emergent modelling and problem posing. We wanted to investigate
students’ reasoning with respect to our envisioned process of teaching and learning
based upon these issues. Our interest was in the students’ contributions, the way they
reasoned, and the development of symbolisations and shared understanding in the
classroom.
To be able to answer the research questions, we had to create an educational setting
with which we could investigate to what extent and how this dialectic process of
symbolising could be fostered. We designed an instructional sequence for creating
this educational setting, and serving the how-part of the research question. Conse-
quently, the aim is primarily the understanding of the learning processes in connec-
tion with this instructional sequence.
A research approach that consists of planning and creating innovative educational
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settings, and analysing teaching and learning processes, is precisely what the meth-
odology of design research targets. This methodology has proved itself suitable for
developing empirically grounded, local instruction theories in the areas of science
and mathematics education (Gravemeijer, 1994; Klaassen, 1995; Lijnse, 1995;
Streefland, 1991).

4.2 Design research
In general, a design research approach aims at generating empirically grounded the-
ories. The main result is not a design that works, but the reasons how, why and to
what extent it works. Firstly, an initial instructional design is developed, and ed-
ucational settings are created for investigating and generating theoretical conjec-
tures. Secondly, depending on the questions to be considered, the analysis of the
teaching experiments focuses on various elements of the design, such as the students
reasoning with the tools provided, the classroom discussions, the kind of collab-
orative work, or the development of specific classroom norms (Cobb et al., 2003;
Edelson, 2002; Gravemeijer, 1994; Gravemeijer, 2004a). 
The initial instructional design for the teaching experiment aims at a conjectured
learning process and is based on prior research and theory. However, during the de-
sign research, initial conjectures may be refuted or adapted, and new conjectures can
be generated and tested. Design research in this sense has both a hypothetical and a
reflective side (Cobb et al., 2003), which leads to a delicate and iterative process of
testing, reflection, and redesign. The testing takes place in teaching experiments, and
the reflection is − in most cases − based upon qualitative data analyses. We describe
the three phases preliminary design, teaching experiments and retrospective analy-
sis for this project in more detail in the following sections.
The literature analysed resulted in initial conjectures for the learning of calculus and
kinematics and the means to support this learning. These means of support consist
of a sequence of activities for the students, computer tools, and instructions for the
teacher. We refer to these means with an instructional sequence. In addition to this
instructional sequence we formulated testable conjectures and observation criteria.
These conjectures, which concerned the major shifts in students’ reasoning in rela-
tion to the means of supporting and organising those shifts, were shaped by prior re-
search. They were tested and the results are used to empirically support or adapt the
emerging teaching theory. Such a theory describes the envisioned learning route,
successive patterns in the teaching and learning processes, and the means to support
these patterns, and is called a local instruction theory (Cobb et al., 2003; Graveme-
ijer, 1994; Gravemeijer, et al. 2003). The adjective ‘local’ refers to the topic, in our
case calculus and kinematics. The patterns consist of descriptions of major shifts in
students’ reasoning, specific kinds of activities or contexts, the sequence in these ac-
tivities, the role of didactical models, and the teacher’s role.
Apart from the contributions to a local instruction theory, we analysed our choices
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regarding emergent modelling, problem posing, and the role of computer tools.
These design heuristics are on the level of a domain-specific instruction theory for
the learning of physics and mathematics. 
The initial instructional sequence is a first elaboration of our conjectured local in-
struction theory. The description of this sequence includes student activities, teach-
ing guidelines, together with hypothetical scenarios of the lessons and a justification
of the choices made. Such a sequence has much in common with a hypothetical
learning trajectory (Simon, 1995). Simon developed the idea of designing, planning
and evaluating cycles of one or two lessons by a teacher in his or her specific class-
room. Our instructional sequence describes a series of lessons, and aims at testing a
conjectured local instruction theory for the teaching and learning of calculus and
kinematics (fig. 4.1). 

figure 4.1 The constitution of the instructional sequence

The experiments with the instructional sequence would provide empirically based
arguments that justify or refute the constituting elements of our conjectured local
instruction theory. Moreover, patterns in the experiments might lead to hypotheses
concerning emergent modelling, problem posing and the role of computer tools.
These hypotheses could be tested retrospectively with the data available. This cyclic
connection between conjectures that accompany an instructional sequence, teaching
experiments, and emerging hypotheses concerning over-arching themes is also
referred to as generalisability of the emerging theory in design research (Gravemei-
jer & Cobb, 2001; Gravemeijer, 1995). As an aside, note that even theories on sym-
bolising can influence domain-specific instruction theories through conjectured
local instruction theories.
Similar use of instructional designs can be found in other research projects within
our research programme: on the use of computer algebra for grade 9-10 students

instructional sequence (activities, IT tools, teacher guide &
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(Drijvers, 2003), and on symbolizing and the learning of statistics with computer
tools for grade 7-8 students (Bakker, 2004).
Such a detailed description for a sequence of teaching and learning in design
research is in line with the scenario concept as elaborated in physics design research
for the teaching and learning of radioactivity (Klaassen, 1995), and for the teaching
and learning of the particle model in physics (Vollebregt, 1998). However, in their
scenario a heavy emphasis was put on describing the teacher’s role in performing the
experiment. Our description primarily focused on describing and justifying the shifts
in the students’ reasoning with respect to the instructional activities and computer
tools provided. The performance of the sequence was left to the teacher’s skill,
although the teachers were all informed about the intended classroom culture and
learning processes.
In the next sections we describe our three research phases: the design of the instruc-
tional sequence, the teaching experiments, and the data analyses.

4.3 The design of the instructional sequence
The instructional design phase included the development of teaching activities and
of a conjectured local instruction theory. This was preceded by an analysis of con-
ceptual and didactical problems in the teaching and learning of calculus and kine-
matics. The analysis has been described in chapters 2 and 3 and resulted in prelim-
inary ideas about solutions to these problems, and more specifically about the role
of graphs in a series of inscriptions while modelling motion.
Next, we delineated our main ideas on the teaching and learning of calculus and kin-
ematics. The ideas were inspired by the integrated history of these topics. Other im-
portant aspects were didactical issues, such as the possibilities for mathematising
and physicalising meaningful phenomena into the intended learning goals. Such a
didactical phenomenology led to our choice of modelling motion and predicting
change as central themes for our sequence (see chapter 5).
Parallel to the delineation of disciplinary ideas, we clarified the starting points for
the instructional sequence. As starting points we used an a priori theory of guided
reinvention, and the design heuristics of emergent modelling and problem posing. In
addition, we determined what grade was suitable for our experiments, and set up a
pilot study to investigate the possibilities within an educational setting.
The analysis, delineation and clarification laid the foundation for our instructional
sequence and the conjectured local instruction theory. The theory had several levels
of description. It described the major shifts in students’ reasoning in connection with
activities, tools provided, and scenarios of the intended lessons. The combination of
the instructional sequence and this theory led to testable conjectures and observation
criteria about the learning processes and the means of supporting these processes.
When the sequence was performed in a teaching experiment, we had to look for ev-
idence that could be used for examining the conjectures. Moreover, patterns or
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trends in the data led to hypotheses on the research questions and our choices con-
cerning emergent modelling and problem posing. The data was analysed systemati-
cally for such patterns to verify our hypotheses. Here we come across a characteristic
of design research: qualitative data are collected for verifying previously formulated
conjectures, and for investigating new hypotheses that emerge during the teaching
experiments or in the conjecture-verification process. In section 4.5 we address this
aspect of design research.
Figure 4.2 describes the role of the instructional sequence in teaching experiments
that aimed at a local instruction theory. 

figure 4.2 The instructional sequence in design research

Our reflection after the first teaching experiment led to adapting the conjectures and
the teaching sequence, which became the starting point for a second experiment.
This cyclic process aimed both at empirically grounded answers to hypotheses con-
cerning the research questions, and at a conjectured local instruction theory.
Ideally, the instructional sequence should converge into a sequence that works best
within the constraints of the educational setting, and that illustrates the local instruc-
tion theory. The sequence should therefore be tried out and analysed in various sit-
uations, as well as be discussed with other parties who play a role in educational
innovation, such as teacher training institutes and educational publishers. However,
we were not able to go through all these phases for this project.
As an example of how the instructional sequence was documented, the documenta-
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tion of the first lesson is printed on page 73. This part does not include the students’
activities. The complete teaching sequence, together with crucial activities, is
described in the next chapter 5.

4.4 Teaching experiments and data collection
The word ‘experiment’ in ‘teaching experiment’ does not refer to a comparison be-
tween an experimental group and a control group, but to an experimental classroom
setting that is created as a result of the innovative teaching materials provided. In the
teaching experiments the instructional sequence is carried out by the teacher and the
students. The overall goal is to understand and improve the initial design on the basis
of students’ reasoning with respect to the created educational setting.
Our research questions concern teaching and learning processes in calculus and kin-
ematics. Our ideas and conjectures about these processes were tested through the in-
structional sequence in classroom situations. This yielded conjectures such as: 

In their initial (intuitive) reasoning about the weather problems, students refer to the
intervals between subsequent positions and relate lengths of these intervals (the suc-
cessive displacements) with the velocity or change in velocity of the object. 

We were interested in the development of students’ conceptions in relation to the
teaching processes. Did students notice possible patterns? Did they see the relation
between these patterns and the need for precise predictions? Did this evoke the need
for two-dimensional graphs? Was the teacher capable of guiding the discussion
without suggesting the intended directions? These questions were answered by the
teaching experiments.
The key issues in our approach were emergent modelling, problem posing and the
role of computer tools. The development of models was reflected by the students’
invention and use of graphical inscriptions, and the language they used in expressing
the underlying concepts. 
With respect to the problem-posing-approach, we needed to get a grip on possible
motives for students to proceed and how the teacher and teaching materials could
evoke these motives. Where we succeeded can be seen in the students’ contributions
to small group and classroom discussions. We hoped that we would find patterns in
the teaching experiments that gave rise to hypotheses concerning emergent model-
ling and problem posing. These hypotheses could then be verified by analysing the
data systematically, or by conducting a revised experiment. 
To try to get a grip on the major shifts in the students’ reasoning, we collected data
that reflected their thinking and the teacher’s role. We made audio tapes of group
work, and video tapes of both class discussions and of students working in pairs with
the computer programs during two computer lessons. We also copied all written
materials during activities and the students’ final test. 
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Goal of lesson 1 
Goal of the first lesson is to evoke the idea that descriptions of change are useful for
making predictions, and that graphs can be useful tools for describing change. Motion
is an example of change that can be studied for investigating to what extent we can
describe and predict. While reasoning with patterns in successive positions of hurri-
canes, students should feel the need for comparing displacements in successive time
intervals. For doing this, some of the students will come up with the idea of displaying
these displacements vertically next to each other. All students should understand this
reasoning and how such graphs can be used to make predictions about the moving
hurricane. In their reasoning the relation between patterns in displacements and the to-
tal distance travelled should emerge. 

Hypothetical scenario for lesson 1 
The teacher starts with a general introduction to this chapter. In a classroom discussion
the two sheets for the weather situation above northern Europe are shown, the first one
at 10:30 a.m., the second at 1:30 p.m. A question is posed about a roller blade event
in the Netherlands that starts at 5:30 p.m. Should it be cancelled because of the ap-
proaching hurricane? This should evoke interest in ways of describing and predicting
change. In the students' contributions, the focus on displacements in time intervals
should be emphasised and should frame their perception in the following activities.The
students should work in small groups. The last activity concerns the trace graph of a
hurricane approaching land. The question is: at what time will it hit the coast? This ac-
tivity is discussed at the end of the lesson. Most of the students will have extrapolated
the last displacement, some will propose using the increasing pattern in the successive
displacements. During this discussion a consensus should be reached on what you can
read from the trace graph and to what extent it can be used for predicting motion. The
question of how to display the pattern in the displacements is posed, bringing the ver-
tical positioning of displacements to the fore. We expect students to come up with this
idea. If that is not the case, the teacher should provide this possibility of graphing (or
better: reformulate the question to direct their thinking towards this idea). The af-
fordances and the constraints of the two-dimensional discrete graphs for predicting mo-
tion should come to the fore in the classroom discussion on the hurricane. We should
note to what extent graphing is used meaningfully by them. This can be seen in their
flexibility in using these graphs in different situations (e.g. a falling ball), and by the way
they connect it with previous reasoning with trace graphs (e.g. when they get stranded).

Justification of the scenario (with respect to the conjectured local instruction theory) 
We conjecture that one-dimensional trace graphs can be used by the students for de-
scribing change of position. Graphs that both support the emerging notion of velocity
as a compound quantity, and the relation between successive displacements and total
distance travelled. This last relation is a discrete anticipation on the basic principles of
calculus. These conjectures are based on experiences described by Boyd & Rubin
(1996) in chapter 2, and the historical development of calculus and kinematics.
The one-dimensional trace graphs derive their meaning from the successive measure-
ments. The two-dimensional graphs of the displacements derive their meaning from the
trace graphs. A sequence of inscriptions emerges and parallels concept development.
The graphical models build on each other, and develop in the activities of the students
as a result of the problems posed on describing and predicting the motion of hurri-
canes.
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An observer made notes during all the lessons, evaluated each lesson with the teach-
er, and participated in students’ group work and the work in pairs with the computer
to let the students clarify what they were doing. We were aware that this partic-
ipation influenced the students’ learning processes, but we wanted to hear students
express their thinking, and to create a classroom culture in which clarifying ques-
tions was part of the mathematical activities. The goal of participation moves on to
designing interventions for explanations of the teaching practice (Barab & Kirshner,
2001; Cobb et al., 2001).
The teaching experiments took place in Dutch schools. The start of our research
project coincided with a nation-wide reform of the secondary school system, which
resulted in a new educational organisation, and a clustering of topics into streams.
After the reform, secondary school students in grade 10 at pre-university level had
to choose one of four streams (roughly described as natural sciences and technology,
life sciences, economics, or social sciences). These streams largely determined the
subjects they had to take. The technology and the life sciences streams had physics
and mathematics as compulsory topics. This reform thus made it possible for us to
align kinematics and calculus lessons for whole classes of students. In addition, the
reform held consequences for the educational organisation, including an increasing
emphasis on the students’ own responsibility for their learning, for planning their ac-
tivities, and for independent work.
This was the setting for our research. In addition, we should mention that, although
we had experience in using physics as a context for mathematics education, we had
hardly any experience in integrating the learning of physics and mathematics. In
general, it seemed that research communities for mathematics and for science edu-
cation are fairly distinct. We therefore started with a pilot experiment to explore
practices in grade 10 in this new educational setting, and the possibilities for inte-
grating calculus and kinematics with these students. 

Pilot experiment

The goal of the pilot experiment was to gain insight into the problems and possibil-
ities of teachers and 10th grade students with calculus and kinematics within the
intended setting. We expected to learn more about the possibilities for classroom
discussion and the students’ abilities in reasoning about kinematic and mathematical
situations. The teaching materials used during this pilot experiment were based on
the students’ mathematics textbook together with a few alternative activities. The
mathematics book contained a chapter on the basic principles of calculus in eight les-
sons. For our teaching experiments we planned to use the time needed for this chap-
ter and discussed our ideas with the teacher. The alternative activities focused on
modelling motion as a central context, and also addressed the learning of a few kin-
ematic notions. During the experiment we analysed the practices with four case stud-
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ies and investigated whether we could line up our goals with the mathematical goals
and the teaching of this chapter.
At the beginning of the pilot experiment the students received a course description
of the chapter. This description gave suggestions on how to plan their work and
which lessons would be used for a plenary discussion of the chapter’s central
themes. The students worked alternately in small groups, pairs, and individually.
After every two lessons the teacher planned a plenary lesson to discuss their activi-
ties and the main themes. The teacher determined the content of most of these ple-
nary sessions. This course description was necessary because of the increasing
emphasis on students planning their own activities.
The exploratory nature of this first pilot led us to confine our data collection to
detailed field notes and audio tapes of classroom discussions and group work, and
the written material from four students. These students were selected because of
their performance (varying from low to high achievers), and their participation dur-
ing classroom discussions. The evaluations with the teacher, and the analysis of class
discussions and the students’ written materials led to initial conjectures concerning
the conceptual steps that each of them took, the problems they faced, and how these
were related to the new educational organisation and to our alternative activities.
The results of the pilot experiment contributed to our initial teaching design for ten
lessons on the basic principles of calculus and kinematics for 10th grade students.
We chose two different schools for our first teaching experiment to test design and
the accompanying conjectures. We expected to collect enough data in two schools
for reconstructing and analysing the learning processes, and we expected to be able
to filter out school-specific influences.

First teaching experiment

The first teaching experiment took place in two 10th grade classes in two compre-
hensive schools in provincial towns (school A and school B). For the first experiment
we wanted to be able to triangulate data within one class, and to compare the two
different schools. The comparison enabled us to spot teacher- and school-specific
norms and procedures.
In one of the two schools (school B), the students had already studied kinematics in
their physics classes. We thought that we could still learn from doing this experiment
with these students because of our different approach. The chapter in their physics
book focused mainly on algorithmic knowledge of how to deal with kinematic equa-
tions, while we aimed at a conceptual understanding of velocity and the relation with
distance travelled which emerges together with a series of inscriptions. This concep-
tual understanding had hardly been addressed in the chapter they had already stud-
ied. In school A kinematics was studied only in the 11th grade. We took this differ-
ence between the two schools into consideration when analysing our results.
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The student activities and the guidelines for the teacher, together with our intentions,
were discussed beforehand with the teachers of both schools in two meetings. Dur-
ing the experiments we made notes and audio-taped all the lessons. During the com-
puter lessons, one of the pairs was video-taped, and the classroom discussions were
also video-taped. The pairs were selected with help from the teachers using the cri-
teria for this choice of clear speech and capabilities varying from low to high achiev-
ers. We used the video-tapes to be able to analyse gestures and reasoning with graphs
on the computer screen and on the blackboard. After the teaching experiments we
collected the students’ written materials and copied their answers to a test. An anal-
ysis of these results was needed to investigate to what extent we had reached con-
tent-specific goals with all the students.
First, the analysis of these data provided information on how to optimise the activi-
ties with respect to formulating student texts, contexts used, and information
provided. Second, conjectures that paralleled the instructional sequence could be
verified as far as the students were taught as intended. This led to adjustments to the
sequence and our conjectured instruction theory. Third, this analysis led to new
hypotheses concerning the choices made with respect to the research questions. The
adjustments and the new hypotheses were objects of study in the second teaching
experiment.

Second teaching experiment

The second teaching experiment was confined to eight lessons in one 10th grade
class. During these lessons we focused our data collection on adjusting the instruc-
tional sequence and the tools and computer tools used. As a result of this focus, we
expected one classroom experiment would provide us with enough data for analys-
ing the teaching and learning processes in the specified situations.
The second experiment took place in a comprehensive city school (school C) with a
teacher who was experienced in discussing mathematical problems with students
without presenting them with the intended approach or answer. We expected him to
understand the teacher role we aimed at in our problem-posing approach, but still
took more time preparing the experiment with this teacher. We discussed the plan-
ning of the activities and especially the scope of the classroom discussions.
We wanted to analyse the development in reasoning shown by both weak students
and high achievers with the computer tools. We audio-taped a weak pair, an average
pair, and a high achieving pair during the computer lessons, and video-taped the av-
erage pair. Classroom discussions were video-taped and field notes were made as in
the first teaching experiment (table 4.1). In these experiments we expected to collect
enough information to reconstruct and to understand the whole process of the teach-
ing and learning of calculus and kinematics. 
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table 4.1 The teaching experiments in chronological order 

4.5 Data analysis
The relation between theory development and teaching experiments emphasises that
hypotheses are created and modified while interpreting the data available. The inter-
pretation of the data depends on our ability to understand the students’ reasoning, to
understand on which ideas their reasoning builds and by which perspectives it is
guided. Consequently, it depends on our ability to reconstruct the learning and teach-
ing processes. Analysing such processes differs from analysing isolated statements
in deciding whether students hold misconceptions or need conceptual change
(Klaassen & Lijnse, 1996). 
It was impossible for us to reconstruct the learning processes of all the individuals
in the experimental setting. However, we wanted to understand and reconstruct the
classroom progress based on the data available, which should result in an empiri-
cally grounded understanding of what happened in the classroom. In doing this, we
had to overcome a two-sided problem: how to collect enough data to ensure that we
could reconstruct learning processes and verify emerging hypotheses, and how to
select and organise the data into pieces which could be analysed rigorously? This
data organisation was mainly influenced by what we considered important with
respect to our previously formulated research questions, together with our conjec-
tured local instruction theory. The data were organised into case studies of class dis-
cussions and of students’ work during the computer lessons. We interpreted these
case studies in terms of what preceded the lessons, the student activities, the teach-
ing, and the tools provided. Interpretations were compared with other available data,
such as students’ written materials and data from another experiment in our research
project.

School 
grade: no. of students

lessons
(date)

data collection characteristics

School A 
grade 10: 17 
grade 10: 22

8 
(Oct. 1999)

notes and audio tapes,
student materials

exploratory pilot 
experiment 

School A 
grade 10: 19 
School B 
grade 10: 18

10 
(Nov. 2000)

notes, video and audio 
tapes, student
materials, test results

first teaching experi-
ment 
testing initial teaching 
sequence

School C 
grade 10: 24

8 
(May 2002)

notes, video and audio 
tapes, student
materials

second teaching 
experiment 
testing revised instruc-
tional sequence
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The interpretative framework for the teaching experiments was primarily an instruc-
tional design perspective. Interpretations of classroom events guided the
instructional design decisions and aimed at understanding and improving the teach-
ing and learning processes. In addition, we tried to incorporate both a social and an
individual perspective. We tried to assign such meanings to students’ expressions
that they came out as consistent with their history. The behaviour and the students’
contributions were related to classroom norms and students’ beliefs about what was
expected from them (Cobb, Yackel & Wood, 1992).
Using these case studies we tried to understand what had happened and also to
reconstruct a consistent view of the class’s progress. The validity of our reconstruc-
tion was determined by our ability to find explanatory constructs that underpinned
our interpretations of the classroom learning process (see also section 4.6 on valid-
ity). We will first describe the analysis of the data of the pilot experiment in more
detail. This analysis differs from the analyses of the other experiments because of its
exploratory character.
The notes and audio tapes of the pilot experiment were written up as lesson reports.
These, together with the written materials of four students, formed our basic material
for analysing the learning processes of these students. We looked for trends and
notable incidents that were informative about the choices made. Here we also ana-
lysed the students’ reasoning with respect to our alternative tasks on modelling
motion. The results shaped our ideas about the activities, the level of the students,
and the possibilities in the educational setting.
In the two teaching experiments, we distinguished two levels of data analysis. The
first level was testing the conjectures that accompany the instructional sequence. Did
the major shifts in the students’ reasoning occur as we conjectured, and did the sup-
porting materials have the intended effect? This was verified by the observation cri-
teria that were documented with the conjectures. The data collection − for trying to
reconstruct the shifts in students’ reasoning − included notes made during the les-
sons, audio and video tapes of student contributions in classroom discussions, and
students’ written solutions to tasks and in the final test. The field notes were written
up into lesson reports, which identified notable episodes varying from classroom
discussions, to the learning process of a particular student over a few lessons. The
audio and video tapes were used to work out these episodes as case studies; these
concerned mainly the classroom discussions. In addition, the lesson reports yielded
case studies of group work and the progress of individual students.
The second level of the data analysis was the search for patterns or trends related to
the underlying design heuristics and the conjectured role of computer tools. We
identified regularities and patterns by comparing and contrasting notable events with
other available data (e.g. written materials) and other situations within the experi-
ment. For instance, when we noticed events that could be characterised as success-
ful, and similar situations which had less success, we analysed whether and how
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these differences were the result of our design, and whether they could be related to
our implementation of the design heuristics. During this analysis, hypotheses
emerged concerning the choices we had made. This internal comparison provided
answers on our research questions and the limitations of their realisation in educa-
tional settings.
As an example of the data analysis, we show how we translated research questions
and conjectures into observation criteria for the first lesson, and how these criteria
acted as a framework for analysing data. We start this example with two of the ques-
tions formulated in chapter 3 (page 65): 

– Do students perceive the problem situation in the intended way?
– Do students reason and contribute to the reinvention process in the intended

way?
In the description of the first lesson (as presented in section 4.3) the following con-
jectures can be found: 
– Students experienced the weather prediction problems as relevant and were mo-

tivated to find an answer with the information provided. In their initial (intuitive)
reasoning students referred to the intervals between subsequent positions and re-
late lengths of these intervals (the successive displacements) with the velocity or
change in velocity of the object.

– Students used (one-dimensional) trace graphs to describe the motion of the hur-
ricane. The displacements started to signify velocity for the students. Some stu-
dents suggested placing the displacements vertically next to each other – in a
two-dimensional displacement graph – to display a pattern for better predictions.
These inscriptions and the corresponding reasoning were shared, compared, and
formed the basic input for classroom discussions and for the way to proceed.

These conjectures were connected to criteria related with specific activities in the se-
quence and previously planned classroom discussions. The lesson reports on both
schools indicated that during the classroom discussion, the majority of the students
was motivated by the context and participated actively. The video tapes were used
to work out these discussions and to analyse the students’ contributions. It showed
that these contributions were not limited to a few remarks by someone who ‘knew’
the answer, or to who was asked a specific question by the teacher. The weather-con-
text evoked reasoning about successive positions by creating opportunities for a dis-
cussion that supported reasoning about motion in terms of displacements, during
which inscriptions (trace graph), concepts, and accompanying language emerged.
Change in velocity became related to change in displacements. Moreover, the stu-
dents’ written materials in the weather activities supported these conjectures. These
findings were used to formulate hypotheses concerning (i) the instructional sequence
(“the weather-context has the potential to interest students in ... and to evoke reason-
ing about ...”), (ii) the level of the local instruction theory (“situations with discrete
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measurements, in which it makes sense to reason about change, are useful starting
points for the teaching and learning of calculus and kinematics”), and (iii) about our
choices (“the emergent modelling heuristic is a valuable one because developing the
notion of change appears to parallel a sequence of inscriptions from trace graphs to
two-dimensional graphs”).
We were able to answer our research questions with this data analysis. The conjec-
tured local instruction theory was investigated, and the analyses led to hypotheses
which were related to our questions. These hypotheses could be tested with the data
available and supplementary data analyses, or could be starting points for the second
teaching experiment. Finally, causal patterns and relations became stable in the ex-
perimental setting, and evolved into explanatory constructs for a large part of our in-
structional sequence.
This contribution to the local instruction theory of the teaching and learning of cal-
culus and kinematics is empirically grounded in the teaching experiments and un-
derpins an instructional sequence. However, these results still have a temporary
character because they are based on one research project. Recurrent experiments,
which build upon what we learnt and which use improved sequences, should result
in a robust theory for different educational situations.

4.6 Validity
In this section we discuss four criteria of our design research methodology which
should validate its scientific basis (building on Gravemeijer & Cobb, 2001). The first
is the formulation and verification of testable conjectures about the students’ devel-
opment with respect to the educational environment created. These conjectures were
formulated together with observation criteria and related to the instructional
sequence and the tools provided. The teaching experiments and data analysis
resulted either in verification of the conjectures, or in adjustments or new conjec-
tures for subsequent experiments. We described this process systematically to offer
other researchers the possibility of virtually replicating it, and retracing our conclu-
sions through the cycles of data analyses and teaching experiments. This methodo-
logical norm is referred to as trackability by Smaling (1992) and was emphasised by
Freudenthal (1991).
The second criterion is based upon the theoretical foundation of the interpretative
framework that guides our data reduction and interpretations (Gravemeijer & Cobb,
2001). This framework was shaped by the discussion on invention oriented and dis-
covery learning approaches (see section 2.2). Consequently, we took an instructional
design perspective and drew upon a potentially revisable, conjectured local instruc-
tion theory, which was rooted in the domain-specific theories characterised by
guided reinvention, emergent modelling and a problem posing approach. These the-
ories have proved themselves in various other topics of mathematics and physics
education (see section 3.5).
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The credibility of the instructional design, the data interpretation, and our argumen-
tation is the third criterion that validates our methodology. Peer review supports its
credibility. We discussed our initial instructional design with colleagues in the Cen-
tre for Science and Mathematics Education. Intensive discussion focused particu-
larly on: (1) the didactical models, (2) the contexts that should evoke reasoning and
inscriptions that fitted these models, and (3) the students’ motivation to proceed in
an intended direction. The discussions marked out and deepened the conjectured
local instruction theory, and optimised the preliminary instructional sequence.
We compared some of our protocol interpretations with those of others, although
comparing interpretations with respect to the students’ history was not easy to do.
This required other researchers to know about what happened during the teaching
experiments. Interpretations were discussed by the author and his supervisors, and
in our research team (see section 1.1). In addition, interpretations of three 15-line
protocols were discussed in a working group (2 × 90 minutes) at a PME-conference
(Pijls & Doorman, 2001). The discussions led to interpretations of both failures and
successes being less biased by the author’s individual perception. We do not con-
sider that we achieved totally unbiased interpretations in this project, because not all
the interpretations were shared, and the author’s information on what had preceded
the experiments also played a role in these discussions.
Finally, our fourth criterion was on a different level of validation: the engagement
of teachers and students during the teaching experiments (Gravemeijer & Cobb,
2001). In preparing the experiments, we had discussed our ideas and the instruc-
tional sequence with the teachers. Our ability to explain our intended goals for the
experiment, their willingness to participate, their contributions to performing the
teaching experiment, and their engagement during the actual experiments validate,
to a certain extent, the teaching experiments in our project. A similar argument holds
for the participating students. Moreover, performing the instructional sequence in
‘normal’ classroom settings has its limitations for the researcher, but can provide
indications of the practical value and relevancy of our results.
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5 The instructional design 

The instructional design described in this chapter is an envisioned learning route of
a guided reinvention approach to calculus and kinematics. It is the level on which we
test our assumptions in classroom situations. The specific elements of the design
concern the integrated learning of physical and mathematical concepts through the
students’ modelling activities. We conjecture how intended models emerge, how
computer tools support this process, and how the students can be motivated to per-
form these activities. These conjectures are formulated together with a description
of the teaching activities and of the envisioned classroom learning process. This
chapter describes our initial design for the first teaching experiment; it is inspired by
the historical development of calculus and kinematics.
A question for the design of a guided reinvention trajectory is: ‘How could I have
invented it?’ In the design, we should try to forget our domain knowledge and look
at the main problem situations from the students’ point of view. This is especially
difficult in mathematics, since it is the discipline through which we structure the
world around us. One of the designer’s tasks is to ‘unstructure’ this world, and try to
understand students’ perspectives and the footholds they might have available given
their perception of the situations presented.
It is useful to look at the history of a topic to gain insight into this issue, to investigate
how certain concepts developed, and how and why people tried to organise certain
phenomena without having any notion about calculus or kinematics. We are inter-
ested in a historical study of these topics as a starting point for the initial design,
rather than in an analysis of the systematics of the subject matter itself (de Lange,
1987). A historical study may indicate possibilities and clues for a guided reinven-
tion approach. Especially, we search for the possibilities for emergent modelling, for
framing the students’ view of problem situations, and for the use of tools that can
afford the development of symbols and meaning.
Section 5.1 sketches a few stages in the history of calculus which were important to
the context of the historical perspective on our design problem. In section 5.2 we
describe the pilot experiment which we carried out to investigate the possibilities
with respect to the content and to the school and classroom organisation for our
teaching experiments. Section 5.4 starts with an exposition of an initial conjectured
instruction theory for the basic principles of calculus and kinematics by modelling
motion, as a situation that can be organised to make certain predictions, and specific
situations that stimulate students to develop specific and productive ideas and strat-
egies. 
Then follows our first design of the teaching sequence as a starting point for our
teaching experiments.
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5.1 The emergence of calculus and kinematics in history 
In this section we focus on the historical development of calculus and kinematics.
The history of these topics shows us which problems, tools and methods enabled sci-
entists to develop these theories. The interest in this conceptual development is
framed by an instructional design perspective, while most historical analyses focus
on the resulting theories according to Confrey & Costa (1996). Gulikers & Blom
(2001) gave an extensive survey of research on the use and value of history in math-
ematics education, especially for geometry. In addition to conceptual arguments,
they listed arguments concerning the didactical repertoire of the teacher, the nature
of mathematics as a developing discipline, cross-curricular aspects, and the role of
mathematics and mathematicians in society.
In the following description we have tried to select crucial problem situations and
important developments of the tools, primarily from a concept-development per-
spective. This historical review up to Galileo is mainly based on Dijksterhuis (1980)
and Clagett (1959). In section 5.2.2 we reflect on this description from a didactical
perspective.
We will focus mainly on the historical period up to Leibniz and Newton, during
which time the basic concepts and models for calculus and kinematics were shaped.
The description covers a period of 2000 years. This could give an impression of a
development by fits and starts, but one should realise that it was a long and gradual
process, in which the breakthroughs can be localised in the work of a few, brilliant
scientists.

5.1.1 A historical sketch
Questions about falling objects were essential for the development of calculus and
kinematics, and one could say that these topics emerged from modelling forced
motion and free fall. This historical sketch starts with Aristotle (c. 350 BC). He for-
mulated laws on motion according to his everyday experiences and common sense
understanding about the nature of objects. Whether an object falls to earth, or floats,
depends on its properties. In Aristotle’s cosmology, each object could be character-
ised by form and matter. Matter can be described as a mixture of elements, and is
that which can make a form (e.g. a certain form made in clay). The type of mixture
determines the natural place of an object, which is part of its form. Form expresses
the essential nature of the object and its constant velocity during free fall. 
Aristotle’s ideas remained almost unchanged until the late Middle Ages. In the thir-
teenth century, scholars were convinced that a falling object increased its speed.
They tried to improve Aristotle’s theory and developed the impetus theory of
motion. It is in the nature of the object to have a propensity, or impetus, to move
towards its natural place, depending on the mixture of elements. If a mover moves
an object, its artificial motion is the result of an additional impetus in the object,
which is communicated to the object by the mover. This impetus will decrease if the
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bodily contact between mover and object is stopped. Decrease of the impetus results
in a decrease of the forced movement. However, there is no theory about the partic-
ular way in which the object loses its impetus.
The striving towards its natural place gives an object an impetus that determines its
velocity in the first time-interval of free fall. After that moment, the object has both
an impetus (its striving towards its natural place) and a velocity. This causes an
increase in the object’s velocity in the second time interval, etcetera; which explains
the increasing velocity of a falling object. The scholars did not have the means of
observing that the increase in the velocity of a falling object is proportional to the
time elapsed.
Until Galileo’s time, the impetus theory could be recognised in explanations of the
trajectory of an object thrown into the air. The motion of a thrown object decelerates
until the impetus, which it received from the throw, has decreased to zero. After that
moment, the object’s striving for the ground will cause the object to fall to earth ver-
tically with an increasing velocity.
Scientists started using variables and formulas in the fourteenth century. This was
the time of the so-called Calculatores. Thomas Bradwardine, for example, tried to
describe the velocity of an object when the proportion between a force F that causes
motion and the resistance R is changing. He based his description on the theory of
proportions, which states that the addition of proportions equals the multiplication
of the corresponding fractions (e.g. when proportion a : b equals 1 : 2 and b : c equals
1 : 4, then a : c equals 1 : 8), and the multiplication of a proportion by a parameter n
equals the corresponding fraction to the power n (three times the proportion 1 : 3
equals a proportion of 1 : 27). Bradwardine argued that the velocity v of an object
was determined by the proportion F : R. If this proportion became n-times bigger
(Fn : Rn), then the velocity became n-times bigger, or the two velocities were propor-
tional as 1 : n; in modern notation: v ~ log(F/R). Bradwardine gave several examples
to illustrate his theory and to explain why it described motion better than preceding
theories.
According to Dijksterhuis (1980) this example of a mathematical formula shows
how scientists tried to find mathematical laws in nature. Hence, we learn from these
examples that their view on the role of mathematics differed from that of Aristotle,
and they show what kind of difficulties had to be solved in order to describe phenom-
ena in a mathematical language. These difficulties not only originated from prob-
lematic physical assumptions, but also from limitations in the mathematical lan-
guage available. The Calculatores could not describe velocity as a proportion of dis-
tance to time, because then they would have had a fraction of two different types of
quantities. They still followed the Euclidean tradition (c. 300 BC) and worked only
with proportions of the same quality.
In the first half of the fourteenth century, logicians and mathematicians associated
with Merton College (Oxford, UK) investigated velocity as a measure of motion.
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They theorised about changing qualities like temperature, size, and even a human
quality like charity. The types of change they identified were uniform, difform
(changing), and uniform difform (constantly changing). One of their problems was
to describe a uniform difform motion, i.e. to describe the distance travelled by a body
moving with a uniformly accelerated motion. This problem is not easy because the
velocity changes constantly during such a motion. The interpretation of motion as
change of place became one of the central issues studied. Clagett (1959) gave a
detailed account of this emergence of kinematics at Merton College.
The scientists at Merton College used a notion of instantaneous velocity and descrip-
tions of the velocity of a moving object, but there was still no definition of velocity
as a compound quality (the distance travelled divided by the traversal time), and cer-
tainly no definition of instantaneous velocity as a limit of this division. Scientists and
mathematicians would still have to work for several more centuries to gain this last
insight. However, three important results were achieved at Merton College:

1 A definition of the notion of instantaneous velocity. The velocity at a certain mo-
ment in time can be described by the distance that would be travelled if the object
would move on with that very velocity, unchanging during a certain time inter-
val. As Dijksterhuis noticed, this is a circular definition, because when you ask
what that very velocity is, you can only say ‘the velocity at the fixed moment’
which is still to be defined. However, it should be noted that the idea of a poten-
tial distance travelled in a certain time interval, represents the instantaneous ve-
locity of the object. This is exactly what velocity in our everyday language
means. Driving at a speed of 70 km/h is interpreted as: if you were to continue at
this very speed for one hour, you would have travelled 70 kilometres.

2 A description of the notion of a constantly changing velocity: the velocity in-
creases by equal parts in equal time intervals (and not in equal distances trav-
elled!).

3 ‘The Merton rule’: if the velocity of an object is constantly changing from zero
to a velocity v in a time interval t, then the distance travelled is equal to half the
distance travelled by an object that moves with a constant velocity v in the time
interval t. In modern notation s(t) = . v . t

Notable is the central position of the quantity time in these results. One of the proofs
of the Merton rule was given by Richard Swineshead (c. 1335). He assumed an ob-
ject A moving with constantly increasing velocity from zero to v, and an object B

moving with constantly decreasing velocity from v to zero. At every moment t, the
sum of their instantaneous velocities equals v. So, together they travel the same dis-
tance as one object moving with a constant velocity v. From this he concluded that A
and B each travel the same distance as an object moving with a constant velocity v/2.
In this period, Nichole Oresme (c. 1360) invented a new element in these arith-
metical descriptions: he introduced the graphic representation. He worked at the Uni-

1
2
---
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versity of Paris and studied changing qualities. He was not primarily interested in
what actually happens, but in how you could generally describe what happens. For
instance, he described ways to display the distribution of the heat in a beam: think of
a line along the beam and imagine at every point of this line the heat at that position
in the beam represented by a line perpendicular to the beam. The length of this sec-
ond line displays the heat at that position in the beam. These perpendicular lines con-
stitute a geometrically flat shape. This shape denotes the distribution of the heat and
its area is a measure of the total heat in the beam. A constant temperature is displayed
by a rectangular shape, while an uniform change from low to high is displayed by a
triangular shape (or a trapezoid).
Oresme reasoned and compared changes in qualities with geometrical shapes and
found that the configuration of a geometrical shape determined the properties of a
quality.

figure 5.1 Drawings from a fifteenth century copy of Oresme’s 
‘De configurationibus qualitatum’

Oresme also applied this technique to motion. His remarkable way of thinking can
be seen by the way in which he defined velocity as a quality of objects that can be
pictured against time (the dimension over which the velocity of the object varies).
Thanks to this choice, the area of the geometrical shapes of this quality had many
similarities with the current velocity-time graphs. The perpendicular lines denote in-
stantaneous velocities and the area of the shape can be interpreted as total distance
travelled. Oresme compared velocities by the proportions between the different are-
as of the rectangles (see figure 5.1 left).
If an object moves with uniformly accelerating velocity in a time interval, the dis-
tance travelled equals the distance travelled by a constantly moving object with the
same velocity at the middle of the total time interval (see figure 5.1 right). With this
reasoning Oresme proved the Merton rule. Although Oresme did not write the orig-
inal formula: , Dijksterhuis attributed this formula to him because he
implicitly used it to solve kinematic problems.

st
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2
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These graphs support an interpretation of velocity as a quantity with instantaneous
values and they simplify, conceptualise and illustrate theorems about motion. This
graphical method was applied to various types of motion but it is remarkable that all
these motions concerned more or less theoretical situations (fig. 5.2). The reasoning
was not applied to real-life motion phenomena nor to free fall. 

figure 5.2 Drawings from Oresme’s ‘Tractatus De Latitudinibus Formarum’ 

Some mathematicians argue that Oresme’s proof of the Merton rule is not valid.
First, he should have defined instantaneous velocity as a differential quotient and
then deduced the distance traversed by graphical integration. Dijksterhuis discussed
this and defended Oresme by stating: 

It is a situation which occurred regularly in the history of mathematics: math-
ematical concepts are often − maybe even: usually − used intuitively for a
long time before they can be described accurately, and fundamental theorems
are understood intuitively before they are proven.
(Dijksterhuis, 1980, p. 218) 

Oresme visualised the Merton rule in a way that could be extended to understanding
more complex problems. His graphs made it possible to visualise these problems and
to acquire kinematic insights that were not yet accessible through calculus in those
days.
Until the sixteenth century, it was commonly accepted that the time needed for an
object to fall to the ground was proportionally reversed to its weight. This was still
a heritage of Aristotle’s theory. In 1586, Simon Stevin published his Beghinselen der
Weeghconst (Principles of weighing). Stevin opposed this theory and described an
experiment with two falling lead balls of different weight that touched the ground at
exactly the same time. In this experiment he tested Aristotle’s assertion and con-
cluded that it was contrary to this experience.
Stevin also argued that a proportionality between weight and falling time in a medi-
um like air or water is impossible: take two objects, one floating on water and the
other sinking, a proportionality between their weights exists, but there cannot be a
proportionality between their falling times. During this period, the need emerged for
experimental settings to investigate motion, and for specifications of variables to
look at.
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In 1618, Isaac Beeckman proved a new relation between elapsed time and falling
distance that is independent of the weight of the object. He approximated a continu-
ous force that pulled the object as if with little tugs. After each time interval τ, such
a tug increased the velocity by a constant amount γ. This process was visualised by
the graph below, in which the distance travelled in a time interval τ is represented by
the area of the corresponding bar (fig. 5.3). 

figure 5.3 Graph showing Beeckman’s reasoning with areas of bars

When the length of the time interval τ approaches zero, the distances travelled in
total times OA1 and OA2 are represented by the areas of the triangles OA1B1 and OA2B2.
These distances are proportional to each other as the squares of the time intervals OA1
and OA2. He also used this reasoning in proportionalities between similar quantities.
In his time they were still not able to formulate the relation between time and dis-
tance travelled in one formula: s(t) = c . t2.
The difference between Oresme and Beeckman is that Beeckman used a discrete
approximation of the area. Such approximations were related to Archimedes’ meth-
ods to determine centres of gravity (c. 200 BC). This is no surprise, because
Archimedes’ work was translated in the sixteenth century. Stevin, Kepler and Des-
cartes also used his methods in their publications. Interest in the work of Archimedes
was the result of a rising prominence for the mathematical disciplines and of the
practical utility of mathematical methods in other disciplines in the sixteenth cen-
tury.
There was another remarkable element in Beeckman’s work: he did not use velocity
as caused by an intrinsic property, but as a result of a force that pulls the object. This
cause does not affect the actual value of velocity, but it does influence the increase
of velocity. He claimed: “no change of velocity without a cause”, while many, fol-
lowing Aristotle’s natural philosophy, believed: “no change of position without a
cause”. Beeckman’s claim may be self-evident to us but it was revolutionary at that
time.
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Galileo (1564-1642) is one of the most famous scientists who worked on these kin-
ematic problems. In his time, the role of mathematics in scientific research was dis-
cussed. Two possible views were recognised: (i) mathematical regularities lie at the
very heart of reality (Platonic); and (ii) mathematical regularities are invented
abstractions of surface appearances. Galileo advocated the Platonic view and argued
that visual phenomena were the result of, and should be described with,
mathematics1. One of the phenomena which Galileo studied is free fall. In his
Dialogue Concerning Two New Sciences he wrote about the Aristotelian view on
this topic and why this view must be wrong in a dialogue between Simplicio and
Salviati:

Simplicio (...) he [Aristotle] supposes bodies of different weight to move in
one and the same medium with different speeds which stand to one another in
the same ratio as the weights; so that, for example, a body which is ten times
as heavy as another will move ten times as rapidly as the other (...).

Salviati (...) I greatly doubt that Aristotle ever tested by experiment whether
it be true that two stones, one weighing ten times as much as the other, if
allowed to fall, at the same instant, from a height of, say, 100 cubits, would so
differ in speed that when the heavier had reached the ground, the other would
not have fallen more than 10 cubits.

Simplicio represented the Aristotelian ideas on motion, and Salviati the new ideas of
Galileo. Galileo used graphs to explain the quadratic relationship between distance
travelled and falling time. He drew ‘velocity-time graphs’ in the same way as
Oresme and Beeckman, but he reasoned differently. He followed Swineshead’s
proof of the Merton rule, and used a collection of instantaneous velocities that are
represented in the following graph by the lengths cc1 and dd1 (fig. 5.4).

figure 5.4 Graph from Discorsi III 1, Opere VIII 208 by Galileo.

These lengths do not represent actual velocities because he did not identify velocity
as a quantity. We assume that Galileo reasoned with these lengths as potential
displacements, as in the Mertonian definition of instantaneous velocity. We can

1. The Book of Nature is written in the language of mathematics. From: ‘Il saggiatore’ (The
Assayer) by Galileo, Accademia dei Lincei in 1623.
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therefore add these lengths and place as many of them as we want next to each other.
The lengths cc1 and dd1 are symmetrical around moment M, and cc1 + dd1 = cc2 +
dd2 applies everywhere. From this he concluded that the distances travelled by
movements according to the graphs AC and FG are equal. Intuitively, all these lines
together are equal to the area, which Oresme had already used. From this graph we
can immediately deduce, by using areas, that the distance travelled until moment M
is one-third of the distance travelled in the second half of the total time interval.
As an example of Galileo’s reasoning we reproduce some of his notes on motion.
This part (Discorsi Proposition 3/03-th-02) concerns the determination of the speed
of a projectile following a parabolic path. The lengths of horizontal lines that Galileo
used in his reasoning below are precisely what we call potential displacements. 

figure 5.5 Drawing by Galileo which accompanies this proposition (retrieved from
http://www.mpiwg-berlin.mpg.de/Galileo_Prototype/index.htm)

{281} SALV. Our Author next undertakes to explain what happens when a body is
urged by a motion compounded of one which is horizontal and uniform and of another
which is vertical but naturally accelerated; from these two components results the path
of a projectile, which is a parabola. The problem is to determine the speed [impeto] of
the projectile at each point. With this purpose in view, our Author sets forth as follows
the manner, or rather the method, of measuring such speed [impeto] along the path
which is taken by a heavy body starting from rest and falling with a naturally acceler-
ated motion. (fig. 5.5) 
Let the motion take place along the line ab, starting from rest at a, and in this line
choose any point c. (...) The problem now is to determine the velocity at b acquired
by a body in falling through the distance ab and to express this in terms of the velocity
at c (...) Draw the horizontal line cd, having twice the length of ac, and be, having
twice the length of ba. (Condition 2/23-pr-09-schol1) It then follows, from the pre-
ceding theorems, that a body falling through the distance ac, and turned so as to move
along the horizontal cd with a uniform speed equal to that acquired on reaching c
{282} will traverse the distance cd in the same interval of time as that required to fall
with accelerated motion from a to c. Likewise be will be traversed in the same time
as ba (...)
(retrieved from http://www.mpiwg-berlin.mpg.de/Galileo_Prototype/index.htm).

Galileo tested his hypothesis on the quadratic relation between time and distance of
a falling object with experiments. He knew that sequences of successive odd num-
bers, starting with 1, add up to a square, and he used ratios of odd numbers between
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the distances travelled in equal time intervals. This ratio must be 1 : 3 if you divide
time into two equal intervals (fig. 5.6). 

figure 5.6 

If you divide the time into four intervals the ratio is 1 : 3 : 5 : 7, et cetera. With this
property he tested the formula that is based on the conjecture that the acceleration of
a free falling object is constant. An important step which Galileo made was to reason
that the motion of free fall is similar to (in terms of proportions) and can be delayed
by an object rolling down an incline. He probably designed a slide with nails on one
side. The distances between the nails were in the same ratio as the successive odd
numbers, thus a rolling ball should need the same time to pass each following nail
(fig. 5.7).

figure 5.7 A 19th century instrument for illustrating Galileo’s experiment (IMMS, Firenze)

Many scientists commented on Galileo’s reasoning, for instance, Fermat (1601-
1665) believed that an object must have a velocity at the moment of falling, other-
wise it would not start moving. This is yet another example which illustrates that
their ways of thinking about velocities of falling objects and about instantaneous
change were not trivial. It shows that even famous mathematicians during the time
of Galileo had problems with the idea that, at the moment of starting to fall, the ob-
ject could have acceleration while its instantaneous velocity is zero.
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Two scientists, Leibniz and Newton, were crucial in the development of calculus and
kinematics; they discovered and proved the main theorems of calculus. In the sev-
enteenth century, methods were discovered for calculating maximums and mini-
mums in optimization problems. These methods concerned mainly polynomials, but
many problems could not be described with polynomials, such as the breaking of
light. The conceptual understanding of the mathematics of instantaneous change de-
veloped, how to calculate it was a topic of interest, and Leibniz’s and Newton’s con-
tributions concerned precisely this issue. Their invention of a literal symbolism was
essential for the rapid progress of analytic geometry and calculus in the following
centuries. It permitted the concepts of change to enter algebraic thought.
Newton formulated the ideas of Oresme, Beeckman and Galileo more accurately.
His work mainly concerned a search for assertions that could be starting points for a
systematic organisation of force and motion. This search led to a description of force
as a product of change of speed and ‘bulk’ of a body. Bulk means something like
heaviness, but he was unable to give a correct definition of the concept of mass.
Force became an invented cause for explaining motion. Newton restricted himself to
finding forces that determine motion (of planets, falling bodies, etc.), like Oresme
and Galileo who first wanted to describe phenomena before looking for explanations
that governed them. After finding these forces, Newton tried to explain how they
work.
The language of Newton was closely related to motions of geometrical entities in a
system of coordinates. The y-coordinate denotes the velocity of a changing entity
(e.g. an area or a length) and the x-coordinate denotes time. Such a geometrical ap-
proach fitted the research tradition in the seventeenth century and might have sup-
ported his findings (Thompson, 1994b). The embedding of motion and time in ge-
ometry is one of the most characteristic features of Newton’s dynamical techniques.
Newton used the context of motion to give intuitive insight into the limit process of
the proportion between two quantities that tend to zero (Pourciau, 2001). He argued
that the ultimate proportion of two vanishing quantities should be understood as the
velocity of an object at the ultimate instant when it arrives at a certain position. The
two quantities are position and time, and he defined the limit or vanishing proportion
between change of position and change of time as the instantaneous velocity. Simi-
larly, this ratio of vanishing quantities is to be understood not as the ratio of the quan-
tities before they vanish or after they have vanished, but as the very ratio at which
they vanish.
In Newton’s symbolism, quantities without a dot, such as x, are called fluents.
Velocities by which fluents change are called fluctions: . These fluctions represent
instantaneous rates of change as proportions; in modern notation: = dx/dt. Newton
defined infinitesimals as moments of fluctions, and represents dx with , where o
is an infinitely small quantity. In calculations you can leave out the terms that are
multiplied by o, because they can be neglected with respect to the other terms. 

x·

x
xo
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Struik (1987) noticed an aspect of vagueness in Newton’s symbols. The vagueness
in his symbolism is the use of ‘o’. Is it a zero, an infinitesimal or an infinitely small
number? Newton tried to denote its meaning by means of a theory on first and final
proportions in the context of motion. From this we can see that he had intuitively
mastered the limit concept, but did not formulate it very clearly; certainly not for his
contemporaries.
The roots of Leibniz’s work were in algebraic patterns in sums and differences and
their properties. In 1672, he published his work on the sequences of sums and dif-
ferences of sums, before he formulated the fundamental theorem of calculus.
Leibniz noticed that with a sequence: a0, a1, a2, ... , and with a sequence of differ-
ences d1 = a1 − a0, d2 = a2 − a1, ... dn = an − an - 1, he could conclude: d1 + d2 + ...
+ dn = an − a0. Therefore, the sum of the consecutive differences equals the differ-
ence of the first and the last term of the original sequence. According to Edwards
(1979), Leibniz refers to this inverse relation between the sequences an and dn in his
later work as his inspiration for calculus. The mathematics of change in algebraic
structures was developing into a general calculus. From phenomena like motion, at-
tention moved to studying these structures, formulas, and their graphs.
From algebraic roots, Leibniz introduced a more accessible symbol system for cal-
culus than Newton, a system which we still use today. Maybe this is the result of his
abstraction of real situations, and his goal of creating “a symbol system that would
codify and simplify the essential elements of logical reasoning” (Edwards, 1979).
Edwards added to this that it was precisely in mathematics that Leibniz fully accom-
plished his goal: “It’s hardly an exaggeration to say that the calculus of Leibniz
brings within the range of an ordinary student, problems that once required the inge-
nuity of an Archimedes or a Newton.” Or as Kaput (1994a) formulated Leibniz’s in-
vention: “This is the genius of Leibniz’s contribution. One can mechanically ‘ride’
the syntax of the notation without needing to think through the semantics.”
Leibniz did not write much about the limit concept as a foundation for his symbol
system. He illustrated his method in his first article Nova Methodus on calculus in
1684 with a graph of a formula that did not have any relation with a context. After
the ‘abstract’ exposition of the method he illustrated the power with some applica-
tions. Leibniz did not define ‘infinitely small’. He interpreted a tangent as a line
through two points on a curve that lie at a distance to each other which is smaller
than every possible length. Leibniz did not publish this definition in the article, be-
cause he thought this to be too revolutionary. He only published the rules to ‘ride’
the calculus and the convincing applications, without a foundation for his symbolism
(van Maanen, 1995).
The historical development until Leibniz can be summarised in the following time-
table (table 5.1). It is remarkable that our current secondary education reveals hardly
anything of this struggle for mathematising change. The methods of Leibniz are
taught as an obvious, or natural, way to treat change in a mathematical way. Calculus
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came to be considered as an independent discipline at the beginning of the 18th cen-
tury, independent of geometry, as a result of Euler’s work. The objects of investiga-
tion in mathematics were all known analytical expressions (Koetsier, 1987).

table 5.1 

The remaining work consisted of laying a rigorous foundation of functions, differ-
entials and infinitesimals. This took the mathematical society almost one century.
Early in the 19th century, Bolzano, d’Alembert and Cauchy defined infinitesimals
as dependent variable quantities. Cauchy defined the limit concept and finally elimi-
nated all misunderstandings. The problems that made Cauchy formulate this unam-
biguous definition concerned functions of real variables: why they behaved so dif-
ferently according to their Taylor and Fourier series, and in what respect could these
functions be seen as functions of complex variables? Like the notations of Leibniz,
his formulation of a differential quotient, is still used nowadays in calculus education.

5.1.2 Looking at history through a didactical lens
This historical study provides us with indications how models and more sophisticat-
ed mathematical knowledge evolved from informal knowledge, and how to use tools
to afford model shifts. 
Aristotle’s main ambition was to organise matter into basic elements and their pro-
porties. From this view it is not surprising that he defined a relation between falling
speed and matter. Oresme’s intention was to describe and value changing qualities,
one of which was velocity, in order to be able to compare them. He used graphs for
displaying and reasoning about changing qualities. He did not define velocity as a
compound quantity, nor did he use scales along his two-dimensional graphs. Never-
theless he interpreted areas as distances travelled and used the geometrical figure to
compare different kinds of motions.
The graphical method made it possible to illustrate the middle-speed theorem and to

Timetable

c. 350 BC Aristotle falling speed ~ heaviness

c. 200 BC Archimedes calculations of areas with rectangular
approximations

13th century Albert of Sachsen falling speed ~ falling distance

14th century Oresme time graph of a changing velocity

15th century Leonardo da Vinci struggle with concepts like force, velocity
and acceleration

16th century Simon Stevin experiment with two lead balls

beginning of 17th century Isaac Beeckman fol-
lowed by Galileo

through Archimedes: falling speed ~ fall-
ing time; and law of squares

end of 17th century Newton and Leibniz invention of calculus
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investigate the relation between change of velocity and distance travelled in many
theoretical motions. The method was successful thanks to Oresme’s choice to draw
a graph with a horizontal time axis. Possibly, his choice was influenced by his trying
to image potential distances travelled.
The graphs of Oresme derive their meaning from the situations they describe. These
graphical tools afforded him and his contemporaries a way of describing relations
between velocity and distance travelled. During the time of Beeckman and Galileo,
reasoning with characteristics of graphs became a method, almost independent of the
situation described. Together with these methods, reasoning about the meaning of
instantaneous velocity and acceleration at the very beginning of free fall began to
emerge.
In this history we recognise a dialectic process of the development of meaning and
of graphical methods, a process from two-dimensional discrete graphs for describing
motion to reasoning about slope and area, and about the relation between velocity
and distance travelled. Kinematic and mathematical concepts emerged, first used in-
tuitively, while later on they were objects of study (see quotation of Dijksterhuis on
page 88). This might have implications for a trajectory of teaching and learning the
basic principles of calculus and kinematics. Instead of starting with velocity as a
compound quantity and reasoning with two-dimensional continuous graphs, history
indicates that we might start with discrete graphs that derive their meaning from the
situation being modelled. These discrete graphs would provide students with mean-
ingful graphical tools that afford them both a way to reason about characteristics like
area and slope, and to invent the relation between velocity, time and distance trav-
elled.
The methods of Leibniz opened up the possibility of symbol manipulation without
examining these symbols and understanding their meaning. This symbolic writing
seems to replace conceptual thinking by substituting calculation for reasoning, the
sign for the thing signified. However, we note that Leibniz’s symbol manipulations
were built upon extensive experience with numerical patterns in sums and differenc-
es. We assume that his experience underpinned a meaningful use of these manipu-
lations. 
This process, where thinking with concepts is replaced by symbol manipulations,
might have advantages for efficiency, but can have limitations in flexibility. What
should students do in a new situation, or if they do not remember the exact algo-
rithm? Reasoning with a symbol system according to Leibniz’s methods can only be
meaningful when it draws upon conceptual understanding. The symbolic methods of
calculus can be applied, but carry the danger of degenerating into abstract methods
if there is no underlying idea about the meaning of the calculations. For Leibniz, the
underlying meanings were mathematical and based on sums and differences, where-
as for Newton they were mainly physical and related to motion. For both Leibniz and
Newton, the graphical reasoning of Oresme, Beeckman and Galileo was an impor-
96



The instructional design
tant starting point. This suggests − as Dijksterhuis already noticed − that an intuitive
understanding of reasoning with graphs of motion precedes formal methods such as
integration and differentiation of functions. Moreover, we notice a process-object
development from arithmetical prescriptions to reasoning with formulas. In the end
s(t) = c . t2 can be understood as an object, while Beeckman’s work still had an ar-
ithmetical character. We can speak of a process of reification in relation to this
(Sfard, 1991). However, it is not the graph but rather the activity of summing and
taking differences that is reified into the mathematical objects of integral and deriv-
ative. The inscription − the graph − visually supports both the activity and its reifi-
cation. To emphasise these related aspects of the mathematical object that is devel-
oped, Tall used the term ‘procept’ (Tall, 1996).
We should not take this notion of reification too literally here. In education, and also
in history, the result at a certain moment will often be something in between a proc-
ess and an object. It should also be acknowledged that the development will not be
as linear as our description suggests. Like researchers, students may shift back and
forth between process and object conceptions, depending on the problems they con-
front.

Choices for an instructional design

Looking at this presentation of history from an emergent modelling perspective (see
section 3.5.1), we see a development of calculus that starts with modelling problems
about velocity and distance. Initially these problems are tackled with discrete ap-
proximations, inscribed by discrete graphs (see Oresme’s graphs at page 88). We
could say that discrete graphs come to the fore as models of situations, in which ve-
locity and distance vary, while these graphs later develop into models for formal
mathematical reasoning about calculus. In the 17th century, graphs as inscriptions −
initially discrete and later continuous − formed the basis for more formal calculus.
This use of graphs in an emergent modelling approach seems useful for our teaching
trajectory. It might be a natural step to use discrete graphs for describing motion, sig-
nifying measurements or theoretical motions (as Oresme did) and to take that as a
starting point for reasoning about these motions. We assume that, in this reasoning,
the use and understanding of graphical characteristics will emerge, together with
kinematic understanding.
What kind of problems evoked reasoning on motion? One of the central problems in
history was grasping the concept of free fall. Apparently, the proportional relation-
ship between falling speed and falling time is not a trivial one. We teach students
that at the first moment of a free fall, i.e. at the moment the object is not yet moving,
the object instantly has an acceleration of 9.8 m/s2. This beginning of a free fall is
largely explained by our reasoning, not through experiment or intuition. Moreover,
day-to-day experiences suggests, and hardly seems to contradict, v ~ weight. This
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should be kept in mind when the context of free fall is used in teaching. Still, motion,
in general, and free fall in particular, appear to be contexts that are suitable for sec-
ondary school students. They still grapple with the notions of instantaneous velocity
and acceleration, and the relations with average velocity and distance travelled.
The grappling of students with velocity as a compound quantity is described in chap-
ter 2 and can be understood from the history presented. It is remarkable how many
centuries it took before velocity was defined as the division of two different quanti-
ties. Teachers can try to bring students to a position where they can see that their no-
tion of velocity should be extended to a compound one. Another possibility is to let
this compound notion of velocity emerge from reasoning about displacements and
potential displacements in successive time intervals. This last choice can parallel a
development in graphical inscriptions that emerge during modelling motion. This
seems to fit well with prior ideas on a trajectory for teaching and learning the basic
principles of calculus and kinematics.
Looking at this history, Kaput’s (1994a) characterisation of calculus as ‘the math-
ematics of change’ comes to mind. In the process of trying to get a handle on change,
the method of approximating a constantly changing velocity with the help of discrete
graphs plays a key role. The relations between sum- and difference-series can be
seen as predecessors of calculus. These ideas can be exploited in an instructional de-
sign by starting a learning sequence with investigating discrete patterns in dis-
placements.
In addition to this didactical analysis of history, we have to analyse the knowledge
and reasoning of modern 16-year-old students, and whether this can be connected to
the didactical findings outlined above. Some of these findings, together with the or-
ganisational possibilities for such an approach, were explored in a pilot experiment.

5.2 Pilot experiment
Here we describe a pilot experiment which was performed early in this research
project, parallel to the literature survey. This experiment had an explorative charac-
ter and involved a preliminary case study of possible teaching practices in grade 10.
We wanted to investigate two types of alternative activities concerning modelling
motion, and the possibilities of sums and differences in functions as a topic. In this
section the teaching materials and experiences are summarized. The materials and
four case studies of students in this pilot experiment are described in more detail in
the appendix.
The first activity concerned an orientation on modelling motion using a series of
photographs of successive positions of a cat walking (inspired by Speiser et al.,
1994). We wanted to create the need to draw graphs, and to foster initial reasoning
about the relation between distance travelled and changing velocity. This activity
could also provide insight into the students’ ways of reasoning for modelling
motion. 
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The topic of sums and differences was inspired by Leibniz’s work, and was based
upon a teaching sequence concerning the basic principles of calculus (Kindt, 1996).
Students investigated the properties of sums and their increments, and the relations
between series, in the context of mathematical formulas. In this process, the students
were supposed to develop mathematical reasoning with intervals that would lead to
the difference quotient. It was also a first introduction to the relationship between
sums, summation symbols, increments and difference symbols. 
The second activity, on modelling motion, concerned the transition from reasoning
about velocity with continuous time-distance graphs to the mathematical notion of a
difference quotient. This activity, about a comic strip character (see p. 115), was
inspired by teaching sequences that fitted this line of thinking (Kindt, 1979; Kindt,
1996). Students had to determine velocities from distance-time graphs. The intervals
in these continuous graphs, which were necessary for the difference quotient, prob-
ably derived their meaning from the preceding discrete work. 
We stated earlier that this research project paralleled a nation-wide secondary school
reform, incorporating both a new educational organisation and a clustering of topics
into ‘streams’. This had consequences for the teacher’s organisation of the lessons.
The teacher planned the content of all the lessons beforehand in a course description.
Students were advised to follow this schedule, but they were responsible for their
pace. The teacher rarely planned any interactive classroom discussions about their
activities, because he assumed that differences in pace would arise quickly.
The analysis of classroom discussions and the students’ written materials contrib-
uted to intuitive conjectures about the students’ conceptual steps, and how these
steps were related to the new organisation and to our alternative activities. The
results of this pilot experiment were primarily based on anecdotal descriptions with
the data available, and were used for defining conjectures operationally for our first
teaching experiment.
The first alternative activity, on the walking cat, resulted in a variety of graphs,
which could be used for discussions on the main issues of the chapter. The diversity
in the students’ solution strategies indicated that they did not have a standard pro-
cedure for displaying and reasoning with motion measurements as presented in the
task. Tables with total distances and displacements, and different graphs (time hor-
izontally or vertically) appeared productive elements for a discussion with respect to
both representations of change, and the relation between displacements and total dis-
tance travelled. With respect to the specific context of this activity, we noticed that
the students appeared to find it difficult and time-consuming to take measurements
from a series of photographs. In each photograph they had to find an anchor point
for the previous position. We concluded that such an activity would be more useful
if the measurements were easier to make.
We saw hardly any connection between the students’ work with sums and differ-
ences, and their work on modelling motion. We doubted whether the mathematical
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relations in sums and differences really contributed to a teaching sequence on
motion and for problematising instantaneous change. It seemed to be isolated from
kinematic problems and might better precede the sequence or be dealt with after-
wards. 
The second alternative activity, on the comic strip character, evoked the intended
graphical interpretations of instantaneous change. We expected the graphical rea-
soning with this activity would be connected with reasoning about graphs that
resulted from a mathematical formula, and with calculations with such a formula.
However, the pilot test did not establish a connection between students’ graphical
reasoning and working with a formula. The notion of how to determine instantane-
ous change when a graph has a large curvature, and how a formula can be used, was
not problematised. Neither was the difference between average velocity and instan-
taneous velocity explicitly discussed. As a consequence, we saw that many students
were only interested in the instrumental skills of how to perform the algorithm for
the standard mathematical problems and how to use the graphing calculator to do
this. In addition, due to limited time before the final assessment, the teacher demon-
strated the use of the graphing calculator for answering typical questions on average
and instantaneous slope. Traditional importance of instrumental skills force teachers
under time pressure to use transfer-methods of teaching (Bauersfeld, 1995).
In a sequence for the teaching and learning of calculus and kinematics, we need to
consider the transition from reasoning with discrete data to reasoning with continu-
ous graphs and formulas. Drawing discrete graphs, based upon data, is time-consum-
ing, and difficult to achieve when all the students need to have the opportunity to dis-
cover how graphical characteristics help to find patterns in the relation between dis-
placements and total distance travelled. Especially these patterns can be
problematised to motivate making continuous models, and discussing average and
instantaneous velocity. We could, therefore, provide the students with tools to inves-
tigate more situations graphically. Computer programs can afford students ways of
focusing on reasoning with graphs. Graphical characteristics can then emerge in
meaningful contexts and can lead on to work with continuous models. This knowl-
edge might be useful in problematising instantaneous change. Consequently, the
development of a series of inscriptions from discrete graphs to continuous models
parallels the students’ conceptual development.
We identified crucial problem situations for giving the students the opportunity to
invent solution procedures, and discussing them in classroom interaction. These sit-
uations, together with the instructions for the teacher, should prepare the teacher to
discuss the students’ contributions in line of the intended trajectory. However, we
noticed that, as a result of the students’ responsibility for the planning of their own
work over a few lessons, there were big differences between the students’ level of
work. These differences in reasoning made it difficult to discuss an activity with a
specific purpose with the whole class. We advocated such discussions so that the
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teacher could create a guided reinvention process for the whole class. This finding
had implications for the teaching materials and for the use of course descriptions in
our instructional design and teaching experiments.

5.3 Modelling motion as a conjectured local instruction theory
Concurrently with the pilot experiment, we performed a literature study on concep-
tual problems and possible solutions, which, together with our experiences in the
pilot experiment and the history of calculus and kinematics, underpinned our con-
jectured instruction theory. Graphs played a central role in the conjectured trajectory
in which we tried to overcome the conceptual and didactical problems described in
chapter 2.
In chapter 3 we argued how the notion of emergent modelling can function as an
educational design heuristic for a process of progressive structuring of motion from
fragmentary student knowledge to an intended organisation of motion with physical
and mathematical models. In these activities the development of inscriptions and
their characteristics parallel the students’ conceptual development. In addition, we
pointed out the problem posing design heuristic in order to create opportunities for
these developments for students. These opportunities were necessary to guide their
thinking and their perception of problem situations and inscriptions that structure
these situations.
Here we present a hypothetical development of models that describe motion, from
context-close discrete models to the intended mathematical and kinematic models of
change and motion, and how this development can be underpinned for students in a
classroom situation. In section 5.3.2, the teaching sequence is described along with
our conjectures on the teaching and learning of the basic principles of calculus and
kinematics. This is the level at which we tested our research questions in classroom
situations.

5.3.1 Concept development through emergent modelling
We aimed at a trajectory on modelling motion that encompasses the notion of veloc-
ity as a compound quantity, the difference between instantaneous and average veloc-
ity, and the relation between velocity and distance travelled. This trajectory should
prevent conceptual problems such as sketched in chapter 2; we list: the velocity con-
cept, instantaneous change, differences in notations between physics and mathemat-
ics education, a too rapid formalisation into quantitative methods, and problems with
the use of graphs. It seems possible to develop kinematic notions together with the
mathematical characteristics of graphs from contextual discrete graphing to rea-
soning with graphs of continuous models and difference quotients.
Analysing motion in an appropriate context should evoke an interest in grasping
change and instantaneous change, in being able to predict, and in an initial orienta-
tion on change of position. In chapter 2 we described how Boyd & Rubin found how
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the intervals between successive positions in time series appeared to be a basic struc-
ture element for reasoning about motion: a structure element both for describing
aspects of motion, and for its representation in graphical inscriptions like trace
graphs and two-dimensional discrete graphs (see section 2.2.2). Reasoning with dis-
placements might result in graphs that have the potential for leading to a discussion
on the relation between change in velocity and change in the total distance travelled.
Therefore, we tried to induce reasoning with patterns in displacements in successive
time intervals to underpin the benefit of illustrating these displacements in two-
dimensional graphs. The teacher could play an important role in problematising
these patterns while discussing the students’ contributions.
Reasoning about velocity and its changes is still restricted to reasoning about dis-
placements and their changes in fixed time intervals. We think that students can
invent such graphical inscriptions and contribute to the intended trajectory. Moreo-
ver, the discrete graphs that might emerge in the activities can be a starting point for
reasoning about the graphical characteristics that play a key role in understanding
velocity as a compound quantity and leads on to the uses and characteristics of con-
tinuous graphs. For the instructional sequence, we confined the velocity concept to
a scalar quantity and paid no attention to a frame of reference. These choices were
the result of the limited number of lessons available and our focus on a trajectory
along a series of graphs. 

figure 5.8 Discrete graphs of measurements in fixed time intervals

This introduction to modelling motion should result in the students’ understanding
of the relation between displacements and distances travelled, which can be inter-

2 dim. discrete graphs
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preted mathematically as a relation between sums and differences in graphs (fig.
5.8). The model in the emergent-modelling heuristic is shaped by this sequence of
consecutive graphs. From a more global perspective, these graphs can be seen as var-
ious manifestations of the same model: a discrete motion-graph. Students can be
expected to contribute to the invention of this model. It can be used to model their
own ‘informal’ activity, and can gradually develop into a model for more formal
mathematical and kinematical reasoning.
With this sequence of graphs, the connection between two-dimensional graphs and
displacements in trace graphs is preserved, and leads to reasoning with increases.
We also expected to prevent interpretations of graphs that have pictorial resem-
blances with the shape of the actual trajectory. Drawing dots too rapidly in a two-
dimensional graph (and connecting them) might result in such interpretations (see
chapter 2).
This seems the moment for the transition to continuous models. Requests for more
precise predictions play a part and such questions evoke answers that involve more
measurements and smaller time intervals. Students experience displacements
becoming very small, and patterns that are more difficult to illustrate, which should
create the need for them to overcome the problem. Two solutions might arise: the
first one is scaling the vertical axis; this seems simple, but makes the comparison
between different motions more difficult. The second one is scaling the displace-
ments themselves. The observation that corresponding time intervals play a key role
in this scaling can be motivated by trying to compare different displacement graphs
with different time intervals. The second solution is the one we were aiming at.
Scaled displacements become constant (average) velocities in the corresponding
time intervals. This transition from graphing measured distances to displaying a
(piecewise constant) compound quantity was historically, and still is, a conceptual
leap.
Looking back at the history, we see that Beeckman used a kind of bar graph of piece-
wise constant velocities to display the hypothetical motion of a falling object. Such
a graph could be a topic in the transition from discrete graphs of displacements to
continuous velocity graphs. We think that the historical problem on free fall can be
used for students to investigate the consequences of models of free fall. These bar
graphs can be used for approximating a hypothetical, continuous velocity-time
graph of free fall. From this reasoning, bar graphs should come to the fore as a way
of approximating distance travelled with velocity-time graphs. These activities
allow the meaning of an area under such a graph to emerge. The area of each bar in
the graph represents a displacement and the bar graph is an intermediary step
between discrete two-dimensional graphs and continuous graphs of motion.
The underlying concepts develop parallel to these graphical models. In the begin-
ning of this sequence, velocity was associated with a displacement. Then the notion
of velocity developed into a compound quantity involving the corresponding time
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interval, and finally, in working with continuous models, the difference between
constant velocity, average velocity and approximating instantaneous velocity
emerged and was connected to various graphical characteristics.
What remains is the transition to the meaning of slope and difference quotient. Inter-
pretations of graphical characteristics of continuous distance-time graphs, like the
relation between linearity and constant velocity, are prepared in the discrete case.
Problematising instantaneous velocity – e.g. by posing the question whether some-
one exceeded a speed limit – could evoke the targeted reasoning with chords on the
graph for approximating velocity. Students might come up with the idea to use this
calculation of average velocities on small time intervals for approximating instanta-
neous velocities. 
As soon as these assumptions are developed sufficiently, we can start working on the
solution. As a result of the preparation with discrete graphs, we assumed that this
would give fewer problems than in the pilot test. The discrete experiences should
support and give meaning to reasoning in the continuous case. The compound quan-
tity velocity appears to be a measure for the slope of a distance travelled graph. The
composition of time and distance travelled can be related to intervals of increase in
the graph. In this way we expected the assumption to arise that the slope at a point
on the graph can be approximated for determining the instantaneous velocity at that
very moment.
Proceeding in this way, in the next activities and lessons, graphical models should
begin to function as models for mathematical reasoning about extrapolating and
interpolating patterns in these graphs and the use of the time intervals. Eventually,
the graphs should be used for reasoning about integrating and differentiating arbi-
trary functions. Consequently, a shift is made from problems cast in terms of every-
day life contexts to a focus on the mathematical and physical concepts and relations.
To make such a shift possible, a mathematical and physical reference framework
must be developed that can be used to look at these types of problems mathemati-
cally and physically (see also Simon, 1995).
Computer programs can be used to investigate many situations with graphs in order
to afford students’ reasoning about graphical characteristics and to develop their
understanding of the relation between velocity, time and distance travelled. It is
exactly the emergence of such a framework that this approach tries to foster. The
next section gives an idea how this shift could be presented to students and achieved
in a classroom situation.
Elements of such a development of calculus in the context of modelling motion can
be found in many curricula (Hughes-Hallet et al., 1994; Kindt & De Lange, 1984;
Polya, 1963; Sawyer, 1961). Nevertheless, we have not seen a systematic develop-
ment of both kinematic and mathematical notions based upon a sequence of inscrip-
tions, together with attempts to let students pose the problems that have to be solved
with respect to a global problem and in the intended direction.
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5.3.2 The instructional design for modelling motion
Here we describe an instructional design for modelling motion to learn the basic
principles of calculus and kinematics. It contains characterisations of student activ-
ities, guidelines for classroom discussions, and our conjectures concerning the way
in which the classroom learning processes will develop.
The guidelines are intended to help the teacher organise the lessons. In these guide-
lines we describe what can be discussed in classroom discussions, what input we
expect from the students, and what the outcomes of these discussions should be
before the students can proceed with subsequent activities. We do not want to com-
pel the teacher to act as we describe here, but rather to give clues to enable him or
her to deal with the presented materials in the intended way.
The conjectures that accompany this instructional design link back to our educa-
tional paradigm and the choices we made (see chapter 3). This section reflects our
current instructional theory for the learning of calculus and kinematics, although it
may be revised in the future. The principal theme of the sequence is grasping change
in order to make predictions. The sequence starts by considering weather forecasts,
since change and predictions are well-known notions in this context.

Weather forecasts to evoke an initial orientation on change of position 

A situation in which it makes sense to describe motion is the weather forecast. The
sequence starts with two satellite photos taken with 3 hours between them, and the
aim is to predict whether the clouds, that have clearly changed position, will reach
the Netherlands in the next 6 hours. We expect students to measure displacements
and extrapolate from them in making their predictions. Next, the students are shown
successive positions of a hurricane on a map, with fixed time intervals between the
positions, and asked to predict when and where it will hit the coastline. These ques-
tions should lead to opportunities for discussing the changes in successive positions.
A context is a story about the hurricane Olivia (fig. 5.9) with the accompanying
question: 

This problem is posed as an over-arching question and returns throughout the unit as
an example for the need to grasp change, and to reflect on what tools have been
developed (fig. 5.9). We suggested the teacher to discuss the students’ predictions
and we expected some of them to use the pattern of the hurricane’s increasing dis-
placements. Discussing this pattern should encourage the students to proceed by

The map shows a hurricane approaching land. It is Hurricane Olivia heading towards
the west coast of Mexico. The last five positions of the hurricane were determined on
9th, 10th and 11th October 2000 at 6 a.m. and 6 p.m. Predict when the hurricane will
reach land and describe how you worked this out.
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drawing the displacements vertically next to each other in a two-dimensional dis-
crete graph. After being introduced to time series and trace graphs, the students
worked with situations described in stroboscopic photographs. 

figure 5.9 Time series (left) Hurricane Olivia and (right) the falling ball

One of the questions was to display the motion of a falling ball using a graph to
describe how the ball is speeding up. The idea was that students think of intervals as
a measure of change of velocity (based upon Boyd & Rubin, 1996). Students should
realise that it makes sense to display the measurements graphically for investigating
and extrapolating patterns in the measurements. The time series and their graphs
evoke reasoning with patterns in displacements and the relation with change of
velocity. The weather context is what Noss & Hoyles (1996) called a situational rela-
tion between understanding and representations.
After working with the hurricane and the stroboscopic photographs, and conducting
the classroom discussion, two types of two-dimensional graphs emerge: discrete
graphs of intervals between successive positions, which we call displacements, and
discrete graphs of total distances travelled. The classroom discussion should lead to
a consensus about the use of these two-dimensional graphs for describing motion,
and that drawing such graphs is a sensible way to proceed. In addition, the students
have experienced that drawing graphs can be a time-consuming activity. 
At this point, the use of the computer tool Flash, is introduced. The extensive care in
introducing two-dimensional graphs might appear exaggerated, however, the con-
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ceptual development of velocity and the characteristics of graphs are tightly inter-
woven. We considered it necessary for the students to start again by studying situa-
tions that make it clear which situational characteristics lead to certain graphical
characteristics. Note that a key element of the notion of reinvention is that the mod-
els first come to the fore as models of situations that are experientially real for the
students. It is in line with this notion that graphs are not introduced as an arbitrary
symbol system, but as models of discrete approximations of motion that link up with
students’ prior activities or experiences, and afford the intended reasoning.

An attempt with ICT to induce reasoning with patterns in discrete graphs of mo-
tion and the relations between them

The idea was that a computer tool provides the students with opportunities to inves-
tigate many stroboscopic situations. They were offered a variety of problems that aid
contextual independence and supported their ability to invent and use graphical rea-
soning. The students could click on successive positions of an object in a stroboscop-
ic picture, and the program showed the distances between these positions in a table,
and displayed them in a displacement graph or in a graph of total distances. During
these investigations the students moved on from measuring and situation-specific
reasoning, to reasoning about graphs and their relations. The use of the computer
tool should enable them to invent properties like the relation between average dis-
placement and total distance travelled, and to find the relation between the linearity
of a distance travelled graph for a motion with constant displacements.
A picture of the Flash computer screen is given here (fig. 5.10). The tool shows a
stroboscopic photograph by Marey of a stick that has been thrown and which rotates
through the air (Frizot, 1977). In the photograph, successive positions of the middle
and of one of the endpoints of the stick can be located by clicking on the photograph.
The clicking signifies measuring distances between successive positions. Next to the
photograph is a table giving with the lengths of the displacements, and below the
photograph is a graph of the displacements. Students could select one of the two dis-
crete graphs (displacements or distances travelled) and the graph is constructed si-
multaneously with their clicking. The lengths are displayed in a two-dimensional
graph as bars instead of dots to preserve the link with the displayed measurement.
Consequently, we expected the lengths of the vertical bars to signify the distances
between their measurements (clicking) in the photograph.
The distance is represented in the graph, not as the height of a dot, but as the length
of a vertical bar. This representation is inspired by the historical development, de-
scribed in section 5.1.2, where geometrical figures were used to represent quantities
long before they were abstracted to dots in a graph. These graphs are assumed to af-
ford reasoning within the problem situation, i.e. about patterns in displacements,
change of velocity, and about the relation between displacements and distance trav-
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elled. These vertical bars again come to the fore in reasoning about difference quo-
tients in continuous graphs. 

figure 5.10 Flash screendump of a thrown, rotating stick

Questions about the thrown and rotating stick are ‘Describe the difference between
the two motions’ and ‘Does the total distance travelled differ between the two mo-
tions?’ 
We point out the reflexive relation between a model and the way one uses it (see
chapter 3). While reasoning about the motion in the photograph with Flash, the use
and interpretation of the graphical models change during the activities. This change
concurs with a shift in the way the students think about the model, from a model de-
riving its meaning from the modelled context situation, to thinking about mathemat-
ical relations. First, these graphs are used to describe the situations and are related
with measurements in the photograph. The image underlying the graph is that of the
subsequent intervals between the dots. Second, the use of the graphs is dominated
by thinking about graphical and conceptual relations between displacements and dis-
tance travelled (e.g. linearity in distance travelled is related to constant displace-
ments). What used to be a record of measurements is now used as a tool for reason-
ing about patterns in measurements. 
After these computer activities, students should be familiar with: 

– The crossing of lines of summit of displacement graphs implies that the velocity
of one of the objects exceeds the other, and not that one of the object passes the
other. 

– The crossing of lines of summit of graphs of total distances, implies one object
passes the other. 
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– Constant velocity is related to constant displacements and to a linearly increasing
distance travelled graph (and vice versa) (fig. 5.11).

figure 5.11 Constant displacements from the 4th measurement

– The discrete case of the main theorem of calculus is implicitly touched on in this
kinematic context where the sum of the displacements equals the total distance
travelled, and the difference between two successive values of the distance trav-
elled equals a displacement (fig. 5.12). 

figure 5.12 A graph of total distances together with a graph of displacements

The students’ reasoning with these graphs is important from a didactical point of
view, because we conjectured that they support understanding in the continuous case
and prevent iconic interpretations. During the activities with the graphical tools in
Flash we expected students to develop their understanding and their language about
changing velocity with graphical characteristics. Discussions among students should
tell us whether they really invent meanings, or use superficial resemblances and a
strategy of trial and error.
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These activities prepare for the transition towards the notion of velocity as a com-
pound quantity and the difference between average and instantaneous velocity. A
key question concerning this difference is:

figure 5.13 A graph of distance travelled

While working with these discrete graphs, students should come up with the prob-
lem that in order to be precise about predictions they need more measurements.
Consequently, time intervals decrease and it becomes more difficult to measure, to
picture, and to view patterns in the displacements. We think this is a way to make
the step from discrete graphs to a graph with a continuous time axis depicting aver-
age velocities.
The displayed average velocities are supposed to derive their meaning from the cor-
responding calculations and displacements. The shapes of graphs of average veloc-
ities look like those of displacements. This understanding of velocity is related to a
medieval interpretation of velocity as a potential displacement (e.g. see p. 91).
Our final question in this section reflects on the starting situation of Hurricane
Olivia. It is whether the tools developed enable us to make better predictions? We
expected the students to comment that you could measure the successive positions
of the hurricane at shorter time intervals to gain a better view of the pattern in the
displacements. In addition, they should note that you can never be sure about what
happens between measurements. They should differentiate between changes in aver-
age velocities based upon the measurements and the actual velocity after the last
measurement. This can be used by the teacher as a content-related motive for intro-
ducing hypothetical continuous models for predictions.

This is a graph of the distance travelled by an animal starting to run (fig. 5.13). As-
sume the animal does not change its speed after 25 seconds. Draw the displacement
graph and then draw the graph of the distance travelled. If you are not certain about
your drawing, explain why not. 
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Introduction of a continuous model: Galileo and free fall

The transition to continuous models was introduced in the context of a narrative
about Galileo’s work. Students were asked to interpret Galileo’s hypothesis that the
velocity of a falling object increases in proportion to the time it falls. This propor-
tionality between velocity and time was underpinned by the students’ investigation
of a stroboscopic picture of a falling ball with Flash.
We chose the story about Galileo because we thought that it would be a relevant
problem for the students, and would give them a view on a milestone in the history
of this topic. We did not necessarily think that all students were interested in history,
but the problem might interest students in the possibility of making predictions
based on a hypothetical continuous model. The central problem in this section is
shown in figure 5.14:

figure 5.14 Leaning tower of Pisa

We expected the students to come up with the idea of approximating the increasing
velocity by linearly increasing displacements, with a total distance travelled of 55
metres. The number of displacements depends on their choice of a time interval. This
strategy was expected to follow on from their preceding activities.
The displacements represent − in accordance with the medieval notion − the distance
covered if the moving object maintains its instantaneous velocity for a given period
of time. With these displacements they could calculate constant average velocities
for the chosen time intervals. The graph of the average velocities will also increase
linearly, and the slope of the graph then represents the constant value they need to
find. This last notion of the relation between the slope of a linear graph and the con-
stant value in the formula has been addressed in previous years, and we expected the
students to be able to use that notion in this context.
In the following activities, the students worked with the possible linear relation
between falling time and falling distance; for instance, they could verify it with
measurements in the stroboscopic photograph.

There is an anecdote that Galileo dropped
two lead balls of different weights from the
leaning Tower of Pisa to see whether they
reached the ground at the same time. 
The tower is 55 m high. The balls reached
the ground after about 3.5 seconds. 
Assume they did indeed fall according to
his theory v = constant x t. 
How large would this constant be for the
falling balls?
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Further development of the continuous model with discrete results

In the previous subsection, we expected the students to have found that linear
increasing displacements approximate a linear increasing velocity-time graph and in
this section we stated that Galileo derived a continuous model for the relation
between falling time and falling distance. This model can be represented with a lin-
ear velocity time graph. The central activity is about a discrete approximation of this
graph (Kindt, 1996; Polya, 1963). We let the students experience Galileo’s line of
reasoning.
We have not yet thought of a way of encouraging them to invent the discrete approx-
imation with piecewise constant velocities. The multiplication between a time inter-
val and a constant velocity results in a displacement in the corresponding time inter-
val. From there on, they should see the connection with the discrete case: adding dis-
placements gives the total distance travelled, and the use of the ‘middle’
displacement.
The teacher can introduce this situation by presenting the continuous graph and ask-
ing for a way to solve the problem of predicting distance travelled. The teacher
should try giving the students the opportunity to think about and discuss possibilities
before presenting Galileo’s reasoning. If they describe their thinking, it shows us to
what extent it is in line with Galileo’s reasoning, and how far Galileo’s reasoning
can further be revealed to them. In a subsequent activity, a discrete approximation is
presented to the students.

From his formula for velocity, Galileo found a formula to determine the distance trav-
elled. His reasoning was more or less as follows.
Below you see the graph of  v(t) = 10 . t.
The time is divided into 10 intervals for calculating the distance travelled after 5 sec
(∆t = 0.5 s.). The velocity in an interval is chosen as constant and equal to the initial
velocity of the interval (fig. 5.15).

For each 5 sec you can now calculate the displacement. Work out the displacement
in the interval [2.5 ; 3].
By summing these calculated displacements you get an approximation of the total
distance travelled.

By summing these calculated displacements you get an approximation of the total
distance travelled.
Is the approximation you have worked out too large or too small?
How can you make a better approximation of the distance travelled?

Every calculation of the displacement in a time interval can be seen as working out
the area of the accompanying grey bar. If you make the time intervals smaller, the
bars approach more closely the area of the triangular shape bounded by the sloping
line, the line t = 5 and the time axis.
Explain this.

What is the exact distance travelled?
112



The instructional design
figure 5.15 A discrete approximation of the proportionality between velocity and time 

After calculating and improving discrete approximations, the students were expect-
ed to make the connection between the area of the bars in the discrete graph, and the
area of the triangle that is created by the continuous graph:

s(t) = (t x 10.t) / 2 = 5.t2

This resulting formula reveals the quadratic relation between time and falling dis-
tance that Galileo used to test his hypotheses empirically. All students should be able
to connect this reasoning with the discrete case. This is what we should observe dur-
ing the activity. The students might be surprised by the calculation of an area. How-
ever, we expected them to experience this as valuable, because the resulting formula
is far more useful than calculating and adding displacements
There is a danger in our presentation of Galileo’s reasoning that the students might
solve the questions that follow without understanding the main concept. In the fol-
lowing activities, they have to use this reasoning, and to adapt it to new situations.
If they do this correctly, we assume that they have understood what happened. If
they do not succeed, it should be possible for them to trace the meaning as a result
of the emerging understanding supported by a series of graphs.
A following activity is about the velocity graph of a cyclist (fig. 5.16). In tackling
the question (approximate the distance travelled), we supposed students would
approximate the graph with bars of constant velocities at suitable time intervals.

figure 5.16 Question about the v-t graph of a cyclist 
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By approximating changing velocities with bars, the first step is made towards cre-
ating an experience base for the process of describing motion and leading to integrat-
ing functions. The calculations with intervals in continuous velocity graphs should
also be helpful for reasoning about velocity and instantaneous velocity with contin-
uous distance travelled graphs.

Evoking the need for determining instantaneous velocity

In the previous section, the students were introduced to continuous models and
graphs and they found a method of determining distance travelled from velocity-
time graphs. In this section, we posed the problem of whether it is possible to deter-
mine velocity from a distance travelled graph. In the preceding activities, the stu-
dents used a time interval ∆t for calculating displacements ∆s and total distances
travelled (Σ ∆s). These intervals are structuring elements for reasoning about dis-
tance travelled with velocity-time graphs. 

figure 5.17 Displacements ∆s in a discrete and in a continuous graph

The relation between discrete graphs of displacements and of distances travelled,
and the use of these structuring elements should support students to start reasoning
about a relation between the slope of an s-t graph and velocity (fig. 5.17). As in the
history of this topic, we assumed that the association between area and distance trav-
elled would be more accessible for students than the association between the slope
of a chord and the corresponding average velocity. Therefore, in our approach, rea-
soning about continuous velocity graphs preceded activities with continuous dis-
tance travelled graphs.
A situation about a Dutch comic character who drove his car through a village
(inspired by Kindt, 1979) is presented together with a continuous time graph of his
distance travelled (fig. 5.18). We expected students to reason about velocity with
discrete approximations of time and distance (∆t and ∆s) in this graph. The first
questions were: what would the graph look like if he travelled 10 km in 15 minutes
at a constant velocity? Do you think he broke the speed limit? We expected the stu-
dents to come up with reasoning in which they calculated quotients of displacements
and corresponding time intervals.
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figure 5.18 Was Mr Bommel breaking the speed limit?

The next questions addressed the problem of predicting velocity with the infor-
mation given in the graph. What would this graph look like if the velocity did not
change after the first 6 minutes? This idea referred to the reasoning in the discrete
case where potential displacements signified instantaneous velocity. 
The students were supposed to use graphical strategies with tangent-like results ‘on
sight’, and come up with different slopes and velocities. This should result in a mo-
tive to find a way of being more precise and to reach a consensus. After discussing
this activity, the tangent-like continuation is called a linear continuation at a certain
point of a graph. To be more precise about the velocity at any instant, it was suggest-
ed they model the situation where a part of the graph is approximated by a graph of
a function (in line with Galileo’s reasoning). The students were asked: Can you now
be more precise about the velocity after 6 minutes? Can you be more precise about
a linear continuation? 
At this point we thought of using a connection between strategies ‘by eye’ and a
strategy for calculating average velocities by using intervals, signifying displace-
ments and time intervals, and difference quotients. For making this connection, we
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let the students use the Slope computer program (inspired by Van der Kooij & Goris,
2000). They can let the program draw a difference quotient on the graph as a chord,
and can zoom into a part of the graph (fig. 5.19). 

figure 5.19 A screen dump of Slope

By investigating various situations, and using the chord and zoom-in tools, we
expected some of the students to invent ways of being more precise in their approx-
imation of the linear continuation from a point of the graph. This builds on the ideas
of potential displacements, and local straightness of a graph (Tall, 1996). A typical
question accompanying the program was: what would the graph look like if the slope
(i.e. speed) did not change from point P? For the students, this should be connected
to their work with Flash (fig. 5.11). With the Slope program, students could approx-
imate this continuation by directly manipulating a linear continuation and a chord on
the original graph that represents a difference quotient. 
After some introductory tasks, students could play a game with the Slope program.
The goal of the game was to determine the linear continuation of a graph at a point
by approximations with the difference quotient. The program presents five random
situations, and for each situation they get five points if their first try is correct. For
each wrong try, the number of points is decreased by one. In this game − depending
on the level they are playing at − the students have a number of tools for approxi-
mating the slope of the linear continuation. They can determine at which level they
want to play but the game should challenge them to be as accurate as possible, and
consequently, to think about the kinds of tools they can use.
The first level of the game with Slope is called ‘On sight’. It offers the possibility to
rotate the continuing red line to create a transition as smooth as possible. At this level
they cannot zoom in. It becomes difficult to determine the linear continuation on
sight, especially if the graph has a large curvature.
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The second level is called ‘Using all tools’ and here the students have two extra
tools: a zoom-in option and a blue chord on the graph that can be changed. The slope
of the chord is displayed. We assumed that the students will change to this level
when they feel the need for being more precise. However, we are conscious of the
danger that students may go to this second level and try to discover how to use these
tools by trial and error. This is an important observation criterion for this lesson.
We expected that, using Slope, the students would develop a strong graphic and
dynamic image to support the relation between the slope of a chord, the difference
quotient, local straightness of graphs, and approximating instantaneous change. The
graphic-dynamic image of approximating a linear continuation with Slope should
function as a generic organiser (Tall, 1996) for finding slopes of tangents and for dis-
cussing these notions in subsequent lessons. The images in Slope can start to func-
tion as a generic example, which embodies the general property of approximating
the value of instantaneous change with a difference quotient.
During these activities we expected the students to change their reasoning from sit-
uation-specific, e.g. about breaking speed limits, to mathematical reasoning with
graphs, difference quotients and instantaneous change. This mathematical reasoning
will support their understanding of instantaneous velocity and its relation with aver-
age velocity.

5.4 Summary
The instructional sequence is supposed to create a process of teaching and learning
in which students develop the basic principles of calculus and kinematics. This proc-
ess will enable them to shift from context-closed reasoning to a reasoning with
graphs and calculations with intervals. The development of concepts and related rep-
resentations can be traced back and is supported by a series of graphs. This series
should reflect students’ contributions and inventions during their activities, and the
guidance provided by both the teacher and the teaching materials.
The instructional design is an initial implementation for a conjectured local instruc-
tion theory and can be used as an operationalisation of the research questions. The
guided reinvention approach is realised by the design heuristics of emergent model-
ling and problem posing. The shifts presented, from ‘model of’ to ‘model for’,
should concur with a shift in the way students perceive and think about the model,
from models that derive their meaning from the context situation modelled, to think-
ing about mathematical and physical relations. Students’ reasoning is supported by
a global problem, which should evoke content-related motives to proceed in a cer-
tain direction. This problem leads to graphical reasoning, to posing problems that
have to be solved, and to reflections on the results of activities.
The central model in this learning route is that of a discrete graph. This model is the
basis both for integration and differentiation through sums and differences, and for
the relation between velocity and distance travelled.
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We described a general operationalisation of the research questions (see page 65).
With the instructional design we can make these questions operational. We demon-
strate this for the first lessons on Weather forecasts to evoke an initial orientation on
change of position (table 5.2). In the table we quote the research questions from
chapter 3, and describe how they should be answered within the educational setting
that we created. 

table 5.2 

This instructional design is elaborated for the lessons in the teaching experiments.
The teaching experiments are described in chapter 6. For each part of the sequence
in chapter 6, we first recapitulate the content and the observation criteria, and sec-
ondly, we present the results and give illustrations of these results.

Questions Observation criteria

1: Do students perceive the problem
situations as intended, contribute to
the guided reinvention process, and
reach the intended goals?

In their initial (intuitive) reasoning about the weather
problems, students refer to the intervals between
successive positions and relate lengths of these
displacements with velocity. Students invent ways
to describe and investigate patterns in displace-
ments.
These inscriptions and the corresponding reasoning
are shared, and form the basic input for classroom
discussions and for the way to proceed with two
types of discrete graphs.

2 EM: Does the previously planned
sequence of graphical tools fit stu-
dents’ thinking and foster advanced
reasoning by a shift from model-of to
model-for?

The way students reason with the graphs changes
from context-oriented (referring to distances in the
stroboscopic pictures) to an orientation on charac-
teristics of, and relations between, the graphs of
displacements and of total distances travelled.

2 IT: Do the representations in the
computer tools fit prior reasoning and
how do they afford advanced reason-
ing and sense-making?

Initially, students use the stroboscopic pictures and
prior activities to signify the graphs in Flash. During
work with Flash, students increasingly use the
graphs offered for solving the posed problems. As a
consequence, they simultaneously invent use of
and relations between these tools.

2 PP: Are students aware of a global
problem that is being solved, and do
the local problem situations provide
the students with content-specific
motives to proceed in the intended
direction?

Students point out that there are not enough meas-
urements for being precise about the hurricane.
They note that more measurements make it harder
to display displacements. The teacher can share
these remarks in a classroom discussion and evoke
content-related motives for the way to proceed. Stu-
dents experience that this way is a promising one
with respect to the global problem of describing and
predicting motion.
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6 Teaching experiments

This chapter presents the two teaching experiments with the instructional sequence
based upon the conjectured local instruction theory (see chapter 5). It begins with a
description of the first experiment in section 6.1 and a reflection on this in section
6.2. The reflection led to a revision of the teaching sequence, and to adaptions and a
better articulation of the underlying conjectured theory. A second experiment was
required to collect more systematic data about the role of computer tools in the learn-
ing process. The changes in the teaching sequence for the second experiment are dis-
cussed in section 6.3. The second experiment and a reflection on the experiences
gained are described in sections 6.4 and 6.5. 

6.1 First teaching experiment
In chapter 5, the conjectured local instruction theory was elaborated in an instruc-
tional sequence for ten lessons. This sequence was tested in parallel in two pre-uni-
versity classes, grade 10, at different secondary schools (school A and school B, more
details about this choice can be found in chapter 4). In this section we describe our
experiences with the sequence at both schools. The description is divided by the
units of the sequence which comprised two or three lessons. The description of each
unit is introduced with a short review of the contents (discussed more extensively in
the previous chapter) and the observation criteria in relation to the research ques-
tions. This introduction is followed by the results and illustrations of the results. 
At one of the two schools (school B), the students had already studied kinematics
during their course in physics, a treatment of the topic that focused primarily on
using formulas. At the other school (school A), the students had not yet studied kin-
ematics. This difference between the two schools remains a point of attention in the
analysis of our experiences. 

6.1.1 Weather forecasts to introduce the concept of change of position
The introductory part of the learning trajectory comprised one lesson. Predicting and
describing change were introduced in the context of weather. The central question
for the students was: how can you describe change so you can make predictions? Our
research questions were: can we foster the notion that change is an important issue
and requires tools for its description, and can we make students aware that graphing
displacements is a possible way to proceed?
The weather context is meant to focus the students’ attention on displacements in
constant time intervals (time series) as a way to keep track of change. First, students
will be given two satellite weather photographs with three hours in between and a
question about weather prediction. Our intention is that their reasoning will develop
so they use time series to organise the change in weather. One representation of a
time series is a trace graph of points and connecting lines of a moving hurricane
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drawn on a geographic map. In relation to the central question this representation is
the starting point for the learning trajectory. Our expectations for this lesson were
described in section 5.4.2. The lesson is successful if the students refer to the impor-
tance of gaining insight into patterns of trace graphs in the weather context. Moreo-
ver, we expect that at least a few students will, on their own initiative, draw two-
dimensional graphs of the displacements in order to better analyse and extrapolate
the pattern. The class discussion based on these solutions should result in a consen-
sus on proceeding with two types of two-dimensional discrete graphs: the displace-
ment graph and the distance-travelled graph.

Results

The lessons at the two schools were conducted differently. The central aspects
became rapidly clear at school A from the class discussion immediately following the
first task. At school B, the tasks were discussed at the end of the lesson and there was
no class introduction. One of the reasons for this was that the lesson took place on
Monday during the first hour, a time when many students arrive late. This was an
unexpected phenomenon at this school. The emphasis during the activities at school
B was therefore placed more on independent work (in pairs) than on class discussion.
This had the consequence that the students worked through the tasks more hurriedly
since they did not entirely understand what was expected of them. 
The activity with the two satellite photos prompted the students to use displacements
to make predictions about the movement of the clouds. This was apparent from the
students’ worksheets and the first class discussion at school A. The students reasoned
about the change in velocity of the hurricanes with the changing lengths of displace-
ments and the patterns of these changes. In their reasoning, they described changes
in patterns with speeding up and slowing down. Only one student misinterpreted the
trace graphs and confused, for example, points that were close to each other with a
higher frequency, which suggested a higher velocity. The iconic nature of the graphs
did not cause any confusion at this point because the trace graph followed the track
of the hurricane on the map.
Especially at school A, the students contributed ideas that provided direction for the
solutions and for the sequel to the lesson. The question ‘How can you improve the
prediction?’ was linked in the class discussions and the written work primarily to the
answers ‘with more data’ and ‘with more information about the phenomenon’ (for
example, about the difference in velocity of a hurricane over water and over land).
The students did not independently state that better mathematical tools could be use-
ful. Only one student’s notebook contained the statement that more knowledge about
graphs could aid this process. The teacher did not focus the discussion on the impor-
tance of gaining insight into the patterns of the displacements. This would have
evoked the need for a different way of organising displacements.
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In the planned activities and the instructions for the teacher, we apparently had not
made it sufficiently clear that the teacher should have problematised precisely this
aspect: understanding motion by understanding patterns in displacements. The prob-
lem-posing role of the teacher when evoking questions and ideas was more impor-
tant and more subtle than we expected. The teacher at school A did not focus the dis-
cussion about the hurricane on how acceleration occurs, i.e. the pattern in the inter-
vals. But he did address the request for more data. This became the direction in
which the students looked for the answer, while we had intended the discussion to
go in the direction of understanding patterns and reasoning with various graphs and
their global shapes. 
During the class discussion about a time series, the teacher at school B asked the stu-
dents about the change in ‘displacements’, even though this concept had not yet been
explicitly introduced and had not yet been linked in this lesson to the distances
between the points. This is a good question about one aspect of organising the infor-
mation in a different way, but it was asked before the problem had been discussed
for which it could have offered a solution. Despite the fact that these students had
already studied kinematics during their physics course, they then appeared to guess
at his intentions and the desired meaning of the displacements, which was exactly
what we wanted to avoid. 
We were of the opinion that the importance of a graphical description for making
predictions had started to become clear to the students. Students contributed to the
idea that time series play a role in this process. With the contribution of the students,
consensus was established about the model of the time series: the trace graph. In
their reasoning, changes in velocity signified changes in lengths of displacements in
subsequent time intervals. Nevertheless, the importance of gaining insight into pat-
terns and trace graphs did not emerge sufficiently. As a result, the intended two-
dimensional discrete graphs did not come up for discussion. During the students’
homework, this might cause a problem with the activity involving patterns in dis-
placements of a stroboscopic photograph of a falling ball (see page 106).
We have the feeling that in the present teaching sequence − with the accompanying
instructions to the teacher about when to leave the students free to articulate their
own ideas and what guidance is needed − this type of activity (a context problem
about weather) has the potential to interest students in the issue of change and sup-
ports them to develop the idea that displacements between successive positions are
elements that provide structure to their reasoning about motion. At the level of local
teaching theory, we concluded that situations with discrete measurements, begin-
ning with patterns in trace graphs in a context problem about making predictions, are
useful starting points for teaching calculus and kinematics.
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Illustrations of the results

While working on the question about the satellite weather photographs, the students
brought up the problem of velocity: change in the velocity and direction of the
clouds. During the class discussion, two satellite photographs taken at different
times were placed on the overhead projector. The discussion concerned velocity,
change in velocity and the direction of the displacements. The students concluded
from the photographs that in three hours the clouds travelled the distance from Brit-
tany (F) to Belgium, and they extrapolated the distance from their measurements. At
this point, Mathias remarked:

You can now measure the velocity, but you don’t know if it goes faster or slower later on.

We suspect that Mathias is referring here to the limitations of measuring and extrap-
olating. Many of the students participated in this class discussion. This is how the
introduction to the central problem of understanding change took place. In the fol-
lowing task, the students interpreted the given time series without any trouble, and
they focused on the change in displacements when describing the motions and mak-
ing predictions. Inge’s written answer is representative of what most students
answered, and illustrates an interpretation of a given time series where she used the
notion of ‘slowing down’ signifying a decrease in displacements.

Many hurricanes change direction and go slower and slower, in 24 hours they don’t go as
far. When they are turning, they slow down.

As part of the tasks about a hurricane (named Olivia), a time series was provided as
a model for the trajectory of the accelerating hurricane (see page 106). Students
extrapolated the line smoothly and repeated only the last displacement, or tried to
use the increasing pattern to determine the moment when the hurricane will reach
land.
During the discussion of these solutions, only one student suggested that you could
use the latter method to extrapolate a pattern of increasing displacements. However,
the teacher at school A did not formulate a problem about the progression of the pat-
tern, but instead focused on the necessity for more data. The transcript below illus-
trates this:

1 Veerle: Extrapolate the line.

2 Teacher: Yes, that’s the first thing you can do. [He extended the line on the
sheet.] And then?

3 Sabine: Measure the distances between the points. [She has not measured pre-
cisely, but estimated only the final trajectory.] You put that at the end.

4 Teacher: So you are assuming that the hurricane is always going at the same ve-
locity?
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On line 6, instead of agreeing with the student’s remark, the teacher could have
asked ‘How do you know?’ So far the discussion focused on the precision of making
a prediction. It is striking that at the other school (school B), a comparable discussion
about a previous task proceeded with more difficulty. There the teacher emphasised
that there was something going on with the displacements, but this was before it be-
came clear to the students how the displacements could offer a solution to the prob-
lem. The transcript illustrates the students’ attempts to find the answer which the
teacher desires:

5 Other student: But it keeps going faster.

6 Teacher: Exactly.

7 Jarno: But it goes slower on land. [This was the result from studying trace graphs
of various hurricanes.]

8 Teacher: Yes, they could cancel each other out.

9 Inge: But it’s still about when the hurricane hits land.

10 Teacher: But you need this to estimate the following point.

11 Student: Could I have more data?

12 Teacher: Exactly, you don’t have enough data. Unfortunately this happens fre-
quently in the real world. Therefore you just have to reason with this data and
then make estimations for what you don’t know.

1 Teacher: Exactly. One of the hurricanes appears to go over land and the other
does not. That’s all there is to it with this type of hurricane, of course: do they go
over land or do they not? I think this is the essence of what you are trying to pre-
dict. So you try to say something here about the direction the hurricane would
take. This is based mostly on experience. Another element [...] also plays a role
here: the displacement. What is going on with the displacement?

2 [silence]

3 Teacher: Is nothing happening to the displacement? … Has anyone looked at
this? With hurricanes it’s also important what time they hit land. Not only if they
hit land, but also when. So they still have time to take precautions.

4 Student: But isn’t that already on the map? Next to the dots it shows how many
hours….

5 Teacher: And does something change there?

6 Student: Something changes with the dots, they’re always 24 hours apart...

7 Teacher: They’re always 24 hours apart ... I thought that the size of the displace-
ment played a role. Has anyone seen this at all? Does it vary or doesn’t it?

8 Gwen: It slows down...

9 Teacher: Where do you see that?

10 Gwen: The points are closer together. Maybe that’s caused by the land.
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Gwen’s response on line 8 illustrates that she does not yet understand exactly what
the teacher was intending with his question about what is going on with the displace-
ments. 

6.1.2 Using IT to induce reasoning with discrete graphs of motion
During the first lesson we did not successfully address the patterns in displacements
and the use of two-dimensional graphs. The aim of this second unit was that students
should begin to understand the need to display patterns in trace graphs and under-
stand the relation between these patterns and the characteristics of displacement
graphs and distance-travelled graphs. Subsequently, both two-dimensional graphs
should emerge during the discussion of the students’ answers to the question about
the stroboscopic photograph of the falling ball.
We gave students the opportunity to investigate various situations with the computer
program Flash (see page 108). We wanted them to construct the relation between
patterns in trace graphs and graphical characteristics during their investigations. Our
main question was whether or not the activities with this computer tool were com-
patible with prior activities, and supported the students to reason in the intended
way. We expected their reasoning to change from context oriented − where lengths
and patterns of displacements refer to distances on the stroboscopic pictures − to a
more abstract orientation involving characteristics of the two graphs in Flash.
During the lesson after the computer activities, our intention was that these relations
would be made explicit during a class discussion of their experiences with Flash.
Afterwards, the students worked on tasks aimed at familiarising them with the
intended reasoning with two-dimensional graphs and to create opportunities for
developing models of motion that were more continuous.
With respect to the central question about predicting motion, we expected that stu-
dents would experience the limitations of discrete models for displaying motion, and
would then feel the need for other graphic tools. One limitation is the measurement
problem: to be more precise one needs more measurements, the displacements
decrease and it becomes more difficult to see a pattern. To solve this problem, the
teaching material guides students to graphs of average velocities (scaling measure-
ments to the corresponding time intervals). Our expectation that such graphs emerge
from their reasoning should be supported by the way the students presented the
advantages of these graphs during the class discussions. 
At the end of this unit, the teacher reflected with the students on the task about the
hurricane. We expected the students to realise that they could not be any more pre-
cise since they did not know what happens between the measurements. The teacher
should use this uncertainty to start a discussion about the difference between average
and instantaneous velocity and the use of continuous models of motion.
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Results

The lessons in this unit were only partly carried out as planned. The computer lesson
did not take place at the school A due to technical problems. During the next lesson,
two pairs of students went through the activities using laptop computers. The results
concerning the computer activities are based on the work of one of these pairs and
on one pair at school B, where the computer lesson was completed by the entire class. 
The introductory tasks about making a graph to show how the falling ball accelerates
did result in the intended diversity of graphs. In the students’ workbooks, we
observed that three variables had been used for the vertical axis: sequential displace-
ments, total distance travelled, and height. For the horizontal axis, we saw two
choices: numbered measurements and time. The students alternated between draw-
ing the graph with points or with a continuous line (no bar graphs were used). In
short, this freedom to choose the kind of graph to draw provided input for a discus-
sion about possible methods of description as an introduction to the discrete graphs
of Flash. However, the teachers spent little time on this discussion. They wanted to
give the students plenty of time for the computer activities. Moreover, the computer
lab did not lend itself very well to a class discussion. 
The limited preparation resulted in there being no consensus beforehand about why
and how to proceed with the discrete graphs in Flash for modelling motion. The first
task was used by the students to explore the program. The substantive yield of this
activity was low. However, measuring by clicking and seeing the graph appear did
have the intended development as a result. Due to this building upon stroboscopic
pictures and trace graphs, the process of learning did not remain to trial and error.
Most students deduced that the lengths of the vertical bars signified displacements
on the trace graph.
During the computer lesson, the two pairs of students at school A developed their rea-
soning and their use of the program. At the beginning, their language primarily
referred to successive positions in the stroboscopic photograph. As the lesson pro-
gressed, their language increasingly involved characteristics of the graphs of dis-
placements and of distance travelled. Our intention was that the students’ emerging
reasoning would concern these graphs and how they are related. The students
appeared to develop insight into the relation between a graph of constant displace-
ments and constant velocity and the accompanying linear graph of distance trav-
elled. However, it is unclear how explicitly this took place. The only indications we
could find in the records concerned the participation of an observer who requested
clarification about what the students thought. Although the observer tried to be as
restrained as possible, requests to make things more explicit do influence the learn-
ing process (i.e. reflection) of the students. 
During the discussion about the computer lesson at school B, the teacher only asked
what the advantage of one graph was above the other. There appeared to be no ques-
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tions about this. This could have been because the students had the feeling that they
had already learned this in physics. However, the learning process that we observed
with the pairs of students at this school showed many similarities with the process
of the pairs at school A. We were unable to find any systematic differences due to the
students having more previous knowledge about kinematics. In retrospection, a
more extensive discussion about the computer lesson was required to emphasise the
relation between the two graphs and the specific limitations of their discrete charac-
ter. After all, in the next lesson, problems will be designed about precisely these
aspects.
At school A, the computer lesson was not discussed afterwards mainly because most
students did not participate in the computer activities. At this school, the teacher
reflected first on the state of affairs resulting from the activity on the hurricane. After
this he had the students work on several tasks from the instructional materials with
pen and paper and discussed the various graphs, their mutual relation and the relation
with descriptions and predictions of motion. During these discussions, the students
made fewer contributions than at school B. We conjectured that they were less famil-
iar with the graphs and the relevant reasoning because they had missed the computer
lesson.
Our intention was that at the end of this lesson (the one after the computer lesson),
an activity would be discussed where the students would extrapolate a displacement
graph and a distance-travelled graph (page 110). It turned out that the students at
both schools had correctly extrapolated the graphs (linear increasing distance trav-
elled and constant displacements). There was, especially at school B, an extensive
discussion about the value of the constant displacements. In this way the distinction
between instantaneous velocity and average velocity in relation to the characteristics
of these graphs emerged; characteristics which anticipated the activities in the com-
puter program Slope (page 116).
The fact that at school B the students were more easily able to discuss continuous
changes with the discrete graphs is probably due to their previous knowledge of kin-
ematics (the relation with tangent lines). Based on the available data, however, we
could not conclude this with certainty.
Due to the schedule for the experiment, neither of the teachers had any time to dis-
cuss the activities from the end of this unit about the limitations of discrete graphs.
In the students’ workbooks, however, we found starting points for such a discussion,
but most of their answers were incomplete. Finally, no problem was designed for the
transition from a discrete horizontal axis to a continuous time axis and no consensus
was achieved about the relation between displacement graphs and graphs of average
velocity. In retrospection, we see that we did not emphasise the importance of this
for the students or the teacher sufficiently, nor did we describe this transition in suf-
ficient detail.
After the relevant lessons, we discussed this with the teachers. We decided that dur-
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ing the task about Galileo, we would focus extra attention on the transition from dis-
crete measurements to a continuous model for velocity, by initially reasoning as
much as possible with displacements, and then hold another class discussion about
the transition to graphs of average velocity. 
Based on these experiences, it was not an easy task to formulate conclusions about
this unit and we will return to this in our reflection on this first teaching experiment
in section 6.2.

Illustrations of the results

The two students who were observed at school B during their work with Flash used
the first activity of the falling ball to explore the program. They looked at what hap-
pened on the screen and they saw the creation of the table and the displacement
graph (fig. 6.1). They interpreted the graph successively as (i) the height of the ball,
(ii) the distance to the bottom of the screen, and (iii) the distance to the top of it. 

figure 6.1 Flash and the falling ball 

They did not appear to have noticed that the distances between the sequential posi-
tions were on the graph. They did not check their earlier predictions, but completed
this task and stated they ‘got it’, probably meaning that they understood how to oper-
ate the program. 
After this they moved on to the activity about the stick. First they followed the mid-
dle of the stick (with blue) and then the end (with red)1. They initially interpreted the
graph once again as a description of the distance to the ground. One student
explained to the other that this was the reason for the waves on the graph. Then they
realised that their interpretation was incorrect because the waves did not correspond
with the motions on the photograph (fig. 6.2). 

1. Coloured screen dumps can be found in the appendix Computer tools.
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figure 6.2 Flash and the rotating stick 

The observer asked them what the graph could mean in that case. By comparing the
bars on the graph with positions on the photograph, they related the bars with the dis-
tances between the sequential click points, i.e. the displacements. During the discus-
sion that followed, the language about velocity became related to characteristics of
the two graphs. 

1 Jan: That’s right, then, hey. What does it mean then, that the red is wavy?

2 Observer: That’s the distance between the dots.

3 Ayla: That sometimes the ends go faster and sometimes slower.

4 Observer: Yes. [turns to Jan] Do you see that too?

5 Jan: Yes.

6 Observer: Yes, that’s what you really see on the photo, that - can you see that on
the photo? That the end sometimes goes faster? … How can you see that on the
photo?

7 Ayla: Then there’s less space between two sticks. I mean, between two photos.

8 Observer: If it goes faster?

9 Ayla: When it goes slower. [Jan confirms this.]

10 Observer: ... Can you tell, from this table, if the centre moves further than the end
in total?

11 Ayla: No... the red one does. [the endpoints of the stick]

12 Observer: Why do you say that?
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figure 6.3 Distance-travelled graphs of the rotating stick 

Apparently, the iconic interpretation of graphs is also very stubborn in this case.
While reasoning about the graph, the students first used a trace graph on the photo-
graph. However, when asked about a possible difference in the distance travelled be-
tween the middle of the stick and the end of the stick, they limited themselves to the
displacement graph. Patterns in this graph were linked to the description of velocity:
‘sometimes faster, sometimes slower’ and ‘less space corresponds with slower’.
Moreover, the straight progression of the tops of the discrete distance-travelled
graph became linked with the constant forward displacements of the middle of the
stick (shown by making a linear gesture).
The two girls at school A went through a similar process as the two students de-
scribed above. Initially, they tended to interpret the graph in terms of the path fol-

13 Ayla: Why do I say that? Well, go down one time interval. [Jan moves the mouse
to the graph with displacements under the photo]. The red trajectory, that’s more
if you add it all up than the blue one. [She changes the displacement graph to a
graph of total distance travelled (fig. 6.3)]. 

14 Jan: It doesn’t get any higher... [he points to the blue one]

15 Ayla: The red one has travelled further. [Observer and Jan confirm this]

16 Observer: So your estimate was correct. Do you understand what’s happened
now?

17 Jan: Yes, yes. It added all these things together.

18 Observer: What you just saw was that the red fluctuated around the blue and that
the blue was fairly constant. How can you see that the blue is fairly constant here,
for example?

19 Jan: Because if you drew a line, it would be straight. [Ayla makes a straight line
on the screen.]
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lowed, and later in terms of displacements and velocity. Floor (one of the girls) reg-
ularly used her fingers to describe displacements. The displacements became larger
and she then talked and gestured about differences between sequential positions that
became larger and about a velocity that increased (fig. 6.4). 

figure 6.4 Displacements on the photograph and on the graph

The same linking of language between velocity and graphic characteristics was also
seen with the two students at school B, who were observed during an activity about
the cheetah and the zebra (‘Would the cheetah still catch up with the zebra if it start-
ed 10 seconds later?’), they found the answer with Flash. The remark in line 11 was
– at least implicitly – going towards instantaneous velocity.  

 

1 Ayla: Yes, the cheetah would still catch up.

2 Observer: Really? How did you reach that conclusion?

3 Ayla: Uhhm, you put two here together and then you can see here that they’re
both equal.

4 Observer: Yes. And which of the two graphs is that?

5 Jan + Ayla: That’s the total distance travelled. [They point at the left-hand graph
in fig. 6.5.]

6 Observer: Oh yes. So why did you choose the one for the total distance?

7 Jan: Because it’s the total distance that they cover and then you can…

8 Ayla: Then you can see if they catch up with each other.

9 Observer: And can’t you see that in the other graph? [The right-hand graph in fig.
6.5.] On that one you can also see that the red catches up with blue, can’t you?

10 Jan: Yes, but...

11 Ayla: Yes, but that’s at just one moment. That only means that it’s going faster at
that moment, but not that it’ll catch up with the zebra. 
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figure 6.5 Flash graphs of the cheetah and zebra activity 

The discussion of the computer lesson at school B took place two lessons after the
lesson itself (during the intervening lesson, a test on the previous chapter was dis-
cussed). The teacher asked if the students still knew which graphs were present in
the program. 

The teacher was satisfied when the students answered his questions correctly and
there were no further remarks. However, the silences during the discussion indicated

1 Teacher: You saw two types of graphs...

2 [silence]

3 Students: Bar graph ... line graph.

4 [The teacher lets the students know that this is not what he meant.]

5 Teacher: You were showing two things in these graphs, what were they?

6 Student [now responding quickly]: Displacement and distance travelled. Another
student: x-t and v-t. [The teacher addresses the remark of the first student.]

7 Teacher: Does one graph have an advantage over the other?

8 [No one speaks.]

9 Teacher: In a specific situation, does the cheetah catch the zebra for example?

10 Student: The distance travelled.

11 Teacher: Why?

12 Student: Then you can see that he really catches up with him.

13 Teacher: And the displacement graph?

14 Student: That something goes faster.

15 Teacher: Good. You have picked up on this aspect very well. Check your sums
and then go further. We will talk about this later in class.

distance travelled displacements
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that the students did not understand his questions immediately. Moreover, it is un-
clear whether all the students actually understood the difference between the two
graphs. Neither the relation between the two graphs nor the specific discrete charac-
teristics were discussed. It appeared that the students were attempting to use their
knowledge from their physics lessons. At least one student explained the link with
the terminology that is customary in physics (line 6 in the protocol above). It was
unclear whether they were simply trying to satisfy the teacher’s expectations or were
actually thinking along with the teacher. 
At school B the teacher discussed the activity on the extrapolation by asking: to what
extent can you extrapolate a discrete graph from one point in time? The question was
how the graph would appear if the velocity no longer changed after 25 seconds. The
teacher drew both graphs on the blackboard and asked the class where the distance
travelled graph should go from this point. 

1 Gwen: Uhh, horizontal.

2 Student: But then it would be standing still, wouldn’t it?

3 Student: Draw a line through it. [draws a sloping line in the air]

4 The teacher drew a sloping line through the last peaks on the graph.

5 Teacher: So there are two answers. Which one is correct?

6 Chris: I think that horizontal is also correct. That’s a constant velocity, isn’t it?

7 Student: But it’s still not the same velocity as at 25?

8 The teacher again indicated the horizontal continuation [places another mark on
the blackboard]. Is this possible?

9 Student: But it can’t just suddenly stop, can it?

10 Teacher: How can we get there? Would it have a velocity of 0 after 25 seconds?

11 Student: Yes. Then it slowed down very quickly.

12 Teacher: So it is possible. You can imagine a situation where that would be pos-
sible. Can you also imagine a situation where the line would just continue on?

13 Student: Then you would use constant velocity.

14 Teacher: And something in between, is that also possible?

15 Student: Yes. If it slowed down a little before the 25.

16 Teacher: So, we actually have to conclude that at this moment [points to the
board at 25 seconds] we do not know the velocity from this graph. We can imag-
ine it, within certain limitations that we can think of. And then there are many pos-
sibilities (fig. 6.6). 
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 figure 6.6 How should the graph be continued? 

This discussion concerned possible instantaneous velocities based on data on the
graph. The students arrived at various possibilities. Gwen said ‘horizontal’ (line 1).
However, from her notebook it turned out that she actually meant a horizontal dis-
placement graph (fig. 6.7). 

figure 6.7 Gwen’s displacement graph (left) and distance travelled graph (right)

The student’s comment on the left-hand displacement graph was ‘The motion
becomes constant’, and on the right-hand graph ‘The distance travelled increases
regularly’. One student interpreted Gwen’s remark about ‘horizontal’ on the dis-
tance-travelled graph as standing still and suggested a sloping, linearly increasing
graph. Gwen did not correct this during the class discussion; nor did the teacher ask
if this was what she meant. The teacher summarised the uncertainty. 
The topic of this discussion was a graph. The students and the teacher discussed this
graph in graphic terms such as sloping and horizontal, but at the same time they were
discussing constant velocity, standing still, and moving faster or slower. 
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The concept of velocity took shape in the students’ language simultaneously with the
characteristics of graphs. Although these students had already taken the physics
course, it turned out that these activities were not trivial. Apparent slopes on discrete
distance-travelled graphs signify the value of displacements in the accompanying
time intervals. This reasoning created building blocks that will later be needed to
interpret the difference quotient. Moreover, the idea was established that average
velocities can be calculated and that instantaneous velocity can only be approxi-
mated from this data. 
At school A, the teacher took more time for the class discussion because they did not
do the computer lesson with Flash. The teacher did not begin the class discussion as
a direct result of an activity, but he first looked back at the task about the hurricane
Olivia (page 106). He once more showed the students the map of the time series of
the hurricane, asking them how they would now tackle this task. A discussion started
about the usefulness of the two types of graphs with this problem. 

As a result of this discussion, the two graphs were again placed in the context of
understanding change. The teacher discussed the advantages and disadvantages of
both graphs. Unfortunately, he drew a continuous graph as if it went through the
peaks of the discrete graphs. We had seen the students do this as well, but thought it
was better to not yet discuss its meaning. Only Martin and Mathias contributed to
this discussion; both were good students. The other students listened and took notes.
After this the teacher had the students work on the extrapolation task. He announced
that he would discuss this activity at the end of the lesson. 
The discussion of the extrapolation activity had the same elements as the discussion
at school B. In this case, however, the teacher did not focus the attention of the class
as much on the uncertainty about what happened after 25 seconds. The teacher

1 Teacher: We tried to predict the time and location of the hurricane. But what
we’ve done until now, couldn’t we do it better? Could you tackle this in a different,
perhaps handier, fashion? Previously we more or less guessed where the hurri-
cane would end up. We lacked data and mathematical material.

2 Martin: I think that you could draw a graph of the distance travelled and that you
could then place a horizontal line at the point where it, uh, hits the coast.

3 The teacher walked to the blackboard: So, you say a... [also writes on the board]
distance-travelled graph. Do you mean a graph of the total distance travelled or
...?

4 Martin: Total.

5 Teacher: I’ll sketch that graph, then you get something like this. And then? He
has drawn a parabolic continuous graph.

6 Martin: And then you calculate the distance from the starting point to the coast.

7 Mathias: Maybe you could also put the accelerations, uh, the displacements on
a graph and map them out and then calculate how much influence the …
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guided the discussion towards the question of how to determine the velocity after 25
seconds? Inge was the first to respond with a reference to the displacements.

The teacher discussed this task at the end of the lesson, where he also had a substan-
tive aim: measuring more often is more precise, but yields very small displacements.
A conclusion was that for approximating the velocity at one instant with distance-
travelled graphs or displacement graphs, the smallest possible steps are required.
Lisanne apparently understood the method, but for her this was not an option in this
context (line 10). As an aside, the horizontal axis was already presented in the activ-
ity as a continuous time axis, while this could not have been the case. 
The question was whether the students were ready to use continuous models after
this preparation, although the students had now experienced the limitations of dis-
crete models. This provided a stimulus for making a distinction between average
velocity and instantaneous velocity. The latter can possibly be approximated, but
can never be precisely determined using measurements of displacements. 

6.1.3 Introduction of a continuous model: Galileo and free fall
This unit comprised two lessons on the transition to continuous models in the con-
text of Galileo’s hypothetical continuous model for free fall. The central questions
for the students during these lessons were: what does his hypothesis mean, how can
it be tested, and how can it be used to make predictions? 
In the previous lesson, there was no explicit discussion of limitations of discrete
graphs and of the possibilities of continuous models for predicting change. Unfortu-
nately, due to long-term planning at both schools, there was little time to spend on

1 Inge: The bars will stay the same height as the last one.

2 Teacher: So you assume that the velocity will stay the same, which is …?

3 Inge: One metre per 5 seconds.

4 Teacher: Has the velocity always been the same?

5 Various students: We don’t know that; that’s possible; no.

6 Teacher: How could you determine the velocity more precisely at that instant?

7 [Inge has no idea. No one responds.] Teacher: Mathias?

8 Mathias: Use smaller time intervals.

9 Teacher: Good, measure smaller intervals. He sketched on the blackboard.

10 Lisanne: Yeah, ok, but you don’t have that information. How do you know that?

11 Teacher: Yes, I’m just making a sketch.

12 Lisanne mumbled: But that’s not any more precise… you couldn’t think that up
yourself, you have to get that information some place, don’t you?
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an extra review of several activities. Together with the teachers, we decided to begin
the lesson with a class discussion about Galileo’s problem. As a result, not all stu-
dents had the opportunity to think about the consequences of the proportionality
between falling time and falling velocity taking. We therefore had less understand-
ing of whether or not the sequel to the lesson linked up with their ideas, but never-
theless this appeared to be the only option for making progress.
The first activities concerned working with a hypothetical progression of displace-
ments that increase linearly; then a link was made with ‘piecewise constant average
velocities’ that increase linearly. After this, the constant of proportionality between
falling velocity and falling time of a free fall from the Tower of Pisa became a topic
for discussion (see page 111) In any case, the teacher should discuss this task with
the class.
The research question for this lesson was whether it was possible to make clear to
the students the significance and the consequences of the transition from discrete to
continuous models. We studied whether the students used discrete tools for approx-
imating a continuous model, and if they did so, how they used these tools and how
they gained insight into the characteristics of a continuous model and the relation
with discrete models. We assumed that the students would use vertical and horizon-
tal intervals during the interpretations of continuous graphs. A choice of intervals
which would enable them to build their reasoning upon the discrete models. More-
over, these activities should strengthen their insight into the meaning of instantane-
ous velocity and the relation with average velocity.

Results

Following the class’s introduction to Galileo’s problem, the students started with an
activity about free fall from the Tower of Pisa. Hardly any of the students were able
to complete this task independently at home. They entered the classroom rather irri-
tated. We had underestimated the complexity of the task; during the class discus-
sions it turned out that this was due to the large number of steps that the students
were expected to complete.
It was striking that the students contributed actively to the class discussions. The use
of the ‘middle’ displacement was unexpectedly strong (the distance travelled with
displacements that increase at a constant rate is equal to the distance travelled with
constant displacements that have the value of the middle displacement). At both
schools, the students independently arrived at this principle during the discussion.
This insight supports the idea that average velocity is indeed an average of all veloc-
ities and not just a quotient of two intervals. 
The type of reasoning used by the students is similar to what actually happened dur-
ing the historical development. Calculating with displacements made it possible to
think about change in velocity. Oresme was concerned about potential displace-
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ments and not about actual displacements, but nevertheless this was an idea that the
students came up with themselves.
This observation confirmed our assumption that reasoning with displacement graphs
works well for the students in this situation. Although we have some indications for
the supporting role of the computer program Flash, we cannot say whether or not
Flash played an essential role in this process. We ascertained too few differences
between school A and school B to draw any conclusions. The same applies to the pre-
viously acquired knowledge of kinematics of the students at school B. For that mat-
ter, we did see that several students at school B tried to apply formulas for the free
fall task, although mostly these attempts were futile.
Unfortunately, we observed hardly any students making a contribution to the link
with the continuous model. The distinction between a pattern in discrete displace-
ments and a continuous change in velocity appeared to be difficult for the students
to make. This is because the students often had already used ‘velocity’ when reason-
ing about the displacement graphs, and the peaks were linked with the continuous
line. At the end of the class discussion, the teacher had the opportunity to problem-
atise the relation between the ‘middlemost displacement’ and the ‘average instanta-
neous velocity’, but he did not make use of this opportunity. 
We concluded that working with discrete graphs of displacements helped students
focus on and think about an average displacement. However, the link with average
velocity and the relation between these graphs and continuous v-t graphs turned out
to be more complex than we had expected. The essential difference with regard to a
continuous horizontal time axis was not problematised explicitly, but was experi-
enced by the students in their work with the various graphs. 

Illustrations of the results

The first illustration concerns Galileo’s problem and the students attempts to solve
this with discrete approximations. At school B, the teacher introduced the task about
the Tower of Pisa by first drawing a graph with constant displacements on the black-
board. 

figure 6.8 Constant displacements adding up to the total falling distance

While doing this, he helped students choose the number of displacements (and there-
fore a ∆t). His question was how would the graph look if the displacements increased
evenly and the total falling distance remained the same (fig. 6.8). 
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figure 6.9 Constantly increasing displacements

With the displacements, the students could see that what was lacking in displace-
ments at the beginning with respect to the average equals the leftovers at the end. 
This extrapolation of the line from the origin along the ‘middlemost’ displacement
also took place at school A. It turned out to be a natural form of reasoning (in the
mathematics lesson) for virtually all the students. We also ascertained during this
that the teacher had taken an important role in guiding the discussion. The teacher
asked what was going on with the velocity. A student answered that it got faster and
faster. Going faster is displayed with increasing displacements. 

1 Student: A sloping line.

2 Teacher: A sloping line… sloping how?

3 Student: Sloping to the right going up.

4 Teacher: Could we be a bit more precise? In the beginning the bars are therefore
a bit smaller, and later on they become a bit larger. Could you now calculate ex-
actly how big the bars should be?

5 Student: The middle bar is the average.

6 Teacher [points towards the student who made this comment]: The middle is the
average…

7 Student: Then you draw the line through 0 to the end of the middle…

8 Teacher: And then continue the line, like this? Can we still check if this is correct?
Or if the total displacement is correct? 

9 How can you then see if the total displacement is correct?”

10 Student: Add everything up (fig. 6.9). 

1 Teacher: What is actually going on with the velocity?

2 Inge: It’s going faster and faster.

3 Teacher: How?

4 Student: Linearly.

5 Teacher: Exactly, the velocity increases linearly with time. What do you do with
this now?
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figure 6.10 Teacher draws a graph with units on the axes

The idea of ‘adding up all displacements’ for figuring out that both motions have
covered the same distance, followed from the remark in line 11. However, there was
hardly any emphasis placed on the distinction between displacements and velocities.
The teacher asked his questions while regularly using the word ‘velocity’ without
talking about displacements. 
As a result of the graph of displacements, another discussion took place between
ourselves and the teacher about the ‘intersection point’ of the constant graph and the
linearly increasing discrete graph. Shouldn’t these graphs actually intersect each
other after 1.75 seconds? At this point, the previous, unclear transition to a continu-
ous time axis began to cause difficulties. In fact, a continuous axis had not yet been
addressed at all. The graph shows that during the interval from 1.5 to 2 seconds, the
same distance is travelled in both motions. The two motions have the same velocity
at the halfway point of that interval. 
The teacher then proposed that the transition to a graph of average velocities must
be made to find the constant of proportionality. After all, Galileo formulated a hy-
pothetical proportionality between falling velocity and falling time. The falling time
from a height of 55 metres was 3.5 seconds. The question was therefore: is it possible
to determine the constant of proportionality between falling time and velocity?

6 Mathias: Can I draw it?

7 Teacher: Tell me how to do it.

8 Mathias: Draw a sloping line going up through the middle one.

9 [The teacher draws this (see fig. 6.10).]

10 Teacher: Why is what he says correct?

11 Student: If you add up all the displacements, that’s also 55 metres.

12 Teacher: Can anybody explain this in a different way?

13 Jochem: At the halfway point, you are going at the average velocity.

0.5 1 1.5

7.86

2 2.5 3 3.5
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In retrospection, we realised that the teacher could have asked the students about the
constant at this point. For example: could you say something about the constant from
this displacement graph? On this basis, the distinction between a graph of displace-
ments and one of average velocities could have been brought up for discussion.
A student at school A asked once again if the stone actually fell from the Tower of
Pisa in this way. The teacher then emphasised that we do not know this, but that we
are describing the free fall of the stone according to Galileo’s model. 

In this discussion, we wanted to accomplish too much in a short time. Inge’s remark
showed that there was some confusion about velocity and displacement. The value
7.86 was the average displacement during a time interval of 0.5 seconds. However,
the teacher did not address this, but discussed the slope of the graph and the relation
with an acceleration constant during free fall. 

figure 6.11 Graph of average velocity with continuous time-axis

A cause of Inge’s confusion (line 8) could be that the students had worked on an ear-
lier occasion with displacements in time intervals of 1 second. In that case, the value

1 Jochem: Are you sure about this? Did it actually fall this way?

2 Teacher: No, this is Galileo’s assumption.

3 Teacher: OK, so it would have probably happened this way. We must get to the
formula v = constant * t. We’re almost there.

4 Student: You know the displacement and the time, so you can calculate it.

5 Marianne: For every 0.5 s, you add 1.96...? [7.86 / 4 = 1.96]

6 [The teacher confirms this and points to the units]: So that is 1.96/0.5 = 3.92 m/s
[and he finishes the graph (fig. 6.11)]. 

7 Teacher: Now we get what we wanted to know, a straight line. What is the slope?

8 Inge: 7.86. Is the average velocity always the constant?

9 Teacher: Is it a coincidence that we already had that 7.86 previously? What is that
exactly? The real value is 9.81. This is what you find if you do these experiments
with falling objects on the earth. On the moon you get a totally different value. The
fact that this 7.86 is a bit lower is probably due to friction. 

0.5 1 1.5 2 2.5 3 3.5

vav

3.92 m/s
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of the displacement equals the value of the average velocity at the relevant interval. 
The question is whether or not this class discussion had an adequate effect. Did the
students understand the transition from discrete graphs to continuous models by
using bar graph approximations as an interim step? Does the bar graph approxima-
tion derive its meaning from the discrete graphs of displacements? This could be
shown by the way in which they dealt with the following activities. We determined
if these students could still use the mathematical and physical concepts flexibly and
if they could base the meaning of sequential steps on what they had learned in the
above lesson.

6.1.4 Further development of the continuous model
The work in the previous lesson on the problem of free fall was an initial impulse for
understanding the relation between displacements and a continuous change in veloc-
ity. In this unit (comprising one lesson), continuous velocity graphs were the starting
point for questions about the distance travelled. The homework for this lesson was
an exercise where students were led step-by-step through Galileo’s reasoning. The
idea was that the students approximate velocity-time graphs with pieces of constant
velocity, resulting in a bar graph approximation with which they can calculate the
displacements. Adding the displacements together gives the answer to the task: the
distance travelled. This is a well-known procedure in the discrete case, so that we
expected that the average displacement would be linked with average velocity.
Moreover, this should offer the students the possibility of interpreting average veloc-
ity as the average of all assumed values, and not, for example, as the average of the
initial and terminal velocity.
The calculation of a sum of displacements appears to correspond with the calculation
of the area under the v-t graph. This is a first step in the use of ∆v and ∆t as elements
to structure a graph for approximating a not-represented quantity. It anticipates the
calculation of velocities (slopes) with an s-t graph. The question that concerned us
was whether or not this context was sufficiently intriguing to actually get students
involved in Galileo’s problem.
From a modelling perspective, the bar graph approximation is an intermediate model
between displacements and reasoning with continuously changing velocity-time
graphs. Could the students now work with continuous velocity-time models in a
flexible and meaningful fashion, and did they understand that the distance travelled
could be determined with a bar graph approximation of average velocities? Is the
more general issue still sufficiently in the picture to give meaning to the situation and
to indicate to the students how they should proceed?
We expected that during this part of the learning trajectory, the students at school B
would work differently to those at school A. A number of tasks concerned uniformly
accelerated motion for which the students at school B would probably show less var-
iation in their answers and would make more immediate use of the accompanying
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formulas. Because they did not reason as much using the bar graph approximation
method, we thought perhaps they would have more difficulty with the task about the
cyclist with a non-uniformly varying velocity graph (see page 113).

Results

At school A, all the students took part in the discussion of the task about Galileo’s
reasoning. Many students had completed this task as homework and this resulted in
a lively discussion after the previous, rather strenuous, lesson. During the discus-
sion, the students unexpectedly did not indicate that they could improve the approx-
imation by dividing the graph into narrower bars. Our expectation was probably
based too much on our overview of the mathematical intention. Our perception of
these activities was framed by our knowledge of Riemann sums for approximating
areas and how these approximations can be refined. The students, however, saw
many more possibilities. Their contributions resulted in a discussion of the geomet-
rical aspects of the graph and the kinematic aspects of the situation described. Their
strategy was not framed by a bar graph approach of area.
The questions resulted in a large variety of solution methods from the students. This
led to discussions about differences and similarities, which again emphasised the
origin of the area method and the relation with the bar graph method and displace-
ments. The compensation strategy for areas was present, however. This was proba-
bly because the students were prepared for the strategy of compensating around an
average (middlemost value) by the discrete graphs of displacements. From the avail-
able data, we could not determine if the students could actually explain this strategy
using a bar graph approximation where the area of every bar signifies a displace-
ment. Students made little use of notations such as ∆s and ∆t. They were concerned
primarily with concrete situations in which they could quantify the intervals imme-
diately and use them correctly for calculating and for geometrical reasoning. 
In the following activities, the students at school A used the area method flexibly, and
they made their own modifications with the constant accelerations. The task about
the cyclist was not discussed, unfortunately. When we examined the students’ work-
sheets, we found mostly good answers. One of the students had made notes next to
the graph on the instruction sheet, which gave us an idea of his strategy. He appeared
to be approximating the distance travelled in an insightful fashion using a constant
velocity. We were unable to ascertain this strategy in other students because they did
not hand in any copies of the instruction sheet. 
The students then worked industriously on the tasks in this unit. These tasks are var-
iants of constant accelerations and were intended to ensure that students utilised, and
became familiar with, the strategies for constantly increasing velocity. This was
something that had happened insufficiently so far. Our impression was that this
improved the atmosphere in the class at this time.
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At school B, the teacher first discussed the distinction between displacements having
the relation 1 : 3 : 5 : 7 : ... and displacements having the relation 1 : 2 : 3 : 4 : ... He
showed how it was possible to derive a graph of average velocities from the first case
that approximated a uniformly accelerating graph through the origin, while in the
second case it did not. At that point, a discussion began that took up almost the entire
lesson. The activities about the bar graph approximations were not discussed.
On the students’ worksheets at school B, we could see what they had done on the task
about the bar graph approximation and several following tasks. In accordance with
our expectation, we found good answers to the questions concerning constant accel-
eration. These students improved their approximation by using smaller intervals, and
they regularly used formulas such as x = v . t. Unfortunately, none of the students got
as far as the task about the cyclist. The question is whether or not they understood
that average velocity cannot always be calculated with (vinitial + vterminal) / 2. 
We were of the opinion that the students contributed to giving meaning to and rea-
soning with the area under a v-t graph (perhaps due to the progression from displace-
ment graphs). The idea of compensating from an average appeared to still function
here. As yet there was no confusion caused by calculating average velocity by divid-
ing intervals of various dimensions. None of the students came up with the idea of
dividing ∆v by ∆t to calculate the average velocity. Once the students were working
with areas, we saw hardly any link with discrete displacement graphs being made
and we noticed that in their reasoning there was only little attention for the kinematic
meaning. Perhaps we had emphasised this insufficiently during this phase of the
material. The teachers discussed the mathematical aspects of the approximation
strategy and spent little time reflecting on students’ problems or approaches regard-
ing the wider issue of understanding change.

Illustrations for the results

We start with an illustration of the reasoning of students at school A with the area
method. The object of study for the students was a linearly increasing velocity graph.
The question was: can you use such a graph to predict the distance travelled? During
the class discussion, it seemed to become a technical situation. However, it turned
out that many students had already done their homework independently. To deter-
mine the distance travelled for a given v-t graph, most students used the bar graph
approximation (fig. 6.12).They answered the teacher’s question about improving the
approximation of distance travelled during constant acceleration:

Suzanne: Calculate the area of the triangle and add it to the bar.

Mathias: But can’t you also divide the terminal velocity by 2 and multiply that by the
time?

Another student: Place the middle of the bar exactly on the graph.
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figure 6.12 Student’s bar approximation of a velocity graph

They answered the teacher’s question about improving the approximation of dis-
tance travelled during constant acceleration:

None of the students referred to using smaller intervals, which we had expected, but
working with areas did emerge, apparently. Moreover, Mathias suggested a solution
that probably used a constant ‘average’ velocity. After discussing the possibilities
the teacher gave the students 5 minutes to complete the next exercise on determining
distance travelled during constant acceleration. The students worked industriously;
they eagerly applied a technique that they thought they had mastered. This is a char-
acteristic aspect of practising to acquire confidence in one’s own ability. Various
methods emerged during the discussion of this task:
– Ben first filled in 10 and then obtained a velocity of 25 m/s. After this he calcu-

lated the area of the triangle (20 x 10 / 2 = 100 m) and the rectangle (5 x 10);
adding these together yielded 150 m.

– Floor initially had 10 x 25 = 250 and then subtracted the small triangular part,
250 − 100 = 150.

– Mathias calculated a sum of displacements: 6 + 8 + 10 + 12 + ... + 24 = 150.
– Wendy used a compensation strategy for areas: “The graph does not begin at 0

but at 5. So you add 5 at 25, this gives you 30. From 0 to 30 is the same area:
 x 10 x 30 = 150” (see fig. 6.13). 

The solutions by Ben, Floor, Mathias and Wendy showed that they were able to use
the area method flexibly in various ways. Only Mathias returned to a bar graph ap-

Suzanne: Calculate the area of the triangle and add it to the bar.

Mathias: But can’t you also divide the terminal velocity by 2 and multiply that by the
time?

Another student: Place the middle of the bar exactly on the graph.

1
2
---
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proach that led to a sum of displacements. The teacher wrote all the solutions on t he
blackboard and expressed his appreciation of the students’ creativity. 

figure 6.13 Wendy’s solution by compensating areas

Then the teacher assigned homework for the following lesson, and the students went
to work. Most of the students had a good answer for the task about the cyclist, but
we could not determine their strategy. With Mathias’ answer, we observed drawings
in the graph by which he again appeared to use constant velocities (fig. 6.14).

figure 6.14 Mathias’ approximation of distance travelled with a velocity graph

Unfortunately, the above activity was not discussed in class at school B. From the
worksheets of several students, it appeared that these tasks (except that of the cyclist)
did not present any difficulties. The following solution to the question about what
the exact distance travelled is according to Galileo’s reasoning, is representative for
the use of formulas by students at school B. This student had first calculated the aver-
age velocity and used this to determine the total distance travelled after five seconds:

This strategy is in contrast with the bar approximations used in school A.

6.1.5 Evoking the need to determine instantaneous velocity
This unit comprised three lessons. A central problem was posed in the context of a
car trip made by Mr Bommel, who is suspected of committing a speeding violation
(see page 115). A distance-travelled (s-t) graph of the trip was provided. 

v = 25 v . t = x 25 . 5 = 125
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In this context, the graph was intended to create opportunities for the students to use
∆s and ∆t and give meaning to the slope of an s-t graph and the difference quotient
∆s/∆t. In line with the discrete reasoning, Mr Bommel’s velocity at a specific
moment is equal to the velocity that he would have if his velocity would no longer
change from that moment. In the s-t graph, this results in a tangent-like continuation
which the students had also seen with the discrete graph. With the quotient ∆s/∆t
they can approximate this instantaneous velocity if they keep ∆t small. The idea was
that the computer tool Slope (see page 116) would help the students in this process.
Then they worked on various situations, also using the graphing calculator. Research
questions in this unit were: 

– Are students motivated by the context problem, and do they have the feeling that
reasoning with the s-t graph and horizontal and vertical intervals is helpful for
solving the problem?

– Do these intervals signify time intervals and displacements, and do the students
relate linear pieces of an s-t graph to the concept of constant velocity, which
builds upon the characteristics of discrete distance-travelled graphs?

– Does the computer program Slope afford all students to understand and use ap-
proximations with small intervals of instantaneous change at one point on the
graph by using a graphic and dynamic representation of a difference quotient?

The preparation during the previous lesson did not proceed as smoothly as we had
hoped. The computer lesson with Flash at school A did not take place, the usefulness
and aim of continuous models was only discussed incidentally, and little time was
spent on working with intervals during the previous unit. Nevertheless, we expected
that the students would be able to see the difference between calculating average
velocities using a v-t graph and using a s-t graph. With a v-t graph this was based on
the association with displacements and a compensation strategy around an average
value, and with a s-t graph we expected that working with intervals (or quotients of
intervals) would be supported by the problem of Mr Bommel and the previous use
of ‘linearity’ in discrete distance-travelled graphs. 

Results

The Mr Bommel activity supported students in starting to reason with intervals and
to use a difference quotient. At both schools, students worked on this task during the
lesson. Nearly all the students worked in pairs and discussed the time interval for
which it is relevant to calculate the average velocity according to a quotient of a dis-
placement and the accompanying time interval. The students stated that on a nearly
straight piece of the graph, the velocity during the accompanying time interval could
be approximated. They interpreted the fluctuating parts of the graph as situations
where Mr Bommel’s velocity changed a great deal and you could therefore only cal-
culate an average velocity. Students did draw tangent-like continuations there as a
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response to the question about the extrapolation of the graph if the velocity at that
point would remain the same. This work provided ingredients for a class discussion
about the problem of approximating instantaneous velocity but, unfortunately, there
was no time to hold the discussion. 
The transition from the Mr Bommel task to a continuous model with a given formula
then proceeded too quickly. The idea of a linear continuation was prepared by using
a discrete model, such as the Continue-button in Flash, but did not emerge here suf-
ficiently as a means for determining an instantaneous velocity linked to the approx-
imation of a local slope. A problem based on this determination should have been
discussed extensively with the class. As a result, a number of students did not have
a good idea of the usefulness of the tools in Slope. 
It turned out that during the computer lesson, many students did little substantive
work and did not know exactly what they were looking for. They attempted to follow
the questions and to determine what was expected of them regarding the program. It
was striking that there were no rapid links made with the previous lessons. The
teacher and the observer helped many students by explaining the aim and usefulness
of the program. It was surprising how most students ultimately began working
eagerly on the game in the computer program.
Besides our hope that students would independently recognise the problem for
which the program offered solutions, we expected that the graphic-dynamic image
in Slope would offer support for approximating a local slope with a difference quo-
tient of a chord. While working with the program, the students talked about the
approximation process based on a ‘blue triangle’ that was used in the program for
approximating a linear continuation in red. The difference quotient with the chord
on the graph is drawn as a blue triangle1. The reference to the blue triangle, of which
you can move two angles on top of the graph towards each other to approximate the
instantaneous slope, turned out to be a functional framework of reference during the
discussions in the following lessons. 
In this way, a graphic-dynamic picture had formed while the students were working
with Slope, which later supported the model of instantaneous change. The blue tri-
angle was a shared concrete and dynamic image, with which the students referred to
the underlying concepts of the model, i.e. the underlying limit process for approxi-
mating a slope with a difference quotient. At the end of this unit the students applied
the technique of the difference quotient in several situations and learned how they
could use the graphing calculator to accomplish this. Technical skills did not domi-
nate this process. Students spoke about increases, the difference quotient, velocity
and characteristics of the graphs in terms of motions. The meaning of the concepts
appeared to be rooted in the description of motion and the work with the blue triangle
in Slope. For that matter, during this lesson we saw no difference between school B

1. Coloured screen dumps can be found in the appendix Computer tools.
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and school A resulting from a difference in kinematic background or the cancellation
of the computer lesson with Flash.
During the final discussion, both teachers addressed the most important skills of the
last few lessons. Unfortunately, there was not enough time to place everything in the
light of descriptions and predictions of change. A reflection on the more overarching
questions and problems did not take place. We concluded that the Mr Bommel con-
text and the speeding violation problem supported productive reasoning for the stu-
dents. They used the s-t graph and horizontal and vertical intervals for solving the
problems. These intervals signified time intervals and displacements, and the stu-
dents related linear pieces of an s-t graph to constant velocity. However, the compu-
ter program Slope did not afford all students to be more precise in the approximation
of instantaneous change on a point on the graph.

Illustrations of the results

The work of Inge at school A can be used to illustrate the students’ solutions for the
task about Mr Bommel. Somewhat more neatly than most students, she drew her
answers on one graph. It can be seen below how she indicated the progression of the
graph if Mr Bommel drove at a constant velocity and how the graph would proceed
if such a velocity no longer changed after six minutes. She drew a tangent-like con-
tinuation from t = 6 (fig. 6.15). 

figure 6.15 Inge’s drawings in the total distance travelled graph of Bommel

Next to the question about what his velocity would be if it no longer changed after
six minutes, she wrote the following in her workbook:

Yes, then he would go 7 km in 10 minutes, so that means he is travelling at 42 
km/h at that point ... 

The observations that students interpreted the Mr Bommel graph by correctly using
average and instantaneous velocity is also illustrated by a discussion between two
boys about Mr Bommel’s speeding violation. 
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One boy calculated the average velocity over a somewhat longer interval (including
a piece where he slowed down) than the other. The latter believed his answer was
closer to the highest velocity. He calculated the ‘velocity on a single piece’. During
this discussion, they referred to characteristics of the graph (‘he slows down here’)
and worked correctly with the intervals for displacement and time. 
In the following task, a piece of the Mr Bommel graph is approximated with a graph
made according to a formula. For the linear continuation in this task, Inge drew a line
from a point that was somewhat too steep (fig. 6.16). 

figure 6.16 Inge’s linear continuation which is too steep

In her answers Inge did not write anything about the distinction between instantane-
ous and average velocity. She apparently did have an idea about the meaning of a
linear continuation concerning the progression of the graph if the velocity no longer
changed, but she did not yet have this idea in terms of tangents. We observed this
with many students during the computer lesson with Slope. However, most students
reasoned with lengths of intervals; with the signified for the signifiers ∆s and ∆t in
the difference quotient, without using these signs yet.
After working on the Mr Bommel tasks, the students began using the computer pro-
gram Slope. Immediately after this lesson, the teacher and observer discussed the ex-
periences and the observer wrote a lesson report, from which – along with the video
of two of the pairs (one pair at each school) – it appeared that the work of one pair
was characteristic for the observations. 
This pair, two girls at school B, appeared to struggle with the work, which was partly
because it was difficult for them to drag the points in the computer program. They
had also problems with the goal for which they used the computer tool. At first they
wanted to obtain the slope of the red line (the guess for the linear continuation) in-
stead of using the blue triangle (signifying the difference quotient) to get a picture
of the linear continuation and then tune the red line to this value.
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In the following transcription, one can see how this pair attempted to use the blue
points to obtain the slope of the red and that they did not understand why the two
points were on the parabola. They had already drawn the red line ‘by eye’ as a linear
continuation of the parabola from x = 0 (fig. 6.17). 

figure 6.17 Slope and the linear continuation from x = 0  

The first thing one notices is the students’ language: ‘what do they want’ and ‘what
do they mean by that’. They were trying to figure out what was expected of them.
They hardly believed their own result. For them, the program was a black box for
which they had to determine its purpose and operation. Their search process of trial
and error was interrupted when the teacher passed. They then asked their teacher
how it was supposed to be. He did not really ask them where they had got stuck, but

1 Eve: So what is it that they want? Do they want you to move that blue point with
that thing there? That round part, the top …

2 Eveline: What is the connection between the blue triangle and the linear contin-
uation? One is always going parallel to this. Would that also happen if I did this?
No. Hmm.

3 Eve: Can I, if you …[Takes the mouse.]

4 Eveline: But we should … look, here is something, here is a formula [She points
to the division for the slope of blue triangle.]

5 Eve: That’s the difference. That is the difference between that and that point, I
think.

6 Eveline: Wait a minute, so we go … but look ‘= 1.15…’ what do they mean by
that? 
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told them that the two blue points were on the parabola and explained what they
could do with them: “Put them close together and you can estimate the slope of the
linear continuation”. Eveline repeated as follows: 

At this point the two students thought they understood how the approximation proc-
ess and the blue triangle worked and they used them in the program for the games.
They became interested, their language became more active, and they continued
even after the bell rang: 

In the next lesson at school B, the students referred independently to the dynamic
image of the blue triangle and the program Slope. The teacher asked the students to
go through the activity once again with the formula with which the graph approxi-
mated a piece of the Mr Bommel graph. The question was: could they estimate Mr
Bommel’s velocity at a specific time using this formula? During this discussion the

7 Eveline: Really close together and then it indicates actually how it’s supposed to
go further?

8 Teacher: Yes.

9 Eveline: So that wasn’t really difficult or anything.

10 Teacher: No, no, but it is an interesting discovery. It’s a very important discovery.
You, ..., yes, now it looks kind of obvious …

11 Eveline: Yes, I could have thought that up myself if I had lived two centuries ago,
I think. Only I wouldn’t really have got into it. But okay …

12 Teacher: You wouldn’t have tackled this problem.

13 Eveline: No, I don’t think it’s really a problem.

14 Eveline: I don’t think you can do that, put them closer together. I think it’s just …
see, you just can’t put it any closer together. Okay.

15 Eve: Well, it’ll just have to accept this.

16 Eveline: This approximation is good.

17 Eve: What is the approximation? 1.9? [writes it down] We should also write down
what we do every time. With the other games. But let’s finish this first.

18 [...]

19 Eve: Yeah, that’s a good approximation.

20 Eveline: […] Yeah, I would actually like to have a test we could do like this.

21 Eve: Total score 25 [the maximum].

22 Eveline: But now we have to do the next game. Game, game … ummm, with all
the tools?
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function notation emerged for the first time with the calculation of a difference
y(x+0.001) − y(x) for determining the displacement ∆y. 
Until then, displacements were increases on an s-t graph, and were not associated
with a difference. However, the way in which Heleen contributed to the discussion
showed that she understood the notation (see next transcript). Perhaps she under-
stood this partly due to the graphic dynamic image from working with Slope,
although it is also possible that these students’ previous knowledge of physics
played a role.

The teacher asked a question for an explanation by Heleen (line 9). In her answer,
Heleen linked the average as the quotient of two intervals of different dimensions
with this quotient as a measurement of the slope. The fact that she referred to the
computer program here suggests that this activity led to this reasoning. With the

1 Teacher: You’ve worked in the computer lab with the program. There is a reason
for this. Open your books to exercise 46.

2 [The teacher writes f(x) = 0.4 * x2 on the board.] 

3 Teacher: To solve this you have to estimate a continuation at the point where x
= 1. Does everyone have that in front of them? [The teacher drew the graph on
the blackboard.]

4 Teacher: The central information is this piece of the graph from the Mr Bommel
task and a formula that describes that graph. The problem is to understand what
the instantaneous velocity is at x = 1.

5 Chris: I placed the formula on the graphing calculator and calculated the slope
between an interval of 0.0001.

6 Teacher: That is probably a method that you remembered from last year. [Chris
had repeated this year course.] Can you recommend something in this context?

7 Chris: Then you have to know what the difference is between the two points to
extend the line, y(x+0.001) − y(x) divided by 0.001.

8 Heleen: Wouldn’t it be better to choose a point just before that? y(x+0.001) − 
y(x−0.001). That seems more logical to me if you want to know the average.

9 Teacher: And why do you say that?

10 Heleen [points to the graph on the blackboard]: One point above and one below,
draw a line between them and then calculate the slope. Actually just like with the
computer.

11 [The teacher draws the two points in the graph, and writes on the board:
( y(x+0.001) − y(x- 0.001) ) / 0.002.]

12 Teacher: Arne, can you follow this?

13 Arne: There it is the average…

14 Teacher: The average velocity between two points is a good predictor for the in-
stantaneous velocity. That’s also what you did with the computer. That blue trian-
gle is a good estimate. We conclude that this is a good estimate for the red line.
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computer program Slope, Heleen had access to a dynamic picture and a language
with which she could discuss this approximation process. The teacher then con-
cluded the discussion perhaps too quickly for the class by stating that this was a good
method for approximating the slope of the red line. Nevertheless, this appeared to be
a good time for this to happen. The students had in mind the geometric intervals on
the graph and the limit process to which this notation referred. Heleen was an aver-
age student and we assumed that her remarks were representative for a large group
in the class.
Towards the end of this unit, there was a task about a stone that is thrown straight
upwards by a catapult. The height reached by the stone in metres can be approxi-
mated with the formula: h(t) = 30t − 5t2. The students were asked to approximate
instantaneous velocities and to draw a v-t graph of the motion of the stone. The
teacher at school A first asked what the velocity was at t = 0:

These three different answers led to a discussion about the instantaneous velocity at
t = 0. All the students participated. The remark of Inge illustrated an approach which
we observed more often during this lesson. Some students only calculated the verti-
cal increase to denote a slope or change, in particular when they worked with a for-
mula without a kinematical context. This is not surprising because the vertical
increase signified the displacements in the discrete case. In these situations, reason-
ing in terms of the context of motion helped to involve the corresponding horizontal
interval in the notions of slope and average or instantaneous change.
Then the teacher asked a student to describe the motion of the stone with the v-t
graph. A student remarked that the velocity increased steadily while it was starting
to fall (after 3 seconds), even though the graph continued to go downwards. 

1 Student: Zero.

2 Teacher: Is it zero? At t = 0 it shot straight up, so I think it’s going very fast at t =
0…

3 Inge: From 0 to 1 it goes 25 upwards.

4 The teacher repeats this and continues: Yes, but that’s the average velocity for
that piece going from 0 to 1, but I’m asking for an instantaneous velocity …

5 Student: 30.

1 Mark: It’s going slower and slower.

2 Teacher: And here [He points to the negative part.]

3 Mark: It’s starting to fall.

4 Teacher: And… [He follows the graph.]
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figure 6.18 The teacher discussing the trajectory of a thrown stone.

The discussion hardly addressed the technique of the difference quotient. The stu-
dents talked about increases, the difference between average and instantaneous
velocity, the interpretation of negative velocity, and characteristics of the v-t graph
in terms of the motion of the stone. This illustrated how the concepts acquired their
meaning in the description of the motion. 
Then the teacher at school A asked the students to write down the most important
parts of this chapter during the next 15 minutes. He would then discuss these points
during the last few minutes of this last lesson. During this discussion, mathematical
techniques and kinematic insights were reviewed, but the discussion was too brief
and too fast to draw any conclusions about the whole class. It was striking that the
central problem, understanding change, was not referred to here. 

6.1.6 Final test 
During the experiment, there was a great deal of attention at both schools for concept
development and less attention (in comparison to the chapter from the book) for
practising algorithmic skills. However, the experiment did not always proceed as
planned. 
Consequently, we wondered how the students would score on the written test, which
they all took during a lesson, and specifically how their scores would relate to the
more conceptual questions, on the one hand, and the more technical questions, on

5 Mark: The velocity gets higher and higher.

6 Teacher: Inge, what is the velocity when it hits the ground?

7 Inge: 30 m/s.

8 Teacher: Yes, at t = 6 and then you get 30, -30 m/s.

9 Teacher: And where does it reach its highest point? How can you see that on this
graph? [He points to the v-t graph.]

10 Inge: At 3. [The point of intersection with the horizontal time-axis.]
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the other. We had suggested a number of test questions to the teachers, who ultimate-
ly put their tests together independently. 
The tests given at the two schools were different; this was due to the divergent time
periods and because material from a previous chapter was also being tested at school
A. A question about a data-based graph of the growth of a sunflower was included in
both tests, although at school B the graph was accompanied with a formula. The test
was taken by 33 students: 19 students at school A and 14 students at school B. 
In the discussion of the test results below, we divided the questions into the follow-
ing categories: 

– questions in a mathematical context asking students to calculate ∆y/∆x on an in-
terval with a given formula;

– questions asking students to approximate the slope at one point on the graph with
a given mathematical formula (using ∆y/∆x or the graphing calculator);

– questions asking students to approximate/calculate average change in a context
problem using the difference quotient (with a given formula or with a graph);

– questions asking students to approximate instantaneous change (velocity) using
a difference quotient.

Results and illustrations

This unit begins with a brief discussion of two questions in a mathematical context.
Students at school B were asked to calculate a difference quotient ∆y/∆x for a given
mathematical formula. Ten students (out of 14) did this without any problem. The
given formula was: y = x3 − x2. Several students became confused when determining
∆y (also a difference). None of the students made this mistake systematically. Nev-
ertheless, on these questions in a mathematical context, which focused directly on
technical skills, several students at both school A and school B (7 out of 33) did not
use the difference quotient to approximate a slope. 
The students did well with the interpretation of the difference quotient as a measure
for change in a context problem. There were also few difficulties with using units in
this process. At both schools, there was a question about determining the instantane-
ous velocity with a given distance-time graph at a time when the velocity was rea-
sonably constant. In their answers, most students (21 out of 33) used an interval to
solve the problem; of this group, 7 used a ‘small’ interval, and 5 used a tangent.
Moreover, at school B, this question was asked about an instant when the velocity
changed continuously. In their answers, 4 out of 14 students used a tangent and also
4 used a small interval. The other students completed the problem only partially or
not at all. The tangent solution of one of the students, Mette, at school B for the prob-
lem about the falling velocities of a parachute jumper turned out to be representative
for such ‘tangent solutions’ (fig. 6.19). 
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figure 6.19 Approximations of instantaneous velocities of a parachute jumper 

In a different, but comparable, context problem (about the sunflower), the students
were also asked to interpret the difference quotient and the slope of a graph. In their
answers, many students interpreted the difference quotient properly. At school B, a
mathematical model for growth was provided with this question.
Some students only used values they could read from the graph, while others used
the formula. Chris’ answer was characteristic of students who used the graph for cal-
culating the growth per day in a certain period of 3 days by reading the correspond-
ing values and dividing them: 

∆y / ∆x = 100 cm / 3 days = 33.3 cm per day.

It is striking that it was Chris who did it in this way. He had repeated the course, and
during the lessons he suggested using the difference quotient and the graphing cal-
culator several times (e.g. page 152). For the students who used the formula, Remo’s
answer can be used to illustrate the calculation of the difference quotient on interval
[5 ; 8] (fig. 6.20).

figure 6.20 Approximations of the growing speed of a sunflower 
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More complicated was the question at school A concerning a Ferris wheel for which
a goniometric formula was provided that described the link between the time and the
elevation of one of the cabins on the Ferris wheel. Here the students had to decide if
and how they would use the difference quotient with a question for the rotation
speed. Lisanne’s answer was the following (fig. 6.21). 

figure 6.21 Approximation of rotation speed

She probably determined dy/dx halfway up with the graphing calculator (using the
‘calc’ function), which the majority of students (11 out of 19) appeared to use. A few
students (2 out of 19) seemed to think they were supposed to calculate an average
velocity. Approximately one-third of the students (6 out of 19) did not complete the
problem. Only one student used the rotation speed which was ‘hidden’ in the for-
mula.
Finally, the test given at school A had a question about the difference between instan-
taneous and average velocity. Most of the students’ answers used the distinction in
the length of the time interval (period). Inge’s answer is shown below; it was more
detailed than the answers of the majority of the students.

The average velocity is how fast you go, for example, during several minutes. If you,
for example, go 1000 metres in five minutes, your average velocity during this period
is 1000/5 = 200 m/min. But that does not mean that you are going a constant velocity
of 200 m/min. For example, you might start slowly and then go faster and faster, or
you might begin fast and then slow down. The instantaneous velocity is the velocity
at a specific instant, for example, that you are going 100 m/min after one minute. So
the instantaneous velocity is exactly how fast you are going at one instant, which
therefore has nothing to do with the average. An average is your velocity taken over
a certain period. 

Other students referred to characteristics of the s-t graph (on a linear graph, instan-
taneous velocity = average velocity) and the accompanying calculations (∆s/∆t with
a very small ∆t for an instantaneous velocity). For instantaneous velocity, one stu-
dent referred to the reading on the speedometer. 
We were satisfied with these results both conceptually and technically. It was strik-
ing that few differences could be ascertained between school A and school B in the
area where kinematic knowledge played a role. However, with these test questions
it was difficult to determine the effect of aspects such as the dynamic conceptual
model of Slope. Did the dynamic model of Slope actually take root with the stu-
dents? It were especially the numerical questions about approximating the slope at a
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point on a graph on which the students did not do very well, while applications in a
context problem were satisfactory. This was true especially for the students at school
B. Perhaps too little attention was ultimately paid to the approximation process. 

6.1.7 Interview with three students
Following the experiment, we had the opportunity to talk with three students from
school A about their experiences. We particularly wanted to know what they thought
about this approach, especially the extensive attention for the building of concepts.
All three students stated that they felt that the entire chapter had taken a very long
time. Two of the three felt there was a lack of a clear structure in the student mate-
rials with explanatory blocks. They would like to see a clear explanation of how cer-
tain procedures work.

The fact that there was not much explanation in the written material was seen as a
problem by the students. They had to figure it out for themselves. But one of the stu-
dents, Suzanne, actually appreciated this aspect: 

The students were enthusiastic about the computer lesson with Slope. They did not
refer to the difficult beginning that we had observed, while Suzanne did state that
she was not so skilled with a computer. Inge appreciated the dynamic presentation
in Slope more than a static picture.

This response fits in nicely with what we intended for the didactic value of such a
computer lesson in strengthening a dynamic conceptual model. The students were
divided on the value of the historical context. Inge felt she had no need to see Galileo
struggle with this material.

Inge: In the maths book you have these pink blocks and then you know that is impor-
tant, that it’s something you must know. But in this chapter, that wasn’t really clear. I
thought the book was easier, but I’m also used to it.

Suzanne: I didn’t think there was such a big difference. In this chapter there were
more drawings, more explanations. The book is more just lists of sums with an expla-
nation block that suddenly appears. I think I understood it better due to the other ap-
proach. 

Inge: Yes, because then you understand the picture immediately. You see it move
instead of just having a drawing.

Inge: If it ends up being wrong, what use is it? If you immediately present the correct
way, then I can simply accept it.
158



Teaching experiments
We were struck by Inge’s desire to quickly accept and use an idea. This desire was
also expressed, but less explicitly, by the third student, Bjorn. Inge liked to see a new
concept and have its relevance explained so that she can immediately start working
with it. This may reflect the attitude of the whole class. Was changing such an atti-
tude and the importance of their contributions to open-ended activities sufficiently
addressed in the class?
The observations of the class discussions showed that during these ten lessons, the
teacher summarised the situation regarding the overarching issue every four lessons.
Probably, not all students experienced the lessons as if they themselves contributed
to the invention of mathematical tools and physical notions. During this experiment,
there was insufficient time to pay a lot of attention to the students’ contributions and
to discuss them with the whole class. 

6.2 Reflection on the first experiment
This reflection primarily concerns optimisation, refining and shifting the accents of
the instructional sequence and the research questions, based upon our findings of the
first teaching experiment.
The choices made for the first experiment concerned the operation of emergent mod-
elling with a sequence of graphic tools, the role of computer tools in this process and
a problem-posing approach. However, the results indicated that the experiment did
not proceed as we intended on a number of points. For example, the computer lesson
with Flash was cancelled at school A. As a result, several parts of the lesson material
required so much effort from the students and teacher that there was hardly any time
left for discussions of more overarching problems. In these situations, it would have
been better to design activities concerning the development of new concepts and rep-
resentations in the light of such a central issue. Moreover, it was our intention that
this central issue would shape the interpretation of, and the perspective on the activ-
ities for the students. This applied especially to focusing on patterns and the transi-
tion from discrete to continuous models.
In the present section we will address the tentative and temporary character of some
models for students and the resulting importance of class discussions, based on those
models, to achieve consensus on the next steps. We will first discuss the focus on
patterns in displacements.

6.2.1 Focus on patterns
A characteristic aspect of this experimental learning trajectory is the progression
between different types of graphs. The trajectory begins with a time series and trace
graphs and then introduces discrete displacement graphs and distance-travelled
graphs. Our intention was that trace graphs, used with predictions about the time
series of a hurricane, would focus the students’ attention on patterns in displace-
ments. Questions which ask for precise descriptions of these patterns, were used to
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support the students to picture the displacements vertically next to each other. Dur-
ing this process and its sequel, the students’ learning about the relation between
velocity and distance travelled should be interwoven with the characteristics of
graphs. 
The results of the first teaching experiment indicated that the students did produce
various approaches for predictions. However, they did not draw two-dimensional
graphs to analyse the patterns. The class discussions did not focus on the patterns,
but rather on the influence of the quantity of data on the precision of the predictions.
Contributions from the students when drawing graphs and class discussions
appeared to be essential as preparation for the work with Flash.
After this, the students worked with Flash on a number of context problems. Our
idea was that students would develop concepts about the use of discrete graphs dur-
ing this work. However, we were unable to systematically investigate the role of
Flash in this regard. Our observations concerned only two pairs of students, but indi-
cated that there was such a development (section 6.1.2). Moreover, it was unclear
what the influence of the observer was and what the usefulness of this development
was for the sequel. Due to the cancellation of the computer lesson at school A, there
was no basis there for a follow-up discussion on the work with Flash, while at school
B the discussion proceeded too quickly for us to ascertain how all the students were
reasoning with discrete graphs. 
It is therefore desirable to modify the lesson material and the instructions for the
teacher in such a way that a certain amount of precision in the prediction is required;
this will evoke a more precise description of the patterns and will create opportuni-
ties for the students to draw graphs. In addition, activities for class discussions after
the computer activities are needed (see section 6.2.3).

6.2.2 From discrete to continuous models
The results from the third section (see page 135) indicated that the step from discrete
to continuous models was a difficult leap at that time in the trajectory. During this
transition, the character of the horizontal axis also changed from a discrete dimen-
sion of the ‘number of the measurement’, to the continuous dimension of time. This
transition took place in parallel with the transition in the interpretation of the vertical
axis: from a discrete bar graph as a representation of displacements, to a bar graph
of average velocities. The two transitions are of course related, but require a careful
delineation to prevent the confusion that we ascertained. The lesson material can be
improved in this regard. For example, there was a task about a graph with a contin-
uous time axis, while discrete values were actually displayed on the graph. 
The reason for using a continuous time axis is the depiction of average velocities on
intervals. We intended that students would be motivated to depict these average
velocities, because displacements in discrete graphs become very small when they
are the result of measurements with a high frequency. This motivation apparently
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did not emerge. Students worked individually on these tasks, and there was no time
left in the planning of the experiment to focus extensive attention on this topic. More
careful planning, with information to enable the teacher to respond to unintended
events, is desirable here. 

6.2.3 Class discussions for reflection and consensus
In the sections above, it emerged several times that extra information for the teacher
was necessary to guide the learning process along the intended trajectory and to stay
within the underlying idea of guided reinvention. During the experiment there were
regularly discussions, with varying emphasis, about concepts and graphs. For exam-
ple, students and teachers spoke in terms of velocity about patterns of displacements.
Sometimes continuous lines were drawn through the peaks on the graph. In this les-
son material the initiative for undertaking modelling activities was left to the stu-
dents; this resulted in parts of models having a temporary and tentative character
with mutual differences, of which the meaning is probably rather diffuse.
Class discussions are necessary first of all to reflect on the activities and the stu-
dents’ contributions to establish consensus about essential characteristics. Secondly,
in class discussions one can evoke motives from the students for taking the next step
in a specific direction. These motives frame the intention for and interpretation of
the subsequent activities. For example, during the transition from the graph of the
Mr Bommel context problem to graphs based on a formula, the teachers were unsuc-
cessful in clarifying the need for such formulas; as a result, there was virtually no
transfer of reasoning with intervals between these graphs. 
To guide the process of emergent modelling, the teacher requires information about
the intended development of models: what do we expect from the activities of the
students and how can these activities be used to make model shifts more explicit?
The teacher therefore has an important, two-part role: providing ‘construction space’
to the students and guiding them in the intended direction. Examples of this are the
discussion concerning more precise predictions of the path of the hurricane (in sec-
tion 6.2.1) and the discussion of students’ graphs of the falling ball (in section 6.2.2).
Since we now have a clearer picture of the role of the teacher; we will provide more
information about this role, about the importance of the computer lesson and about
the relation between the development of models and the central problem of under-
standing change.
Besides substantive arguments for supporting the teacher, there is also an organisa-
tional argument. During the experiment, the planning was hampered at both schools
a number of times by unexpected events such as cancelled lessons, discussions of
tests or a malfunctioning computer lab. It turned out to be difficult to deal with these
unexpected events. In the sequel to the first experiment, we will describe the process
in such a way that it will be sufficiently robust for the daily course of affairs in edu-
cation. This description must ensure that the teacher can deal flexibly and adequately
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with unexpected remarks, events and organisational changes in the spirit of guided
reinvention. To this end the teacher must be able to regulate the teaching process in
a meta-didactic fashion (Lijnse, 2002).
In retrospection, we see that the description of the instructional sequence in chapter
5 contained hardly any ‘teaching steps’. This description was more an elaboration of
steps to be followed by the students than a theory of instruction for the teachers. It
turned out that we had not formulated any teacher-related observation criteria (see
end of chapter 5, page 118). During the second experiment, we paid more attention
to this aspect. 
Finally, we noted that much attention to motives to proceed can lead to neglect
strengthening confidence. For that matter, this can not be concluded directly from
the test results, but was obvious from the students’ moods, class atmosphere, and
sometimes their inability to complete their homework. Therefore, we must not dis-
regard a balance between supporting the invention of solution strategies, and prac-
tising specific procedures for achieving confidence.

6.3 Modifications to the instructional design
The conclusions in the reflection on the first teaching experiment led to the follow-
ing questions:

– How can we better build on the students’ contribution and improve the discus-
sion of their contribution during the transition from time series to discrete graphs,
and during the transition from discrete graphs to continuous models? 

– What is the role of Flash during the students’ reasoning with discrete graphs?
– How can we ensure that the teacher has mastered the didactic processes suffi-

ciently to regulate this process in the spirit of guided reinvention and regarding
emergent modelling and a problem-oriented approach?

As a result from the first experiment, we were better able to describe the intended
learning process. In the teacher guide and during the preparatory discussions, we
provided more information to the teacher about the intended course of the learning
process, the organisation of the lessons and class discussions. Regarding the learning
process and the class discussions, we gave possible solutions from the students and
how these can be utilised.
This information should support the teacher for preparing the lessons and for teach-
ing decisions during the lessons. As an example, the frames below show the instruc-
tions for the discussion about the activity concerning the progression of the hurri-
cane during the first lesson. 
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We then looked for a problem situation that would ask for a more precise compari-
son of patterns of displacements. This need for a more precise comparison is
expected to motivate the students to place the displacements vertically next to each
other or to draw a two-dimensional graph of the total distance travelled. As a prob-
lem situation, the cheetah and zebra problem is presented with only a table of exper-
imental data (inspired by Kindt, 1979). 

table 6.1: How much head start does the zebra need to stay away from the cheetah?

We expected several students to draw trace graphs, since these graphs were part of
the previous activities. To be able to reason properly about the head start, however,
graphing the distance travelled vertically is preferred. We supposed that a number of
students would do that. The teacher should encourage the students to use their own
approach to this problem. The discussion of these approaches brings about the dif-
ferences between and advantages of trace graphs and of two-dimensional discrete
graphs for describing motion and doing predictions. When none of the students

The distances between the dots, the displacements, provide a picture of the change
in velocity. Students can describe the motion and make predictions with patterns on
the trace graph. But the students will also experience that it is sometimes difficult to
see the patterns.

As part of the hurricane-activity, ask for the students’ answers and their approaches.
Most students will probably only continue the last displacement to determine when
the hurricane reaches the coastline.

Students do not have to focus on calculations to determine velocities. The most im-
portant activity is measuring displacements and gaining insight into the progression
of the motion. Make sure that the students focus on the following question: how does
that ‘going faster and faster’ happen? To this end, let students propose solutions (with
a graph or otherwise). A graph with the displacements placed vertically next to each
other gives an impression. However, if no students come up with that idea independ-
ently, do not draw the relevant graph on the blackboard yet. 

The fastest sprinter in the world is the cheetah. In 17 seconds the cheetah can reach
a top speed of more than 110 km per hour and can maintain this speed for a distance
of more than 450 metres. However, the cheetah quickly becomes tired after this,
while a zebra, which can reach a top speed of 70 km per hour, can maintain a speed
of 50 km per hour for more than 6 km. When can a cheetah catch up with a running
zebra? The positions of a zebra and a cheetah who is starting to sprint have been
measured every five seconds. The distances (in metres) between the positions are
listed in the table below (table 6.1). 

cheetah 76 116 133 134 132 100 55 36

zebra 95 97 96 94 95 94 98 96
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comes up with a two-dimensional graph, the teacher should guide the class discus-
sion in this direction. Consensus should be achieved about the methods for describ-
ing motion using discrete graphs. If consensus is achieved, the discussion of this ac-
tivity seems a suitable preparation for working with the Flash computer program.
During the computer lesson with Flash, we expected a development in the students’
reasoning methods. This is a development where understanding, language and use
of mathematical and physical models will emerge and will shape the organisation of
motion. In the second teaching experiment we collected and analysed more system-
atic data about the students’ reasoning while working with Flash and Slope.
In the following lessons, we planned reflective class discussions about this assumed
development in reasoning. The discussion after Flash was based on the question for
a description of the motion of a bungee jumper. Students worked on the activity in
small groups and wrote the solutions on an overhead projector sheet. The teacher en-
sured that most sheets were presented in class and used these presentations to reflect
on their reasoning and on the work with Flash.
For the students, this is an activity which reviews the technical skills for drawing
graphs. For the learning process, however, it is intended as a reflection on language,
concepts and graphs in the light of describing motion and doing predictions. This re-
flection is supposed to take place in the class discussion based on the students’ so-
lutions. The following instructions for the teacher were therefore included. 

As preparation for the horizontal time axis, in the worksheets we ask several times
for the length of the time interval of the relevant displacement. In one of the activi-
ties the teacher can address this aspect explicitly; it concerns a motion with a con-
stant velocity that was introduced in the previous task (with measurements every 0.5
seconds) (fig. 6.22). 

figure 6.22 A displacement graph of constant velocity 

The homework was the exercise about the bungee jumper. Use this exercise to see
if the students can work independently with the Flash graphs. Ask the students – for
example, in groups of four – to choose the best graph (displacements or distance
travelled) and to draw this on an overhead sheet. Then have several (or all) groups
present their sheets in front of the class. Which one provides the best description of
the motion of a bungee jumper? Hopefully, the students will use reasoning about the
change in velocity and the relation between the progression of the displacements on
the graph and the distance travelled. If not, refer to the work with Flash.
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Assume that in the above exercise the positions are measured twice as often. The
question is: How do the graphs of displacements and of distance travelled look in
this case? We suggested the following for the discussion of these activities.

These suggestions should create opportunities for the students to come up with the
idea that presenting average velocities is a possibility for solving the problem. The
interpretation of time intervals is promoted by comparing displacement graphs (for
example, in fig. 6.24).  

figure 6.23 Constant velocity and displacements in time intervals 

The connection between displacements and the accompanying time intervals should
provide for opportunities for a transition to a continuous time axis. This graph makes
it simpler to talk about average velocity, and it is possible to introduce it at an early
stage. As a result, we expected students to come up with the idea that depicting aver-
age velocity is an alternative when they experience the diminishing displacements
with discrete graphs.

Measuring twice as often results in twice as much data and leads to the vertical di-
minishing of the displacements. This makes it difficult to read the graph. If the ques-
tion then arises about how this diminishing can be avoided, we expect some of the
students to come up with the idea of placing average velocities on the graph instead
of displacements. If this is the case, ask the question: is this the best we can do to
describe and predict motion? If no students come up with an idea, then point to the
displacements in the increasingly small time intervals: what do these mean for the av-
erage velocity in the accompanying time interval? Does that also become smaller? 

Below you see two graphs with displacements. In both graphs, the time interval that
accompanies every displacement is provided. Which of the two motions travels the
greatest distance? And which reached the highest velocity? 
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figure 6.24 Numbers on the horizontal axes are replaced by time-intervals

Preceding the work with the continuous proportionality v ~ t, we first go a little fur-
ther with graphs of constant velocities in the assumption that students, based on the
problems posed, will come up with the idea that the area accompanying a time inter-
val is an indication of the displacement during that interval.  

 

figure 6.25 Changing velocity and displacements in time intervals

With this preparation, we expected students to develop the notion that approximat-
ing a graph with piecewise constant velocities is worthwhile for determining dis-
tance travelled. A notion that would help in tackling the Galileo-activity about free
fall.

Can you use this graph (see fig. 6.23) to reason that the displacement in the first in-
terval from 1 to 2 seconds is half of the displacement during the interval from 3 to 5
seconds?

You see another v-t graph below (see fig. 6.25). In the first interval of this graph, is
the distance travelled more, less, or about the same as in the second interval? 
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6.4 Second teaching experiment
The second teaching experiment took place in a 10th grade class of 22 students at
school C, a school in the Dutch city of Utrecht. The experiment lasted eight lessons.
More information about the methodological arguments for the set up of this experi-
ment can be found in section 4.4.
During two sessions with the teacher, we first discussed the underlying ideas of the
series of lessons followed by the plans for the first two lessons. We talked about the
teacher’s manual that accompanied the student material and we discussed the organ-
isation of the lessons, the most important activities, how to introduce the activities,
and how the students’ solutions could form a basis for the following lessons. The
teacher approved of the approach we had sketched out and his planned role during
the class discussions. 
The description of the second teaching experiment is limited to the modifications of
the instructional design as outlined in the previous section, and to the work of the
students with the computer tools. In section 6.4.1 we first describe the transition
from time series to discrete graphs and from discrete graphs to continuous models of
motion. After this we analyse the role of the computer tool Flash in greater detail.

6.4.1 From time series to continuous models of motion
The question was: using the revised teaching and learning materials, to what extent
will the students be able to structure phenomena of motion, together with the devel-
opment of mathematical and physical tools for describing motion? This is a process
that ultimately leads to gaining insight into the basic principles of calculus and kin-
ematics. In this section, we primarily address the part of the learning trajectory from
the weather context to the interpretation and use of average velocity graphs. The
questions that played a role in this process are: what is the contribution of the stu-
dents to the formulation of problems concerning patterns in displacements? Follow-
ing the activities with Flash, how is consensus achieved about the usefulness and use
of the two discrete graphs, and what is the role of the teacher in this process? Will
the teacher be able to create opportunities for the students, based on their contribu-
tions, to use continuous models of motion? 

Results

The introduction of the learning trajectory went as expected, and the students’ con-
tributions were more productive than in the first experiment. During the class dis-
cussion, many elements from the entire lesson series were covered briefly. The
teacher consistently used the language and solutions of the students as a starting
point, and it became clear to them how and why they were studying weather situa-
tions in this context. 
The activity about the cheetah and the zebra was intended to support the students’
167



Chapter 6
thinking in the need for drawing two-dimensional graphs. On their worksheets we
saw a diversity of solutions. However, only two students had actually drawn two-
dimensional graphs of the distance travelled. The other students solved the problem
by reasoning with the table.
During the class discussion about the attempts with the table, the option of using the
graph was suggested at exactly the right moment by one of the students. The students
initially disagreed about the amount of head start the zebra could have. All students
seemed to have developed a need for a clearer answer. At that moment, on the
teacher’s initiative, one of the two students draw his two-dimensional graph on the
board. The fact that this graph indeed offered a solution to the diversity of previous
answers was clear for many students. We concluded this from the number of stu-
dents who contributed in the accompanying class discussion, about the horizontal
and vertical shifts of the graph. The teacher completed this discussion with a refer-
ence to the global problem of describing motion for predictions. 
The aim of this activity, i.e. to evoke the need and to discuss the usefulness of two-
dimensional graphs, was achieved. As a result, the students had a means available
for organising and thinking about the subsequent problem situations. During the
activity about seeing a pattern in the displacements of the falling ball on the strobo-
scopic photo, we again saw the intended diversity of solutions, including the two
types of graphs from Flash. The teacher got the students to show their solutions and
problematised the differences between the students’ solutions. During this discus-
sion, the class gave the impression that they reached a consensus about the useful-
ness of the two discrete graphs as tools for describing motion and doing predictions.
This was a useful preparation for the computer lesson with the computer program
Flash. Using Flash, they were then able to interpret these graphs and immediately
began investigating the motions captured on the stroboscopic pictures.
During the computer lesson, the students increasingly reasoned about the character-
istics of, and relation between, the two graphs and their meaning for the specific sit-
uations. A few students took a little longer to work this out. This group continued for
some time to relate the characteristics of the graphs to the displacements in the stro-
boscopic situation. After the computer lesson, the teacher first discussed their expe-
riences. He used overhead sheets with screen shots for this part of the discussion.
Many students participated actively in the discussion. The only deficiency was that
the relation between the graph of the displacements and the slope of the graph of the
distance travelled was still hardly emphasised. 
The students then worked in small groups on the reflection-activity about the bungee
jumper. Every group was given overhead sheets on which to draw graphs of the dis-
placements and of the distance travelled by the bungee jumper. After 15 minutes, a
representative from each group presented their sheet. The teacher again stated that
they should briefly explain the graphs and after this the class could ask questions.
During the first presentation, the teacher asked the student to use characteristics of
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the motion while talking about the graphs, and made occasional references to expe-
riences with Flash. In the following presentations and discussions, the students took
over this role. Based on this activity, a class consensus was achieved about the use-
fulness and the interpretation of these two discrete graphs. 
The changing character of the horizontal axis was discussed in the next lesson: from
measurement number to a continuous time axis. However, the class discussion pro-
ceeded with difficulty and almost no students participated actively. One of the rea-
sons was that most students gave the impression that they had not done their home-
work. However, our analysis of the students’ worksheets showed that most of the
students did work on these tasks. In addition, the class discussion was disturbed
because one student contributed an answer that the teacher did not understand imme-
diately (if measurements were made twice as frequently, her distance-travelled
graph became approximately three times as steep). The teacher stated that he would
look at the graph with the student later on. However, she continued to interrupt the
teacher. The teacher was then unable to guide the students’ reasoning about the hor-
izontal axis. He asked students the questions that were compatible with his reason-
ing, a reasoning that he carefully attempted to establish. In retrospection, he admit-
ted that he felt somewhat uncertain about the intention of the tasks. This uncertainty,
combined with a ‘difficult’ student, led to a discussion that was not based on the
solutions presented by the other students.
On the basis of this class discussion, we cannot say if the students understood the
need for the horizontal time axis. During one of the final activities from this section,
a majority of students made the correct remark that the graph with average velocities
remains equally ‘high’ and that the graph of the displacements ‘diminishes’ if you
make measurements more frequently. Some students had written too little or had
drawn only a single graph with their answer, or had written nothing at all in their
workbook. We were surprised by a solution, where the displacements did not ‘drop’
because she modified the vertical scale. The effect is comparable with the effect of
scaling measurement values on time intervals, which took place with the graph of
average velocities. Unfortunately, she did not contribute this solution and it was not
discussed in the class. 
In the following activities with the v-t graphs provided, the teacher was successful
in supporting the students’ reasoning about approximations with piecewise constant
velocities. These velocities and the accompanying time intervals were used by the
students to approximate the distance travelled. However, large parts of the graphs
proceeded too constantly (see fig. 6.25) to make this approximation process explicit.
In this task, it was too easy to calculate with the values that could be read directly
from the graph, but the students estimated and reasoned well with constant velocities
and the accompanying time intervals. 
In the next three lessons, the students first worked on the problem about the speeding
violation by Mr Bommel and then on a lesson with the computer program Slope. It
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again turned out to be difficult to make the transition from reasoning with the graph
about Mr Bommel to reasoning with a graph of a formula. In the contextual activity
concerning Mr Bommel, the students used intervals and divisions to estimate aver-
age velocities. Most students drew linear continuations to answer the question about
the progression of the graph if the velocity no longer changed after a specific time.
However, with comparable questions concerning the graph of the formula, we did
not observe such answers. In retrospection, we see that there were possibilities to uti-
lise the reasoning applied by students for this transition. We assumed too quickly
that the students would understand the similar aspects in the context problem and the
abstract situation. We see the graph and the difference quotient as a shared tool,
while for most students it is primarily still a description of a situation that they first
have to understand. 
During the computer lesson with Slope, the students were able to apply the method
with the difference quotient to many different graphs. In the following lessons, the
students developed the mathematical method for approximating local slopes and the
use of the graphing calculator in this process. The mathematical question about a
local slope was answered correctly by most students, although in their answers, we
saw that the students were not practising any standard method. We saw a great diver-
sity in approaches with, in most cases, an explanation that showed the students
understanding of the method they were using. In addition, a continuous velocity
graph was approximated by some students with piecewise constant average veloci-
ties for calculating the distance travelled. This process was not yet a standard proce-
dure for them and showed more understanding than the method of counting boxes
that was discussed in chapter 2 (page 29). 
Moreover, it appeared that the teacher succeeded in discussing the contributions of
students in such a way that this shaped their intentions about a possible way to pro-
ceed. In these cases, the activities of the students turned out to be productive for the
problem situations that followed. The teacher was especially capable of guiding such
discussions when students contributed a diversity of approaches. This diversity in
reasoning and approaches was created by activities with no standard solution proce-
dure (e.g. the activity about the cheetah and the zebra), and by computer lessons dur-
ing which the students were confronted with many problem-situations and the tools
in the program afforded a variety in reasoning. In the latter cases, students and
teacher referred to these tools in discussions afterwards (e.g. referring to Flash when
discussing the bungee jumper activity).
An important aspect of the class discussions was that the teacher did not answer the
students’ questions, but limited his contribution to making the students’ arguments
more explicit, and then posing a question about these arguments to the class. In the
situations where no time was taken for such discussions (due to lack of time, lack of
contributions from the students, or problems with maintaining class discipline), it
appeared that the teacher tried to expose the underlying algorithm. In these cases the
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teacher’s explanation was not retained by all the students in the class (e.g. with the
bar graph approach to a continuous v-t graph).

Illustrations of the results

During the activities on the hurricane problem, one student suggested continuing the
last displacement to make a prediction. The teacher asked the class what the student
had assumed. Suzanne then stated that she had approached the problem differently.
Due to this question about her assumption, the attention of the class was therefore
framed by the pattern in the displacements. 

During the problem about the cheetah, there was a discussion about catching up with
the zebra based on the numbers provided. There was a disagreement about whether
or not you could determine this. Several students had added up all the numbers to
determine the distance travelled. Ultimately, there was a difference of 17 metres,
they therefore concluded that the cheetah could catch up with the zebra if the latter
had a head start of 17 metres. Other students disagreed, saying that the cheetah was
going more slowly at the end, and that the necessary head start could therefore be
smaller. The teacher then asked if anyone had made a graph to describe the situation;
Steven was asked to draw his graph on the blackboard (fig. 6.26).
A discussion then took place about what you could read from the graph. The teacher
guided this discussion. He did not give any answers, but he made arguments more
explicit and presented them back to the class. 

1 Teacher: Try to follow my reasoning for a moment. What is her solution based on?

2 Student: Metres, using a scale, looking at the course of the hurricane.

3 Teacher: Something else… what has she assumed?

4 Student: That the conditions are not going to change.

5 Teacher: Exactly, she assumed that what happened during the last 12 hours will con-
tinue in exactly the same way. Is that probable?

6 Student: No.

7 Teacher: Okay, who did not assume that the velocity would change? Suzanne?.

8 Suzanne: I looked every 12 hours, and then the distance increased by half a centi-
metre.

9 Teacher: Okay, you repeatedly add 0.5. And then?

10 Suzanne: The last piece is about 3 cm [the teacher points to the 2.8] and if you con-
tinue this with 3.5, then it comes onto land at . And that’s 10.00 o’clock.

1 Teacher: You have seen that the total distance that the zebra travels is somewhat
less than that of the cheetah. Well I think that’s brilliant, but what can you do with
it?

1
3
---
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figure 6.26 Steven’s graph of cheetah and zebra

2 Steven: Now you can see at what time the cheetah will catch up. Where they will
cross?

3 Teacher: Is that right?

4 Student: Yes.

5 Teacher: Why?

6 Steven: Well look, if the cheetah wants to be next to the zebra, then it has to be
at the same point as the zebra. Then they have run an equal distance.

7 Samir: Yes, okay. But what you’re saying is that if they start running at the same
point, there will be a distance between …

8 Teacher: Okay, Samir, you saw that correctly. What Steven explained is that if
they begin at the same time, it will catch up with him after so many seconds
[points to the graph]. But why? Then they have both run an equal distance. But
is that the question? What was the question?

9 Samir: When can the cheetah still catch up with the running zebra.

10 Teacher: Okay, then we’ll see if we can answer that question with this argument
and then I will ask what Anna has done, because she had a completely different
graph.

11 Steven: That’s possible, then you have to shift the graph of the cheetah some-
what so that the upper point…

12 Teacher: Come up here and show us.

13 [Steven shows on the graph how the cheetah can be shifted somewhat to the
right and then it just touches the graph of the zebra. The teacher helps Steven
and shows it in a different colour of chalk; at first Steven wanted to erase the old
graph.]

14 Teacher: Okay, and what is the answer then?
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The teacher then drew Samir’s suggestion on the graph and discussed the differences
between the two transformations of the graph with the class. Finally he asked about
Anna’s graph. She had a very different graph that she drew on the blackboard (fig.
6.27). She explained that she only placed the values from the table on a graph, and
that she could not go any further with this graph. 

figure 6.27 Anna’s displacement graph of cheetah and zebra

Other students then tried to relate the graphs to each other. The teacher finally sum-
marised that Anna’s graph provided a picture of the change in velocity, but that you
could not directly see the moment the cheetah would catch up with the zebra from
this graph. The following lesson began with a discussion of the students’ solutions
that accompanied the task about the stroboscopic photo of the falling ball. Several
of their graphs are included below with various dimensions on the horizontal and
vertical axes (fig. 6.28). 

figure 6.28 Students’ graphs of a falling ball

15 Joost: That if he begins so many seconds later…

16 Teacher: Seconds?

17 Samir: You can shift the other upwards…
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The advantages and disadvantages of the various graphs were discussed and they
ended with two types of graphs for motion in general: a graph with displacements in
sequential time intervals and a graph with the total distance travelled. The students
then worked on the computer lesson with the program Flash (see the following sec-
tion for a description of the computer lesson). After the computer lesson, there was
a discussion about their experiences with Flash. The teacher first addressed the dis-
tinction between the two discrete graphs. 

figure 6.29 Class discussion after the computer lesson with Flash 

1 Teacher: First the graph with the displacements. What does it signify if two of the
bars are of equal length? Here is a moment when the black and grey bars are
equally long. Suzanne, what does that mean?

2 Suzanne: That they have gone the same distance.

3 Teacher: Does anyone else think it could mean something different?

4 [Nobody responded.]

5 Teacher to Suzanne: When have they gone an equal distance? What do you
mean?

6 Suzanne: At the same moment.

7 Teacher: And what do you mean by the same moment?

8 Suzanne: Between the pictures.

9 Teacher: Between the …, between the picture that you have clicked onto, there
and the following picture. Between these two pictures. Okay. Does that mean that
they also travelled the same distance in total?

10 Suzanne: No, that’s in the graph underneath isn’t it?

11 Teacher: Okay, that was the following question. Explain how you can see here
that they have travelled the same distance. If the bars are equally long here, what
does that mean Suzanne?

12 Suzanne: Then they have travelled the same distance in total.
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During this discussion, the connection with and limitations of discrete graphs were
addressed, but neither of these aspects were discussed completely. The students sub-
sequently worked on the activity about the bungee jumper. After 15 minutes, the
teacher invited the first representative of a group to make a presentation.

figure 6.30 Student demonstrating his graphs of the bungee jumper 

During this presentation the first explicit connection between the discrete graphs
emerged with references to the motions of the jumper. The next group, which
emphasised this connection as well, also discussed the relation between the slope of
the line and making a discrete graph of distance travelled and change in velocity.

1 Teacher: Glen, you have about 30 seconds to explain the upper and lower
graphs.

2 Glen: The distance travelled becomes larger and larger. You can see that on the
first graph. The second graph has the displacements. Let me see, how did that go
again? Oh, yeah. He first falls downward, then he’s at the end of the elastic, and
then he goes back up and then he goes back down again. The displacements be-
come smaller and smaller. He goes back and forth more and more slowly.

3 Teacher: Okay, I hear two things. The displacements become smaller, and he
goes slower. Now explain again about the bottom graph where you use velocity.

4 Glen: In the beginning he falls faster and faster downward…

5 Teacher: How do you see that on the bars?

6 Glen: The bars go up, they get longer and longer. Once he gets to the bottom, he
goes slower and the bars become shorter. After that he goes back up and the
bars become longer again.

1 Teacher: Okay. [looking at the class] Do any of you have any comments? [no-
body responds] Any criticism? Then we’ll go onto the next group. Martine, do you
have something?

2 [Martine has taken the sheet out of her notebook and puts the sheet down, but
Natasja goes to the board to give the explanation.]
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 figure 6.31 Student demonstrating her graphs of the bungee jumper

The use of these graphic interpretations was also apparent in the students’ work-
books. Next to a graph of the distance travelled, which increased linearly at a spe-
cific time, virtually all the students noted that the velocity from that time was con-
stant. With a question about whether two graphs (a graph of the distance travelled
and a graph of displacements) could be graphs of the same motion, many students
had the answer that this was impossible because from a specific point, the graph of
the distance travelled became horizontal, while there were still displacements on the
other graph. Apparently the horizontal slope on the distance-travelled graph was cor-
rectly associated with standing still. 

3 Natasja: Well then, this is the distance travelled and that means that the bungee
jumper goes down here and therefore he goes faster, because he travels a great-
er distance in a shorter time. And here he goes down again: And then he travels
a smaller distance in the same time and then he goes back up and back down
again…

4 Teacher: May I make a very small addition to interpret what you are saying, be-
cause you’re all saying it very well, only what you’re also saying is that you can
see how fast he’s going by looking at how steep that thing is. Or not?

5 Natasja: Yes.

6 Teacher: Can you explain that a bit better?

7 Natasja: Yes, if he goes down then he goes faster, and if he goes up then he goes
slower.

8 Teacher: How can you see that by how steep it is?

9 Natasja: Well, because in this little piece of time [she points at an accompanying
increase], he travels quite a long distance [points finger up and down along the
displacement]. While in this one here it takes him longer to go the same distance
[she moves her finger along a less steep part of the graph].

10 Martine: In the same time.
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However, in the exercise about the consequences of more frequent measurements
the students had various solutions. The majority of students placed the extra meas-
urements between the previous measurements; and as a result the graph did not
become any wider. 
For the horizontal axis, some students were already using time indications, but most
just numbered the intervals. However, the discussion was dominated by one student
and was delayed by the teacher’s hesitation on how to proceed (on which student’s
reasoning and in which direction). 

It was completely unclear to us to which aspects of the graph they were referring to
in their remarks. The student did make some useful remarks (lines 4 and 6), but the
discussion focused primarily on drawing the requested graph together with the
teacher. The teacher then discussed exercise 17 and returned to the next exercise
about the consequences of measuring twice as frequently. The importance of the
time duration between two interval numbers had already been discussed. Anna was
the first to respond: 

1 Teacher: ...know the graph. Because it’s about … exercise 17. From exercise 17
you know that it was three metres per second there, no, per interval, and it seems
to me you could read somewhere else that, if it was 0.5, then you could therefore
go 3 metres in a half second. But that gives you 6 metres per second. Right?
Then the question here is: assume that every one hundredth of a second you …

2 Student: Then you would just get 3 cm per … one hundredth of a second.

3 Teacher: So you get much less as a displacement… than this bar, because this
does not have a 3 cm displacement in one hundredth of a second. Much less. So
you can then calculate…

4 Student: Yes, but in total it’s still correct.

5 Teacher [hesitating]: Yes…

6 Student: If you would continue to 100, then you would still get one.

1 Teacher: What I now …, the step that we are now going to make, was a step that
I tried to bring up a while back. Because… how have you drawn the graph? With
exercise 18, how does it look to you? Anna?

2 Anna: Exercise 18?

3 Teacher: Yes.

4 Anna: Then it becomes three times as steep on my graph. Approximately. At
least… that’s what I think.

5 Teacher: Three times as steep… this one?

6 Anna: Yes, uh…

7 Teacher: Or this one…? No you haven’t thought this all the way through yet.
Think about it a bit longer. First look at how this ...
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The teacher didn’t know exactly what he should do with her answer and made the
question more precise and asked the class again: 

A little while later during the class discussion there was confusion about what exact-
ly was on the graph on the blackboard:

Here there was virtually no discussion. The teacher attempted to have the students
follow him (in a Socratic fashion) while he was finishing his graph. But it was

1 Teacher: The question is if it also became twice as wide?

2 Student 2: No.

3 Student 3: Yes, uh… that depends. If you simply go to 4 seconds then it becomes
twice as wide. Yes.

4 [The teacher draws the axes of the graph with a division of the horizontal time ax-
is.] He asks: How long do the bars become?

5 Samir: Half as long.

6 Teacher: Why?

7 Samir: Because uh, in half of the time you only go the half…

8 Teacher: Yes, you take a picture twice as often … so you would also only be able
to travel half the distance.

9 Anna [softly]: I just asked him that and he said something else! Good grief.

10 Teacher [heard Anna]: We’re going to go back over that in just a minute, Anna.

11 Anna: Yeah, okay [offended].

12 Student 4: Is that one interval number, 0.25?

13 Teacher: Yes. So I can also write in 0.25, 0.50, 0.75 and 1.0. What happens in
the first interval of 0.25 seconds?

14 Student 5: Then it becomes the half of the uh…

15 Teacher: And that was?

16 Student 5: ... uh, three and now it’s one-and-a-half.

17 Teacher: Yes, that is one and a half…1.5. What happens during the next twenty-
five hundredths of a second?

18 Student 6: ... it becomes 1.50.

19 Teacher: How much is added?

20 Student 6: 1.50.

21 Teacher: Yes, another 1.50. So where am I then?
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unclear if student 6 really meant that there was an additional 1.50. A while later it
became even more difficult because the graph of distance travelled on the board still
had interval numbers on the horizontal axis. Afterwards it turned out that Anna had
thought: measure more frequently with the same measurement result (he still trav-
elled 3 metres every 0.25 seconds). 
A large diversity in students’ solutions is apparently not a sufficient precondition for
a productive class discussion. The students must attempt to relate their solutions to
the teacher’s intended reasoning. Perhaps it would have been more effective here to
have drawn two or three of the student’s graphs on the blackboard (or have had the
students draw the graphs) with a discussion about their various assumptions and
methods. This could have been done in exactly the same way as the teacher dis-
cussed the students’ solutions for the problem about the hurricane; he could have
used the students’ remarks to design problems that led them in the intended direc-
tion. 
During the next lesson, the students were primarily working independently with the
activities concerning the transition from displacements to average velocity as a com-
posite quantity for the vertical axis. This transition resulted from the problem of the
displacements becoming smaller if you measure more frequently and from the com-
parison of various measurements with various time intervals. The solutions provided
by most students to a task about the consequence of measuring more frequently
indeed showed how the displacements became very short on most of the graphs.
Martine’s solution was strikingly different, however. On her graph, the displace-
ments stayed the same length; this was because she repeatedly chose a different scale
for the vertical axis. In fact, this is a choice that is symmetrical with scaling the dis-
placements according to average velocities (fig. 6.32). 

figure 6.32 Modifying the scale of the vertical axis to display small displacements
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The following solution (from Martine) shows that measuring more frequently for the
average velocities does not have any effect on the graph of constant acceleration (i.e.
the vertical axis does not have to be modified) (fig. 6.33).

figure 6.33 The vertical axis of a velocity graph is not modified

Finally, an activity about the graph of a parachutist (page 21) showed that several
students were capable of using the bar graph approach of v-t graphs. The question
was: from what height did the parachutist jump? One-third of the students used av-
erage velocities or approximations with bar graphs (both with fixed time-intervals
and with time-intervals adapted to the shape of the graph). Some interpreted the
graph incorrectly or attempted unsuccessfully to use a formula. The other students
answered the question only partially or not at all.
From the answer to a question about calculating the slope of a graph, it appeared that
most of the students had largely mastered this mathematical concept (six students
did not complete the question entirely), while no standard method was applied for
determining the slope. The question was the following: 

Two functions are given: f(x) = x2 + 4x and g(x) = 2x − 6.
Determine if the graph of f at the point where x = –1 has the same slope as the graph of g.
Explain what you have done.

Most of the solutions of the students were correct. However, there was a great diver-
sity in approaches. Many students either used the graphing calculator or did it by
hand. We also saw mixed forms where they had checked their calculations.
With a question about ways to determine an instantaneous velocity, virtually all stu-
dents provided an answer using an s-t graph and approximating local slope using
small intervals, sometimes with a reference to graphic elements from the computer
program Slope such as “make the triangle small”.
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6.4.2 The role of Flash
The idea of the computer program Flash was that students could investigate many
situations with the discrete graphs of distance travelled and of displacements. Inter-
pretations of graph characteristics and the relations between the two graphs should
emerge during the investigation. 

Results

As a result of the previous lessons, students quickly focused on the patterns in the
graphs. Flash afforded the students to develop graphical reasoning for describing
motion and doing predictions. We noticed a dialectic relation between tools-in-use
and mathematical sense-making. The graphical tools in Flash shaped the activities
while, at the same time, the activities shaped the understanding that emerged; an
understanding of graphical characteristics of discrete two-dimensional graphs as
models of motion.
Unlike the previous experiment where the students did not know if the graphs
depicted height of an object, we did not observe them searching for interpretations
of the graphs. Nor did we hear remarks like ‘what do they want us to do?’ We con-
clude that the graphs in Flash were compatible with the students’ current reasoning.
We analysed the work of three pairs in detail. The students in one of these pairs were
weak in mathematics. We noticed that their transition of reasoning (from concrete
situations to characteristics of graphs) took place more slowly than with the other
two pairs. The weakest pair often resorted to using the stroboscopic photo or the time
series in the stroboscopic picture to interpret the graphs.

Illustrations of the results 

One of the stronger pairs of students quickly used the graphs to describe motions in
terms of fast, faster and going constantly faster. The concepts were related to char-
acteristics of graphs. The following transcript illustrates their method at the begin-
ning of the computer lesson with the photograph of the falling ball and the question
about what the [Continue] button does.

1 Ellen: Press Continue one more time.

2 Marloes: No, you can’t do that because it stays the same… Wait, if we do this…
no, then it continues in a linear line.

3 Ellen: Yes, it just goes further like it was. It doesn’t take account of the fact that
the ball…

4 Marloes: Goes faster.

5 Ellen: Yes, it goes faster.

6 Marloes: Does it continue the last distance or something?

7 Ellen: Yes, it doesn’t take account of the fact that the ball goes faster and faster.
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While working on the task about the rotating stick one student in this pair remarked
that the motion of the middle of the stick is shown by a displacement graph with the
same height, while the motion of the end produces a curving graph. They linked
these graph characteristics to characteristics of the motion of the stick.

With the weakest pair, this process went much more slowly. Their language about
the actual motion and the abstract characteristics of the graph were intermingled at
the beginning. Occasionally they appeared to understand the difference and the con-
nection between the two graphs, but this hardly seemed to take root with Mary (one
of the weakest pair). 
In the following transcript, they were working with the falling ball and were trying
to determine what happened by looking at the graph of displacements.

1 Ellen: What is the difference between the two motions?

2 Marloes: The red one goes in loops.

3 Ellen: Ummm.

4 Marloes: The red one goes faster and faster and then slower and then faster
again and then slower again, the blue one goes almost straight.

5 Ellen: Oh, yeah, okay.

6 Marloes: So…

7 Ellen: Then you have to say that …

8 Marloes: So the middle goes almost straight.

9 Ellen: No, the middle is going with constant velocity.

1 Mary: Ingrid, you say the ball is falling faster and faster right?

2 Ingrid: Yes, that’s right isn’t it?

3 Mary: Go to that thing. To the graph.

4 Ingrid: Look, there is more and more distance between the two balls, you know,
from that picture.

5 Mary: No, but look, if you say the ball is falling faster and faster…

6 Ingrid: Yes, what then?

7 Mary: You can see that from the distance, can’t you, how much that continues to
increase, but this is always the same. [She refers to the increase in the displace-
ments, which remains constant.]

8 Ingrid: But it keeps falling faster, otherwise it would be a straight line. Then you
have this [she gestures to show a horizontal line].

9 Mary: But wait a minute, where does that graph come from? Is that the graph of
velocity or distance?
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The description of graph characteristics and of actual motion are interwoven in their
language. Due to Flash, they could, however, try something out to test their expec-
tations about the graph (a constant velocity results in constant displacements). In the
following fragment, they are comparing the middle and end of the rotating stick.

In the above mentioned fragment we can see how they repeatedly returned to the
meaning of the photograph. Fifteen minutes later, they tried to use the graph to de-
termine if the cheetah catches up with the zebra. The observer again approached
them. Mary once again forgot what the graphs meant. She suddenly wondered why
the two graphs were different. ‘They are about the same motion aren’t they?’ The
pair determined the meanings of the graphs by using the time series in the strobo-
scopic photograph.

10 Ingrid: Of the distance between two balls.

11 Mary: Well then, but you say that it’s falling faster and faster. But that couldn’t be
so, because the same amount is added each time. Not more in a specific time or
something.

12 Ingrid: If you do it this way, this [she seems to be clicking regular distances], then
it goes, then it continues to fall at the same rate… yeah I can’t explain it. It’s just
the way it is.

13 Mary: If that’s the way it is, then it would just stay at one point?

14 Ingrid: No, this is the distance between two flashes, you know, so between 3 and
4, so it’s falling faster and faster, because the flashes happen in the same time…
and the balls are further and further apart.

15 Mary: Or wait a minute, it is the distance between two balls. Sorry. No I saw it
wrong.

1 Mary: Well, the blue stays more the same, more constant, or not. And the red, it’s
wavy. [Blue is the middle, red is the end.]

2 Ingrid: The red goes very fast and then it goes very slowly again.

3 Observer: And can you also see that on the other graph?

4 Ingrid: Yes, that the red suddenly goes very fast, and then it goes, like here, then
it goes about the same, and then suddenly it goes very fast again. While the blue
goes up at the same rate.

5 Mary: Yeah, blue goes more steadily.

6 Mary [Reads the following question] …explain how you arrive at your answer...

7 Ingrid: Well, the end travels a longer distance, because the graph is higher.

1 [They look at the distance-travelled graph.] Mary: He catches up…

2 Ingrid: So he doesn’t quite catch up.

3 Observer: Why not?
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Their language about the graphs did not stabilise during the lesson. Mary remained
very close to the visual phenomena (‘the red does come above the blue’) while Ingrid
talked about displacements using various formulations (‘between two pieces’ and in
a following sentence ‘between two dots’). Probably she meant the same thing, but
this made communication more difficult and probably did not strengthen their
understanding. Due to the sequence of inscriptions of time series to two-dimensional
graphs, it was still possible for the two students to talk about events and to trace their
origin. Especially for these students, the class discussions afterwards and the activity
about the bungee jumper were essential in gaining understanding and confidence in
using the specific language and concepts that accompany the discrete and graphic
models of motion. 

6.5 Summary
In this final section of chapter 6, we summarize the main results of the teaching
experiments. In chapter 7, we discuss these results and the consequences for an
instruction theory on the teaching and learning of calculus and kinematics. In addi-
tion, we will focus in chapter 7 on the more general themes, such as emergent mod-
elling and the problem-oriented approach, as included in the research questions.
Our experiences in both experiments indicated that a context with time series, like
the hurricane-context, is suitable to make the students aware of the importance of
being able to make predictions. The students became aware that displaying change
of position is a possible way to proceed for predicting motion. Moreover, we suc-
ceeded in creating opportunities for the students to start reasoning with two-dimen-
sional discrete graphs.

4 Ingrid: Because the red doesn’t rise above the blue.

5 Observer: Do you understand that too?

6 Mary: Yeah, I get it now. I just didn’t understand for a minute what kind of graph
it was but now I see it.

7 Observer: And if you look at the other graph, the displacements, then he catches
up with him earlier or not?

8 Mary: Yeah, then the red does come out above the blue… doesn’t it?

9 Ingrid: Yes, but that means that it in a specific … between two pieces how much
distance it travels. Not that it catches up.

10 Mary: You know, what I don’t understand, what is the difference between this
graph and the other one. They are always the same, aren’t they?

11 Ingrid: No, look, this [displacements graph] is the distance between two dots. And
this [distance travelled graph] is the distance between the first dot and the … for
example, this, the fourth dot. That’s the difference.

12 Mary: Oh, yes.
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To a reasonable extent we succeeded with an computer tool in supporting the stu-
dents to invent specific characteristics of these discrete graphs and connections
between graphs of displacements and total distance travelled. However, for some
students, the exact difference between a discrete graph of displacements and one of
distance travelled was probably not completely clear even after the computer lesson.
We offered the teacher a framework of reference to discuss the computer activities.
This framework, together with a follow-up activity for the students was necessary to
achieve classroom consensus about the meaning and use of the graphs and the
accompanying language. 
During the subsequent activities the students experienced the limitations of the dis-
crete graphs and the distinction between instantaneous and average velocity. We
succeeded in providing the students with a motive to look for other ways to display
change. Unfortunately, the students’ solutions were scarcely discussed in the class
and as a result we did not get a good picture of whether the graphs of average veloc-
ities were a sensible way to proceed for the students. In this case, we had underesti-
mated the difficulty of the intended transition to continuous models, and we could
not provide the teacher with the information required in order to teach in a problem-
posing fashion. The next chapter contains suggestions for this transition to continu-
ous models and continuous motion graphs.
We succeeded in creating opportunities for the students to interpret velocity-time
graphs by using bar-graph approximations of piecewise constant average velocities.
The context of Galileo’s assumption on free fall appeared useful for approximating
the distance travelled of an accelerating motion. We are of the opinion that the tran-
sition from discrete measurement values to working with graphs of average velocity
is a suitable one. However, the association with area under the velocity-time graph
did not emerge in the students’ work in either of the experiments.
We did also succeed in preparing the students to extent their kinematical reasoning
to continuous distance-time graphs and to provide them with motives to start reason-
ing with vertical and horizontal intervals in these graphs for determining velocity.
The students did draw tangent-like continuations for approximating the continuation
of the graph if the velocity did not change after a specific point. We did not suffi-
ciently succeed in the transition from a continuous distance-time graph to reasoning
with mathematical formulas and their graphs. The next chapter discusses ways to
improve this transition.
The graphic and dynamic picture provided by a computer tool and the language
developed while working with this program appeared to be useful for the following
lessons. They supported class discussions and the development of the mathematical
and physical concepts.
Concerning the central issue of the instructional sequence − describing and predict-
ing change − it was found that reflection on the corresponding modelling process can
be improved.
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7 Conclusions and discussion

This research project aimed at making an empirically grounded contribution to a
local instruction theory for the teaching and learning of calculus and kinematics. The
main research question was: 

How, and to what extent, can the teaching and learning of the principles of calculus
and kinematics be integrated in a guided reinvention course on modelling motion
using computer tools?

This course should prevent the conceptual problems that students have with these
topics, as outlined in chapter 2. For the design of the course we used the design heu-
ristics associated with emergent modelling and problem posing, and computer tools
to support students’ inventions. The approach was further inspired by a study of the
historical development of calculus and kinematics, and by theories on symbolising.
Consequently, on a more general level, the aim of this research was to contribute to
the understanding of these design heuristics, of the role of computer tools in edu-
cation, and of guided reinvention as a paradigm for the teaching and learning of
mathematics and physics.
In chapter 3, the main question was split into two research questions. The answers
to the first question, concerning the intended local instruction theory, are described
in section 7.1, while the second research question, concerning the choices made for
designing the teaching materials, is answered in section 7.2. In section 7.3 we reflect
on guided reinvention, the integration of mathematics and physics courses, symbol-
ising, and the distinction between expressive and explorative modelling. We con-
clude this chapter with recommendations for future research and educational prac-
tices in section 7.4.
The answers to the research questions were, in most cases, empirically confirmed by
our teaching experiments. In some cases our reasoning is hypothetical, based upon
experiences we gained during the research. As a result, the conjectured instruction
theory described in the next section has been partly confirmed by the teaching exper-
iments, and is partly a reconstruction empirically supported by the teaching experi-
ments.

7.1 Question 1: the emergence of a local instruction theory
We aimed to implement a process of teaching and learning which could be charac-
terised as guided reinvention. This implies that the students’ understanding of the
intended notions should be rooted in, and developed from, their understanding of
everyday phenomena. The guidance consisted of giving the students activities for
which they had no standard procedures, that motivated them to expose and explore
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their own solution procedures, and to compare these to a general problem which
needed to be solved. Solving the general problem led them to organising and mod-
elling activities for describing and predicting motion. These activities shaped a tra-
jectory for the learning of calculus and kinematics. The first research question con-
cerns the conjectured local instruction theory:

1 How can students develop the basic principles of calculus and kinematics in a
process of teaching and learning that can be characterised as guided reinven-
tion?

In this section we draw conclusions on how students can acquire the notions aimed
at in a dynamic growth process in which symbols and meanings develop together.
This process is related to the means of support for achieving it: the instructional
sequence with the student activities, the guidelines for the teacher and the tools pro-
vided.

From displacements between successive positions to trace graphs as represen-
tations of changing position with changing velocity

The first step in the trajectory was to foster students’ thinking about change of posi-
tion as a measurable quantity signifying motion, because change of position pro-
vides the imagery needed to make trace graphs. For this step we presented students
with a context and a problem that led them to reason with displacements. 
We chose a weather context in which we used the successive positions of a hurri-
cane. Questions for extrapolations of the hurricane’s trajectory guided the students
to look at and analyse displacements between successive positions. This enabled the
students to take displacements at equal time intervals as a basic notion for describing
the hurricane’s motion (section 6.2.1). This experience was in line with observations
by Boyd & Rubin (1996), who found that displacements appeared to be a basic struc-
turing element for describing motion and making predictions. 
We conclude that these activities are a good starting point for the learning of calculus
and kinematics, because they focus the students on graphical characteristics of
descriptions of motion. Making predictions in such a context requires the students to
co-ordinate patterns in successive positions.

From trace graphs to two-dimensional graphs

The next step was to describe motion using trace graphs. One-dimensional trace
graphs were introduced after discussing the use of displacements in making predic-
tions. These trace graphs signified successive displacements at equal time intervals,
and required them to display the patterns in the displacements. Co-ordinating these
patterns encouraged the students to invent two-dimensional graphs, with successive
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displacements drawn next to each other, or graphs with the displacements added up
and displaying how the total distance travelled developed. We found that some stu-
dents used only the last displacement in making their predictions on the course of the
hurricane, while others took the pattern of increasing displacements into account
(see section 6.1.1). The differences between constant velocity and increasing pat-
terns were used by the teacher to pose the problem of displaying patterns in trace
graphs.
In the next activity (the cheetah chase) students were free to develop their own strat-
egies for comparing the motion of the two animals. Some students pictured the dis-
placements with two-dimensional discrete graphs. We did not see the variety in stu-
dents’ inventions found by DiSessa et al. (1991), probably due to the students’ pre-
vious coursework and the purpose of this activity. The teacher was able to discuss
the students’ reasoning with the whole class (section 6.4.1) and the reasoning with
the graphs and their characteristics acquired a central position. All the students
seemed familiar with the signifying domain, in this case the displacements in trace
graphs, and with the problem for which the two-dimensional graphs were a solution
(how to picture and reason with displacements and their patterns).
We conclude that predicting change with trace graphs and an invention-oriented
activity supports the students in the transition to two-dimensional discrete graphs.
The suggestions in the teacher guide for discussing patterns in displacements with
the whole class offers the teacher opportunities for class discussions and ways to
proceed in line with the envisioned learning trajectory.

Finding relations between graphical characteristics and properties of motion

After introducing discrete two-dimensional graphs, investigating various situations
led the students to start using these graphs as a model for reasoning about mathemat-
ical and kinematical notions and relationships. The imagery underlying the emerg-
ing notion of velocity and changes in velocity was the length of, and change in, dis-
placements in successive time intervals. This notion became related to patterns in
two-dimensional discrete graphs of displacements and distances travelled. Constant
velocity was displayed with a constant-displacement graph and a linear distance-
travelled graph. Moreover, students came to understand the mathematical relation
between these two graphs as taking sums and differences, a relation where the aver-
age displacement played a central role. We expected this imagery to prevent the stu-
dents’ potential misinterpretations discussed in chapter 2 (page 25).
A consequence of the students’ freedom to develop their reasoning was that time had
to be allotted to discussing and learning from each other’s findings. The results of
their investigations were discussed to reach a class consensus on the emerging
notions. It was helpful for the teacher to guide and focus such a discussion using an
activity in which the students could present their reasoning with the graphical char-
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acteristics. During these investigations and class discussion, the quantities of veloc-
ity and distance travelled became related through the discrete graphs, although
velocity was still directly related to identifiable displacements in corresponding time
intervals and was not yet being used as a compound quantity.
However, letting students investigate many situations is time-consuming. Therefore
we used the computer tool Flash for supporting their reasoning on various motion
situations represented by stroboscopic pictures. In just one lesson, the tool afforded
all the students to relate specific kinds of motion with characteristics of graphs of
displacements and distances travelled. Some students returned occasionally to the
stroboscopic picture, while others started to reason with only the two graphs (section
6.4.2). They realised that clicking on successive positions in the picture in Flash was
equivalent to measuring displacements. Gradually, in subsequent activities, graphi-
cal reasoning replaced the use of identifiable displacements. We observed that rea-
soning with graphs started to signify a way of describing motion and making predic-
tions.
The differences between the students during the computer activities required a
teacher-guided discussion about the graphical characteristics in relation to describ-
ing motion and making predictions. This discussion was needed to reach a consensus
about the results and the way to proceed. An activity in which students had to
describe and present a specific motion (of a bungee jumper) supported this discus-
sion. The presentations and the accompanying discussion guided their thinking
towards using graphical characteristics for reasoning about motion (section 6.4.1).
We conclude that such a discussion is useful and such an activity supports this dis-
cussion.
In all the teaching experiments, some students invented a compensation strategy for
finding and using the average displacement which was related to Oresme’s middle
speed theorem (page 87). Discrete constant displacements signified constant veloc-
ity, and this velocity was the average velocity when displacements in a displace-
ment-graph above and below the constant displacement outweighed each other, and
added up to the same total distance travelled. The accessibility of such a graphically
supported compensation strategy was also identified by Bakker (2004) in a study on
statistics education.
The following activities focused on change in small time-intervals. The students
noted that instantaneous velocity could not yet be determined, because it was still
related to an identifiable time interval and they did not have enough measurements
in the discrete case. The notion of instantaneous velocity could have been problem-
atised then, by using the students’ knowledge of and experience with values from a
speedometer in a car, motorbike or bike. Their knowledge of the characteristics of
the discrete graphs provided a framework of reference for the imagery in the contin-
uous case, such as the interpretation of linear continuations and points of intersec-
tion.
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From discrete graphs to continuous models of motion

At this stage we planned to make the transition from discrete to continuous models
of motion. We were not able to collect evidence for students’ contributions on the
need for this transition (section 6.4.1). However, bar graph approximations of con-
tinuous velocity-time graphs signified displacements in corresponding time inter-
vals for the students. They worked with these bar approximations and their reason-
ing – based upon displacements – helped them to understand and manipulate contin-
uous velocity-time graphs and the difference between instantaneous and average
velocities. An example was their flexibility in dealing with the middle speed theo-
rem (section 6.1.3).
We did not see students using incorrect dimensions for quantities like cm2 for dis-
tance travelled via the calculation of the area under a velocity-time graph (page 21).
Constant average velocity in a velocity-time graph signified a horizontal line for the
students, where velocities below and above the line outweighed each other and
added up to the same total distance travelled.
The transition to continuous models and their graphs can be improved by a more
explicit discussion of the relation between proportional reasoning (e.g. Galileo’s
hypothesis for free fall) and data-based reasoning. The historical interpretation of
instantaneous velocity (70 km/h means that if you would maintain this velocity for
one hour, you would cover a distance of 70 km) can also be used for such a focus on
proportionalities. Both the mathematics of models of proportionalities (tables,
graphs and formulas), and the differences with discrete graphs of measurements can
be exploited to support students in understanding the nature of continuous models
and finding ways of reasoning with them. This seems to be needed for evoking the
feeling that the use of continuous models is a promising way to proceed.
The transfer of mathematical notions from mathematical models to applications –
and vice versa – might be encouraged with an explicit focus on, and use of, analogy
reasoning. Kaper & Goedhart (2003) described using analogies of structural features
in the field of chemistry education. They found that analogy reasoning could be used
productively for students to construct an analogy between the structural features of
two domains. Analogies between reasoning about total distance travelled according
to a continuous model of constantly accelerating velocity and reasoning with dis-
placement graphs and graphs of average velocities might be used to offer opportu-
nities for the students to construct these similarities themselves.

Constructing the difference quotient as a measure for average velocity and the
difference between average and instantaneous velocity

The students’ use and understanding of intervals in continuous graphs was built
upon their reasoning with discrete graphs. Linearity in continuous distance-travelled
graphs signified linearity in the discrete distance-travelled graphs with constant dis-
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placements (as vertical increments) in equal and successive time intervals (displayed
horizontally). As a consequence, linearity in continuous distance-travelled graphs
also became related with constant velocity through the discrete graphs.
The reasoning with lengths and changing lengths of intervals in the discrete graphs,
and their understanding of average velocity as a compound quantity, permitted the
students’ use of difference quotients as a measure for average change. As a result,
parts of these continuous distance-time graphs signified a vertical displacement
together with a corresponding horizontal time interval. The quotient of these two
dimensions resulted in the average velocity over the actual time interval. Students
could be supported at this stage in the learning process by being presented with a
context together with a continuous distance-time graph and posing questions related
to the motion (e.g. Mr Bommel’s driving activity, see page 145).
In addition, the approximation of instantaneous velocity built upon linear continua-
tions of a distance-time graph (a continuation with the velocity at that very moment).
Drawings which signified this reasoning could be evoked by an open-ended prob-
lem, where a continuous distance-time graph was presented with a problem on the
velocity at a moment when the velocity was changing (e.g. exceeding the speed
limit). The students did not yet have the mathematical tools for solving these prob-
lems at their disposal. They drew tangent-like straight lines to denote the contin-
uation of the graph if the velocity was not changing from a certain moment. Most
students answered that the precise value of this velocity could not be determined and
only a few invented an approximation process by themselves (see page 148). The
teacher could then have used the variations in their reasoning and drawings to dis-
cuss the approximation process and to build upon their inventions.
We conclude that context problems with continuous graphs and questions for instan-
taneous change supported students in inventing ways to reason with these graphs.
These inventions provided for the imagery for the difference quotient as a means for
calculating average change and approximating instantaneous change.

The difference quotient in graphs of mathematical formulas

The last step in our trajectory concerned the transition to reasoning with graphs of
mathematical formulas. We conjectured that approximations of situational distance-
time graphs with graphs of mathematical formulas could be used for this transition.
A computer program (Slope) was used to present students with various investiga-
tions and to afford them the use of chords for approximating instantaneous change.
However, during the teaching experiments, their reasoning with the continuous dis-
tance-time graphs was not discussed. 
As a consequence, students seemed to be familiar with the signifying domain
(graphs and their intervals), but most of them did not have a clue how to use the
graphical tools or the related ∆y/∆x notations together with a formula y = f(x) in the
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computer program for approximating instantaneous change. The computer tools
were not compatible with the students’ reasoning and the activities were not as pro-
ductive as the first computer lesson with the Flash program, in the sense that the stu-
dents did not develop the use and characteristics of the difference quotient during
their investigations. However, we noted that after this computer lesson their knowl-
edge of the approximation process and the dynamic visualisations in the software
helped them in reasoning with the difference quotient.
We conclude that in the transition of students’ reasoning with data-based distance-
time graphs to graphs of mathematical formulas, more attention is needed for
approximation processes in data-based graphs. A discussion of ways to approximate
instantaneous velocity can offer opportunities for explaining the limitations of these
approximations. During this discussion, when all the students understand the
approximation process and the need for values over small intervals, the use of math-
ematical formulas as models of data-based graphs, or parts of them, can come to the
fore. In this way consensus can be reached on the similarities between the graphical
reasoning in both cases, and in the understanding of the notational extensions as a
result of using a formula.
Finally, we conclude that the students’ activities with a computer tool like Slope are
helpful in supporting the teaching and learning of the approximation process with
the difference quotient. It offers a dynamic graphical visualisation that can be
referred to during following lessons by simulating the dynamics with gestures and
talking about ‘the blue triangle’. This also fosters reasoning about the approximation
process in situations where the teacher and students do not have a computer availa-
ble.

Summary

The relation between the inscriptions, the intended activities and conceptual devel-
opment of the students can be summarised in a table. Gravemeijer et al. used such a
table for describing a learning trajectory on measurement and flexible arithmetic
(Gravemeijer et al., 2003). 
To emphasise the ‘tool’ character of the inscriptions, they referred with the label
‘tool’ to these physical representations. The ‘imagery’ column refers to the history
that frames students’ perception. By providing this column we make it plausible that
students understand the tool and how the tool derives its meaning. The activities and
discussions that address specific concepts should result in motives to proceed. In our
approach we focused especially on these motives, and we have therefore added them
to the table.
The table summarises (i) how students are expected to act and reason with the tools,
(ii) how an activity relates to preceding activities, and (iii) the conceptual develop-
ment aimed at by that activity.
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tool imagery activity concepts

time series
(e.g. satellite photos 
& stroboscopic pic-
tures)

real world repre-
sentations signify 
real world situa-
tions

predicting motion 
(e.g. weather)

displacements in 
equal time intervals as 
an aid for describing 
and predicting change

should result in a feeling that the ability to 
predict motion with discrete data is an impor-
tant issue

trace graph of suc-
cessive locations

signifies a series of 
successive dis-
placements in 
equal time intervals

compare, look for 
patterns in displace-
ments and make pre-
dictions by 
extrapolating these 
patterns

displacements as a 
measure of speed, of 
changing positions, 
but difficult to extrap-
olate

resulting in a willingness to find other ways to 
display displacements for viewing and extrap-
olating patterns in them

displacements in 
tables and graphs.

focus on reasoning 
with the graphs in 
Flash

signifies patterns in 
displacements of 
trace graphs
(and cumulative)

compare patterns 
and use graphs for 
reasoning and mak-
ing predictions about 
motion (also at cer-
tain moments: inter-
polate graphs)

refine your measure-
ments for a better 
prediction: displa-
cements decrease

displacements 
depicting patterns in 
motion;
constant displace-
ments = constant 
velocity = linear (dis-
crete) graph of dis-
tances travelled;
precise predictions of 
instantaneous veloc-
ity cannot be made 
with discrete informa-
tion;
a displacement rep-
resents a constant 
velocity on a time 
interval.

should result in the need to know more about 
the relation between sums and differences, 
and in the need to know how to determine 
and to depict velocity 

s

∆s
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tool imagery activity concepts

graphs of average 
velocities

reasoning and calcu-
lations with intervals 
∆s and ∆t

average velocity 
during a time inter-
val signifies a dis-
placement in that 
time interval (shift 
from length to area 
as a repre-
sentation for dis-
placement)

with this type of 
graph students depict 
change of velocity 
and patterns remain 
visible with as many 
measurements as 
you have

average velocity as a 
compound quantity; 
graph of successive 
average velocities 
with a continuous 
horizontal time-axis; 
where the areas of 
the bars signify corre-
sponding displace-
ments

this should result in an interest in knowing 
what to do when you want to test a hypotheti-
cal continuous model

bar graphs of piece-
wise constant veloci-
ties (and lines of 
summit)

each bar signifies a 
displacement

the continuous 
graph signifies a 
constantly chan-
ging velocity at any 
instant as a (hypo-
thetical) model of a 
motion that depicts 
instantaneous 
velocities

try to describe free 
fall;
check Galileo’s 
hypothesis with dis-
crete approximations 
of the continuous 
model;
approximate continu-
ous distance- time 
graphs with displace-
ments

a velocity-time graph 
can be approximated 
with piecewise con-
stant velocities; 
where areas of bars 
represent displace-
ments;
insight into the link 
between area, veloc-
ity and distance cov-
ered 

should result in asking whether this approxi-
mation method can be applied in all situations 
and in ways for displaying constantly varying 
distance travelled

a continuous graph of 
distance travelled

signifies a con-
stant change of 
position and refers 
to the cumulative 
displacement 
graph in Flash

reasoning with 
graphs about aver-
age and instantane-
ous velocity
(e.g. in the context of 
breaking the speed 
limit)

straight lines in dis-
tance graph: height = 
∆s, width = ∆t, slope 
(∆s/∆t) = measure for 
average velocity on 
time interval

results in asking how to be more precise 
about instantaneous velocity and how you 
can improve approximations when you have 
a graph and a (hypothetical) formula at hand

∆s/∆t

t

t 

v
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table 7.1 A summary of the local instruction theory

The teaching experiments for this trajectory were limited to eight to ten lessons,
which was not long enough for all the discussions we had planned. Parts of the tra-
jectory (especially the discrete graphs) can be dealt with in an earlier grade (e.g. see
Yackel et al., 2003). This will then be recapitulated in grade 10, but more rapidly
than during our experiment. In addition, the students will continue lessons with cal-
culus and kinematics after this sequence. Notions like acceleration, frame of refer-
ence, limit concept and derivative function should follow these basic principles in
pre-university courses physics and mathematics. 

Concluding remarks

We reached a better understanding of the teaching and learning of the basic princi-
ples of calculus and kinematics; an understanding which is reflected by the presented
contribution to an instruction theory. Nevertheless, this contribution is based upon
two teaching experiments in three schools. More experiments are needed to establish
a robust theory which will hold up in different educational situations.
In this reinvention process we did not see wrong interpretations of velocity-time
graphs, nor did we see wrong interpretations of points of intersection in velocity or
distance-time graphs. However, we must note that we did not investigate the stu-
dents’ reasoning in various situations. The way students reasoned and developed the
notion of difference quotient and their use of motion graphs supported our conjec-
ture that this learning trajectory led to an understanding that prevented the concep-
tual problems described in chapter 2.
In the instructional design, the concepts were developed from students’ common
sense reasoning about displacements in trace graphs. The learning of these concepts
built upon their daily life reasoning and the imagery for new concepts was rooted in
their experiences and provided the basis for the following steps in the teaching
sequence. The lessons were more successful when we designed these steps well.

tool imagery activity concepts

computer program 
Slope with linear con-
tinuation

signify what hap-
pened when velo-
city no longer 
changes from a 
certain moment 
(building upon 
experiences with 
Flash and defini-
tions of velocity 
using potential dis-
placements)

find instantaneous 
velocities from dis-
tance-time graphs

difference quotient as 
a measure of the 
slope of a line and an 
aid for finding slopes 
of tangents
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This led to a framework of graphical and kinematical relations in which slopes and
areas of graphs came to the fore as mathematical entities for describing and predict-
ing motion.
Finally, we note that our focus on teaching materials as a means of support for cre-
ating teaching and learning processes runs the risk of neglecting other aspects
required for realising a guided reinvention process. For instance, it should be possi-
ble and the students should experience it as important, that they reveal their ideas and
discuss each other’s reasoning in pairs, small groups, and class discussions. More-
over, other unanticipated events may occur influenced by the students or by lessons
before or after the mathematics lesson. Such events affect the teaching process,
demanding the teacher’s time and skill to manage them on a meta-didactical level,
in line with the intended learning trajectory. In our analysis we focused on content-
related ways for the teacher to support the students’ reasoning. We note that teacher
interventions aiming at encouraging interaction processes between students are also
important and should not be neglected (Dekker & Elshout-Mohr, 2004).
Our intended teaching and learning processes were supported by emergent model-
ling, a problem-posing heuristic, and IT tools. In the next section we will reflect on
how these choices benefited our teaching design.

7.2 Question 2: design heuristics and computer tools
We aimed at a process of teaching and learning in which students contributed to a
dynamic growth process of emerging symbols and meanings. To achieve such a
process, we explicitly chose two design heuristics, and we integrated the use of com-
puter tools in our teaching materials. The second research question evaluated these
choices and is dealt with in this section:

2 To what extent does the course of this process empirically support the adequacy
and the understanding of our choices: the role of computer tools and of the de-
sign heuristics related to emergent modelling and problem posing?

Emergent modelling (EM) refers to a process of teaching and learning in which mod-
els emerge from informal solution strategies, and the use of the models supports the
emergence of formal mathematics. The related design heuristic – looking for models
that can come to the fore as models of a situation and can emerge into models for
mathematical reasoning – played a key role in accomplishing our teaching design.
This heuristic involved a historical analysis of the development of calculus and kin-
ematics, and mental experiments about both the teaching possibilities and the stu-
dents’ learning.
The problem-posing heuristic (PP) involved evoking the need for new tools or con-
cepts by problematising students’ experiences or activities with respect to a general
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content-specific goal. For this the teacher needed to have an idea of both how the
students might reason, and how this reasoning could be used for evoking productive
questions and suggestions with respect to the over-arching goal.
In analysing the adequacy of the design heuristics and the use of information tech-
nology we focused on three cases: (i) the transition from trace graphs to two-dimen-
sional discrete graphs, (ii) the transition to the use of continuous models, and (iii) the
transition from drawing linear continuations in generated data or fictive continuous
graphs to using graphs of formulas and difference quotients. These cases contained
crucial steps in the instructional sequence.
We compared the success of events in the teaching experiments and tried to analyse
whether the differences could be explained by the choices for our design. On a wider
level, we reflect upon the students’ learning process we had achieved and whether it
can be characterised as emergent modelling and problem-posing.

The transition from trace graphs to two-dimensional discrete graphs

In the first teaching experiment, the students had to use two-dimensional discrete
graphs in the Flash program immediately after working with trace graphs of the hur-
ricane’s motion. We noted that they needed time to discover the significance of the
two-dimensional graphs provided by the software (see section 6.1.2). 
The notion of emergent modelling led to designing an activity which would support
students’ constructions of and reasoning with two-dimensional graphs, building
upon their reasoning with trace graphs. We therefore inserted an activity where stu-
dents had to compare data of two different kinds of motion (the ‘cheetah chase’ see
page 163). We also provided the teacher with the students’ possible reasoning, and
showed how this could be used for guiding them towards two-dimensional graphing
by focusing their discussion on patterns in displacements.
The notion of problem-posing led us to add information for the teacher to our mate-
rials for guiding classroom discussion so that students could reach a position where
they understood that using two-dimensional graphs was a sensible way to proceed to
the main goal: how to describe motion for making predictions (see section 6.3).
In the second teaching experiment, the inserted activity elicited students’ reasoning
on the relations between motion and graphical descriptions, precisely as anticipated.
The classroom discussion based upon students’ contributions provided the imagery
needed for the Flash activities (see section 6.4.1). We observed that the teacher was
able to regulate the discussion in such a way that students understood that displaying
and investigating patterns in displacements was a sensible way to proceed for
describing and predicting motion. The students’ suggestion of using two-dimen-
sional graphs was welcomed by the teacher as a valuable way of reasoning, and we
concluded from their contributions and questions while discussing these graphs, that
it was accepted by all the students.
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During the Flash activities in the second teaching experiment, all the students used
the two-dimensional graphs meaningfully in their reasoning about the motion situa-
tions. A reasoning which started with clicking in the stroboscopic photograph and
describing change in successive displacements with words and gestures. The focus
of their words and gestures changed from these individual displacements to patterns
in and between the two-dimensional graphs for reasoning about motion. We con-
clude that the design heuristics were helpful, both in analysing the experiences with
the first experiment and in improving the teaching materials.

The transition from discrete graphs to the use of continuous models

The transition from reasoning with discrete motion graphs to using continuous mod-
els was prepared in situations with data of successive positions. Students were sup-
posed to understand the change of perspective in using continuous models and, for
instance, note the difference between continuous lines in discrete graphs and in
graphs of continuous (hypothetical) models. We did not succeed in making these
aspects of the transition evident during the first teaching experiment. We considered
that this transition was related to the change in reasoning with velocity as a propor-
tion between identifiable values, to viewing velocity as a compound quantity which
has an instantaneous interpretation.
We were not sure whether the students’ reasoning during the computer activities
with discrete graphs resulted in the construction of the intended notions. Emergent
modelling brings about a gradual process in which ideas emerge during the students’
activities, where students have different histories, use different words, and reason at
different speeds. Especially after a lesson spent completely on computer activities,
a classroom activity was needed to see where students had got to, to let them explain
what they had learned, and to justify this knowledge with respect to the global ques-
tion. Moreover, the teacher should use this wider question to create consensus about
the notions learned to frame their intentions for the way to proceed. We therefore
added a graph construction activity after the computer lesson with Flash (the bungee
jumper activity).
This construction activity resulted in group work and a classroom discussion which
addressed precisely the notions we aimed at. Students showed their discrete graphs,
exposed their reasoning, and had lively discussions about each other’s contributions,
while the teacher was able to use their contributions to reflect on the computer activ-
ities and guide them to the intended graphical relations (see page 174).
In addition to the possibilities, the constraints of discrete graphs should also emerge
in the next activities. One of these constraints yielded the interpretation of the hori-
zontal axis, from numbers of measurements in discrete graphs to time in continuous
graphs. We were not clear about this difference in the instructional sequence. This
prevented the students focusing on the interpretation of the horizontal axis.
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In the second teaching sequence, we added information for the teacher about ways
to problematise instantaneous velocity (see section 6.3). This improvement in the
teaching design was inspired by the problem-posing approach.
The new activities on the constraints of discrete graphs and the notion of instantane-
ous velocity did not take place as we had planned. This was partly due to the
teacher’s problems in managing the classroom discussion during this particular les-
son (see section 6.4.1). The students hardly had time to express their thinking,
although we saw possibilities afterwards in their written material.
We conclude that a reinvention process for this transition from discrete graphs to
continuous models needs more time than just one or two lessons. The design heuris-
tics helped us to analyse and improve our teaching sequence. Activities with clear
class co-operation and discussion, like the graph construction activity, are important
for making the crucial transitions in the dynamic growth process. We cannot con-
clude that we succeeded in designing a teaching process in which the whole class
understood the need for continuous graphs of motion.

The transition from linear continuations to using graphs and formulas

In both experiments students had difficulties making the transition from the activity
with a data-based continuous distance-time graph to working with graphs of formu-
las and linear continuations.
During the subsequent lessons, the dynamic images in the computer tool Slope
appeared to serve as useful imagery underlying the approximation processes with a
difference quotient and the use of the graphing calculator. Both the teacher and stu-
dents used these dynamic images while discussing technical aspects of the differ-
ence quotient and the operation of the graphing calculator. However, the references
we observed were confined to remarks during classroom discussions (e.g. see page
152). We felt more emphasis could have been put on the transition from the graphi-
cal tools in Slope to establishing notions like the difference quotient in relation to the
use of the graphing calculator. Theories on the use of personal devices like the
graphing calculator suggest a parallel development in the mathematical notions
aimed at, and the use of these devices in classroom teaching processes (Drijvers,
2003; Artigue, 2002).
We conclude that the preparation of the notion of linear continuation in the discrete
case and the activities with Slope, provided the students with imagery for under-
standing the difference quotient as a tool for approximating instantaneous change.
However, during the activities with Slope in both our teaching experiments, students
posed questions like ‘what do they want us to do?’, which was precisely the kind of
question we had tried to avoid (see section on interpretative framework in chapter
4). Our analysis indicated that this kind of question was posed because we had not
supported the students sufficiently in building their reasoning about graphs of for-
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mulas upon their reasoning with data-based graphs. In this transition we did not suc-
ceed in achieving a teaching and learning process that could be characterised as a
problem-posing approach. A content-specific motive has to be found for making the
transition from linear continuations to using graphs and formulas, as in the con-
tinuous model for free fall drawn from Galileo’s hypothesis.

Conclusions

Before considering each part of the second research question concerning our
choices, we will quote the related questions from table 3.1 (see page 65).

2 EM: Does the previously planned sequence of graphical tools fit students’ thinking
and foster advanced reasoning by a shift from model-of to model-for?
On a general level, we conclude that we achieved an emergent modelling process,
especially in the shift from modelling motion to reasoning with two-dimensional
discrete graphs. This shift involves a transition from viewing discrete graphs as tied
to identifiable displacements in stroboscopic pictures to viewing these graphs as
entities in their own right, which support reasoning about change in velocity and the
relation between constant velocity and distance travelled. These graphs remain their
kinematical interpretation, but are no longer referring to identifiable displacements.
The students’ use of these graphs was constructed from their network of mathemat-
ical and physical knowledge, and the connections extended their ability to view
motion from a mathematical and physical perspective and to understand velocity as
a compound quality. This shift from graphs as referents to graphs as mathematical
entities is related to the model of to model for transition described in section 3.5.1.
We conclude that this design heuristic fosters the emergence of students’ under-
standing of the intended mathematical and kinematical relationships.
The dialectic relation between the development of graphs and of conceptualising
motion implies that the teacher has to consider both ways when dealing with teach-
ing decisions. We have already emphasised the importance of awareness in the par-
allel development of the language used by the students. When the teacher gives stu-
dents construction space in modelling activities, they tentatively invent inscriptions
and use an ‘impure’ mathematical language for expressing their ideas. For instance,
the way they drew continuous lines in discrete graphs and talked about these lines
was not correct from a mathematical perspective, but it fitted the students’ – produc-
tive – reasoning, signifying patterns in discrete graphs and their characteristics.
In an emergent modelling approach the teacher has to be aware of the possible ways
in which inscriptions as well as the related language emerges in order to offer appro-
priate guidance in class discussions building upon students’ contributions. 
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2 PP: Are students aware of a global problem that is being solved, and do the local
problem situations provide the students with content-specific motives to proceed in
the intended direction?

Our second design heuristic is based upon achieving a problem-posing approach.
This heuristic appeared to be valuable in improving the teaching materials, espe-
cially in designing means to support the teacher in class discussions. The students’
activities were especially productive when the teacher arranged the discussions of
their contributions in such a way that they posed the problems that had to be solved.
In doing so the students exposed their understanding of content-specific aspects of
the problem and were motivated to solve them. Those cases in which the students
were less motivated and tried to guess what was expected from them, were when
they had not previously contributed sufficiently to the way to proceed. However,
when teachers had to act under time pressure, we saw that these reflections were the
first to be dropped.
The use of a wider question appeared helpful in getting students to explicate what
they learned at a reflective level, for justifying the following steps, and for providing
content-related motives to proceed; motives which frame the students’ intentions
during the subsequent activities. 
We underestimated the difficulties for implementing the problem-posing approach
in our instructional sequence. The guiding theme how to describe change for predic-
tions? was not always functional for the students. The course of teaching and learn-
ing in our experiments can only be characterised as problem posing to a limited
extent.
The problem-posing heuristic exceeds the design of student activities and guidelines
for a series of lessons. It demands a change of attitude to act in an everyday school
situation on a meta-didactical level. Teachers have to be aware of the danger that
they can easily get students to look at a problem from a specific point of view, while
at the same time the students still have to invent the knowledge that shapes that point
of view. For investigating the students’ thinking and for guiding their perception and
intentions, the problem-posing design heuristic proved to be valuable.

2 IT: Do the representations in the computer tools fit prior reasoning and how do
they afford advanced reasoning and sense-making?
We investigated the didactical use of two types of computer tools. The first tool was
developed to enable students to investigate many cases and to afford the construction
of a framework of graphical relationships for reasoning about discrete motion situa-
tions. This construction built upon students’ previous knowledge and expressions,
instead of on discoveries from guess-and-check strategies. The students’ investiga-
tions and constructions were productive as a result of the compatibility of the tools
with the students’ reasoning. Students developed graphical reasonings through
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words and gestures with the tools provided. Consequently, we advocate students
working in pairs with the software. Moreover, we saw a wide range in the quality of
students’ reasoning with the tools.
This use of computer tools seems to correspond with helping students to develop
relationships by linking different representations. However, we prefer to speak of
creating opportunities for the students to construct a variety of mental ideas by inves-
tigating many cases.
The second type of computer tools was to visualise an interactive manifestation of
the model. This dynamic image provided something concrete to talk about in class
discussions and signified the approximation process with a difference quotient. We
conclude that computer activities can create a shared dynamic imagery of a specific
notion which can be referred to afterwards. Such a dynamic image functions as a
generic organiser (Tall, 1996), a generic example that ‘embodies’ a general property
or process.
Finally we conclude that activities with computer tools need careful preparation
beforehand, and need reflection afterwards. In the second teaching experiment, we
added an activity before the Flash lesson to support the students’ inventions of, and
reasoning with graphs. The variety in solutions enabled the teacher to discuss graph-
ical models of motion and to reach consensus about the way to proceed. As a result,
the tools in the software were compatible with the students’ current reasoning. Their
understanding of the graphs provided by the tool, was an important condition for
their meaningful and flexible reasoning with the tool.
An intended model shift – associated with emergent modelling – did take place at a
different pace and to a different extent during the computer activities. Consequently,
the small groups’ activity afterwards, together with the students’ presentations, class
discussion and teacher’s guidance promoted the whole-class understanding of the
acquired notions. As an aside we note that the fact that computer rooms have to be
reserved in advance, rather limits the possibilities for sufficient preparation of the
computer activities.

7.3 Discussion
The a priori points of departure were: to achieve a learning process of guided rein-
vention, integrate calculus and kinematics, and support the students in developing
symbolising with a series of inscriptions. In this section we reflect on these points.

7.3.1 Guided reinvention
By guided reinvention we refer to a learning process in which students experience
something as if they had invented it themselves. There are two observation criteria
related to such a process: (i) students’ meaningful perception of and reasoning about
the problem situations provided, especially those situations for which they did not
yet have a standard solution procedure (invention), and (ii) the possibilities for the
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teacher and subsequent activities to use students’ reasoning in line with the intended
trajectory (guidance). In addition, we paid special attention to offering possibilities
for students to pose the questions that have to be solved along the intended trajectory
by adopting design heuristics related to a problem-posing approach (supporting their
awareness of a reinvention process).
We concluded that we succeeded in most cases in creating opportunities for students
to make inventions which contributed to the intended learning processes. We used
contextual problems that varied from day-to-day life (e.g. predicting the track of a
hurricane with satellite photographs) to more scientific situations (e.g. approximat-
ing maximum slope); situations for which they did not yet have standard solution
procedures. Students invented inscriptions and reasoning which could be used by the
teacher for supporting the development of (i) the notions of distance travelled and
velocity, and (ii) the mathematical tools for describing change and making predic-
tions. The students’ reasoning appeared particularly meaningful and productive
when it referred to the main question on predicting change.
The teaching experiments showed that it was difficult to build upon students’ con-
tributions in making the transition from data-based graphs to continuous models. In
these experiments we did not succeed in providing the students with problems where
it made sense for them to extend their reasoning from data-based graphs to using for-
mulas. However, as a result of the experiments we were able to propose ways for
improving this transition.
In relation with the use of computer tools we note that Flash enabled students to
invent the possibility of reasoning with graphical relations for describing and pre-
dicting motion. The use of Slope could hardly be characterised as guided reinvention
(see also section 7.3.4), but the students’ experiences with Slope provided for a
dynamic imagery, which they used to understand and trace meaning while working
with the difference quotient.
The historical development of calculus and kinematics provided us with indications
for the use of emerging models and of the related conceptual development. How-
ever, these indications proved limited for planning and dealing with the development
of students’ thinking and language. We had underestimated the importance of hav-
ing clues about this development in order to offer the teacher the information needed
for guiding class discussions.

We note that our aim is to describe a trajectory which supports the teaching and lear-
ning of calculus and kinematics in a class situation. This does not imply that individ-
ual learning processes follow precisely this trajectory. However, for guided reinven-
tion to work, teachers should have an image of the trajectory and their role (when to
guide and when to give students freedom for invention?).
Finally, during the last few lessons of both teaching experiments, students and teach-
ers focused on the instrumental use of the difference quotient and graphing calcula-
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tor with mathematical formulas and their graphs. This was not surprising, because
the experiments took place during mathematics classes and replaced studying chap-
ters from mathematics textbooks. The teachers wanted to be sure that students had
mastered the mathematics required. Such a focus on algorithms has the danger of
disconnecting them from their roots.
In summary we note that we partly succeeded in realising a process of teaching and
learning that can be characterised as guided reinvention.

7.3.2 Integrating science and mathematics
The integration of physics and mathematics in the teaching experiments was con-
fined to the integration of kinematical notions in an instructional sequence for math-
ematics lessons. Ideally, this instructional sequence is acted out in both physics and
mathematics lessons. 
Our research indicated that students’ conceptual problems in applying mathematical
notions in other topics can be prevented by integrating the learning and teaching in
an application. We have shown how the history of the intertwined development of
calculus and kinematics provided ways of using emergent modelling in a teaching
sequence. In our approach, the learning of calculus and kinematics was rooted in
grasping and organising motion. The activities for making predictions and describ-
ing motion graphically helped the students to develop a notion of velocity as a com-
pound quantity, which supported the notion of proportionality that underlies the
understanding of the difference quotient as a measure for change.
However, both in the transition from discrete graphs to reasoning with continuous
models of motion, and in the transition from a continuous distance-travelled graph
to reasoning with graphs of formulas, students had difficulty in understanding and
using structural similarities. Their reasoning mainly remained in the context of mod-
elling motion, while the students were also supposed to use mathematical knowledge
of proportionalities and of graphs and formulas. For experts these similarities are
evident, but students still had to construct them. A conceptual analysis of ways of
reasoning is needed for the instructional designer to offer opportunities for students
to understand which knowledge to use, and to construct the intended notions. Such
an analysis asks for content knowledge of these notions and of the students’ current
mathematical and physical reasoning. We advocate more emphasis in mathematics
education for proportional reasoning with graphs and formulas in different disci-
plines.
Other possibilities for an integrated approach lie, for instance, in the field of discrete
and continuous dynamic modelling. Such modelling activities for investigating the
dynamics of various situations (population growth, cooling down, consumer-pro-
duction dynamics) could be the source for developing both mathematical models
and knowledge of their applications (e.g. Michelsen, 1998; Prins et al., 2003).
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We do not believe that all mathematical topics can be developed through an inte-
grated approach. Some topics are essentially the result of a process of organisation
within or between mathematical systems or structures. In fact, the trajectory in this
research should also be followed both by a series of lessons where the mathematics
of change is developed as a generalising principle for many applications, and by
elaborating the topic within a mathematical context (e.g. difference equations and
derivatives, proving, the limit concept). In these subsequent lessons, motion and the
related compound dimensions could still be used to trace meaning or to support new
mathematical inventions. In addition, the kinematical notions addressed in this tra-
jectory should be elaborated in a series of physics lessons to integrate and extrapo-
late the same notions in the relation with force and acceleration. 
Finally, the integrated approach contributes to a trend within education to develop
skills (general and topic-specific) through problem-oriented case studies. The
experiences we gained in our research raised two points of concern. First, the teacher
needs didactical knowledge of both disciplines for dealing with class discussions
and guiding students’ tentative ideas. Second, the period of integrated lessons should
be alternated with topic-oriented lessons to develop relations with the topic’s sys-
tematics: relations that (i) support its understanding, (ii) create possibilities to trace
meaning, and (iii) provide opportunities for new inventions.

7.3.3 Symbolising
Mathematics often originates from observing and organising phenomena. However,
the mathematical concepts (or constructions) that describe patterns and structures
also exist independently of these phenomena. We develop and communicate these
concepts with inscriptions. A knowledge of symbolising is necessary to understand
how these concepts and inscriptions were invented, and to be sure that teacher and
students communicate the same ideas. We concluded that, especially for mathemat-
ics education, we need to apply that knowledge to prevent students from acquiring
an instrumental use of graphs or algorithms without understanding the concepts rep-
resented by those graphs and algorithms.
Assumptions about the benefit of emergent modelling, problem posing and the use
of computer tools for education are related to semiotic notions about how students
perceive and symbolise problem situations. These ideas aimed at a dynamic growth
process from students’ intuitions to the intended learning goals. In the design of the
teaching sequence, we paid specific attention to the progressive development of
inscriptions, imagery, activities in context and the parallel development of mathe-
matical and kinematical concepts (see table 7.1). Each notion and inscription, devel-
oped within a context, provided the imagery needed for the next step in the conjec-
tured local instruction theory. These choices proved to be useful in designing and
analysing the teaching and learning processes. 
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The students’ learning processes could have been analysed from a semiotic perspec-
tive. Semiotic frameworks for such analyses are Peirce’s notion of diagrammatic
reasoning (e.g. Bakker, 2004) and the more linear notion of chains of signification
(e.g. Cobb, 1999; Gravemeijer & Stephan, 2002b). However, we analysed primarily
the mathematical activity observed in classroom discussions and the students’ writ-
ten materials, and this resulted in empirically supported reasoning for the teaching
and learning processes in the classroom. Future research is necessary to investigate
and analyse the symbolising processes of individual students.
In the classroom learning processes, we noticed that students reasoned and wrote
about mathematical and kinematical notions with a tentative language and inscrip-
tions which were not as precise as the notions aimed at. Goldin (2003) described
three main stages in the development of representational systems: (i) an inventive
and semiotic stage, (ii) structural development and establishment of relationships,
and (iii) an autonomous stage. In the autonomous stage the system can function flex-
ibly in new contexts. During the inventive stage, students tentatively used inscrip-
tions and language to communicate their developing ideas. We noted that this some-
times created differences in thinking and use of language between the students and
teacher (e.g. discrete graphs and interpretations of a continuous line of summit). We
saw that the teacher played an important role in this communication, which is also
supported by Bauersfeld (1995) and Van den Boer (2003). The bungee jumper activ-
ity, where students had to present results of their group work (see section 6.3), is an
example of providing students with the means to communicate about each other’s
findings and the teacher with means to guide the classroom discussion after a com-
puter lesson.
We also considered the dynamic and interactive tools in the computer program
Slope. We studied how the dynamics of the chord in a graph in Slope were referred
to in the lessons thereafter, and found that these dynamics appeared to form a strong
imagery supporting the understanding of approximation processes with a difference
quotient. Bakker (2004) addressed a similar dynamic feature of computer tools in the
context of a semiotic analysis.
Finally, nowadays much instrumental manipulation can be done by hand-held tech-
nological devices (like graphing calculators and computer algebra). The transition
from using didactical computer tools in concept development to using such devices
to solve problems demands an understanding of the way in which these devices
become meaningful instruments (e.g. see Drijvers, 2003).
It is of increasing importance that students learn to recognise mathematical or phys-
ical structures in phenomena, and are able to translate these structures into symbol-
isations so that they can be dealt with scientifically. Acquiring these skills is pre-
cisely what the semiotic perspective in this research project aimed to foster.
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7.3.4 Computer tools: discovery versus invention
In chapter 3 we described alternatives for the traditional transmission approach. We
distinguished between the approaches which have much in common with ideas
underlying discovery learning and those which stress the importance of using stu-
dents’ own inventions. This distinction was inspired by Doerr’s (1997) description
of exploratory modelling compared to expressive modelling or model building.
In discovery learning, the final model is introduced and linked with known phenom-
ena in computer simulations or with other technological devices. The understanding
of the final model is established through the students’ exploration of the linkages.
We suspected that such an understanding might be the result of trial and error strat-
egies, without construction of the underlying concepts and without being sure that
the students’ understanding was rooted in related intuitions and experiences.
In invention-oriented approaches, the final model is the result of modelling activities
in which students’ inventions played a central role. The related inscriptions and lan-
guage are progressively developed through these activities and tool-use supports stu-
dents’ inventions. Our approach achieved such a process in the use of Flash. We
found similar results with the use of dynamic representations in computer tools for
the learning and teaching of algebra (Boon, 2004; Doorman, 2004).
We noticed that the tools we provided for the students were not always experienced
by all the students as tools for expressing their reasoning. Rather, for some students,
the activities with the Flash and Slope software could be characterised as guided dis-
covery. During the computer activities with Flash, these students were mainly
engaged in trying to understand the link between the discrete graphs and their manip-
ulations in the stroboscopic picture. However, their history and the imagery prepared
by the preceding activities made it possible for them to trace meaning. In most cases,
the students were able to do this by themselves, but in some cases, the teacher or an
observer was asked for an explanation. In the latter cases, the students’ previous
experiences provided ways to guide them from those to understanding the intended
notions.
It is difficult – maybe even impossible – to design learning processes for classroom
situations in which all students experience their learning process as invention. How-
ever, a learning trajectory which supports invention and which makes it possible to
trace meaning, provides the teacher with possibilities for guiding the students’ rea-
soning. This can be realised when the tools in the software are part of an emergent
modelling process and are – as much as possible – compatible with the students’ cur-
rent reasoning.

7.4 Recommendations
This final section contains recommendations concerning instruction theories, educa-
tional practices and the integration of science topics in secondary education.
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Conclusions and discussion
Instruction theories and design research

This research contributes to a local instruction theory on the teaching and learning
of calculus and kinematics. The trajectory starts with constructions of discrete two-
dimensional graphs from time series. Returning to the origin of what is displayed in
such graphs appeared to be useful in supporting students in their reasoning with
intervals. We emphasize that a return to where mathematical inscriptions and con-
cepts originate should take place more often in education, since students risk dealing
with mathematical notions algorithmically and without true understanding. Algo-
rithms should be practised, but not until the students are able to reinvent them by
themselves (Freudenthal, 1973). We would add that our experience showed that they
do not automatically then have the ability to reinvent the learned notions by them-
selves at a later stage. Students should be regularly asked to trace explicitly the
meaning of mathematical notions and related language and inscriptions.
Our reasoning underlying the conjectured theory was mainly based upon the stu-
dents’ reasoning observed in class discussions and on students’ written materials.
Futher research is necessary to investigate and analyse whether the symbolising
processes made by individual students really fit our proposed sequence. Moreover,
further research on computer tool-use and the relation between invention-oriented
and discovery learning should reveal how a teacher can ensure that students really
understand the acquired skills, and how the underlying notions can be traced when
students no longer understand the standard procedures.
The design research approach resulted in an empirically based contribution to a local
instruction theory. However, experimenting in a settled school program limited the
possibilities for our research and the teaching experiments were confined to a series
of mathematics lessons. Moreover, it was sometimes difficult for the teachers to
guide all the students during the lessons of 50 minutes in the intended way. We rec-
ommend future experiments where mathematics and physics teachers implement
this instructional sequence in their lessons. In addition, these experiments are needed
for the constitution of a robust local instruction theory for the learning and teaching
of calculus and kinematics.
The local instruction theory, including the instructional activities, offered teachers a
framework of reference for planning their lessons and their practical teaching
(Gravemeijer, 2004a). Further research is needed to investigate which description of
the instructional sequence, together with the underlying theory, can indeed be used
as a means of support for teachers and for other parties who influence the course of
affairs in education (de Lange et al., 2001).

Educational practices

We did not succeed in relating the students’ work to a leading theme in all our les-
sons. Sometimes local problems in one lesson demanded all the time and attention
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Chapter 7
available. In addition, the current trends in Dutch education for more autonomous
learning by the students and more computer controlled assessment do not support the
conditions needed for guided reinvention. Class discussions appeared to be essential
for students to reach a consensus about their tentatively developed inscriptions and
the related language.
In the trend towards autonomous learning, we recommend that the importance of
open-ended problems, class discussions and assessment of modelling skills should
also be taken into account. Time for concept development according to guided rein-
vention learning processes could be gained from the current way of dealing with an
elaborate collection of differential and integral techniques for a large variety of func-
tions. The relation between the notions of calculus in discrete situations and in situ-
ations where mathematical formulas are at hand, is more important for students who
are being prepared for science studies than a thorough knowledge of integral and dif-
ferential techniques. In relation to this, we refer to the current availability of techno-
logical tools, hand-held and on the internet, which can give quick and accurate
answers when you are able to type in the correct questions.

Students developed concepts and instrumental competencies through open-ended
activities. These modelling activities should be valued and discussed seriously by
the class. Current assessment practices appeared to focus both teacher and students
on algorithmic skills. More emphasis should be put on assessment which addresses
modelling competencies through open-ended investigations (Goldin, 2003; de Haan
& Wijers, 2000; van den Heuvel-Panhuizen, 1996; de Lange, 1987, 1999).

Integration of science topics

Finally, the integration of mathematics and science topics is an important issue for
education. In current scientific research many breakthroughs happen on the border
of different topics. However, integration of mathematics and science in secondary
education should take into account that didactical problems within the various topics
have more consequences than a superficial consideration of the respective curricula
might suggest. Integration has more implications than just the tuning of standards,
and needs schools, teachers and researchers to invest in understanding each other’s
didactical problems and cultures.
This study has provided some insight into the constraints and possibilities for the
integration of physics and mathematics. We recommend further research on this
integration for the understanding of the teaching and learning of science and math-
ematics as closely related disciplines, and for implementing real changes in the way
these topics are covered in schools.
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Samenvatting

Introductie
Het onderzoeksprogramma Wiskunde leren met ICT richtte zich op de vraag naar
empirische evidentie voor de manier waarop computergebruik kan bijdragen aan het
leren van wiskunde. Eén van de domeinen binnen dit programma onderzocht het
leren van de beginselen van differentiaalrekening en kinematica. Dit proefschrift
doet verslag van dat onderzoek. De overige domeinen waren statistiekonderwijs
(Bakker, 2004), het leren van algebra (Drijvers, 2003), niveauverhoging bij kans-
rekening (Pijls et al., 2003) en het gebruik van grafische rekenmachines in het
beroepsonderwijs (Hoek & Seegers, in press).
De keuze voor differentiaalrekening en kinematica is het gevolg van vele publicaties
over de problemen van leerlingen met deze onderwerpen. Het blijkt dat zij hun
schoolkennis meestal niet combineren met hun dagelijkse redeneringen over veran-
dering en beweging. Bij het onderwijzen van deze onderwerpen hebben grafieken
een centrale rol, maar deze zijn voor leerlingen niet voldoende transparant.
De introductie van grafische rekenmachines in het voorbereidend wetenschappelijk
onderwijs en van computeralgebra in het wetenschappelijk vervolgonderwijs bieden
hier wellicht een oplossing. Leerlingen hoeven niet meer uitvoerig de arbeidsinten-
sieve algoritmen te leren om verschillende functies te differentiëren en te integreren.
Daardoor kan meer aandacht worden geschonken aan het leren van de onderliggende
concepten.
In het wis- en natuurkundeonderwijs zien we bovendien steeds meer het gebruik van
computersimulaties. Deze worden dan meestal gestuurd door een natuurweten-
schappelijk model in een geïdealiseerde omgeving. Leerlingen worden geacht om de
regels van het model te ontdekken tijdens het werken ermee. Die werkwijze in het
onderwijs wordt ook wel discovery learning genoemd (de Jong & Joolingen, 1998a).
Deze aanpak kan worden geplaatst naast een benadering waarbij computers worden
gebruikt om leerlingen te ondersteunen in het zelf ontwikkelen van modellen (Doerr,
1997). Het ondersteunen en begeleiden van leerlingen bij het ontwikkelen van wis-
kundige modellen is ook precies wat wordt beoogd met realistisch wiskundeonder-
wijs. Een onderwijsbenadering waarin modelleeractiviteiten van leerlingen centraal
staan, sluit aan bij ideeën over hoe mensen symboliseren. Voor het geven van bete-
kenis aan symbolen en het leren gebruiken ervan blijkt kennis over de onderwerpen
waarnaar verwezen wordt, en het doel van het gebruik, essentieel.
We veronderstellen dat de problemen van leerlingen met het interpreteren van snel-
heid-tijd en afstand-tijd grafieken hun oorzaak hebben in onvoldoende kennis over
snelheid als samengestelde grootheid en over de samenhang tussen snelheid en afge-
legde weg. Leerlingen worden geacht allerlei samenhang in die grafieken te zien,
maar het ontbreekt ze aan de daartoe noodzakelijke domeinkennis.
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We richten ons daarom in dit onderzoek op een onderwijsbenadering waarbij sym-
bolen, betekenissen en vakspecifieke doelen zich in wisselwerking met elkaar ont-
wikkelen (zie Meira, 1995). Deze onderwijsbenadering en de veronderstelling dat
computers kunnen worden gebruikt om leerlingen te ondersteunen bij het ontwikke-
len van modellen, vormen de uitgangspunten voor het onderzoek naar het leren en
onderwijzen van differentiaalrekening en kinematica.

Leren en onderwijzen van differentiaalrekening en kinematica
Voor het onderzoek naar een alternatieve benadering van differentiaarekening en
kinematica is eerst vakdidactische literatuur bestudeerd. Daaruit blijkt dat leerlingen
snelheid niet zien als een relatie tussen tijd en afgelegde weg, maar als eigenschap
van een bewegend object die wordt gerelateerd aan verplaatsingen en inhalen
(Piaget, 1970; Thompson, 1994a).
Uit onderzoeken met studenten volgt, dat zij nog steeds niet spontaan met snelheid
redeneren als een samengestelde grootheid die een relatie beschrijft tussen een
bewegend object en een referentiekader (Saltiel & Malgrange 1980). In hun redene-
ringen lopen beschrijvingen en oorzakelijke verbanden vaak door elkaar. Hierin her-
kennen we een onderscheid tussen straatbeelden van natuurkundige fenomenen, die
gebaseerd zijn op alledaagse ervaringen, en logisch consistente schoolbeelden die
een geïdealiseerde realititeit beschrijven (Genderen, 1989). Kennelijk slaagt het
onderwijs er niet in deze twee beelden te verbinden.
Bij differentiaalrekening en kinematica is het gebruikelijk om de begrippen op te
bouwen aan de hand van continue grafieken. Raaklijnen en oppervlaktes spelen een
belangrijke rol in de verklaring van een maat voor verandering. Het blijkt echter dat
leerlingen zulke grafieken niet altijd correct interpreteren. McDermott e.a. (1987) en
Clement (1985) hebben uitgebreide studies gedaan naar problemen van leerlingen
met snelheid-tijd en afstand-tijd grafieken. Een bekend verschijnsel is dat leerlingen
die grafieken als een beschrijving van de werkelijke situatie zien. Dit wordt niet
alleen veroorzaakt door de vorm van de grafiek, maar ook door de taal waarmee we
over grafieken praten (Goddijn, 1978; Dekker, 1991; Berg, 1994). 
Een ander probleem is dat vaak te snel overgegaan wordt naar de formules die bij
het onderwerp een rol spelen (Machold, 1992; Barnes, 1995; Kindt, 1995). In de
schoolboeken staat het oefenen met die formules centraal. Hierdoor zijn leerlingen
gespitst op het hoe in plaats van op het waarom. De berekeningen passen in een
systematiek rond tijd, snelheid en afgelegde weg die voor leerlingen nauwelijks
wordt opgebouwd vanuit hun perceptie van die grootheden. 
De conclusie die we uit deze literatuurstudie trekken is dat de overgang van dagelijks
taalgebruik en intuitieve noties naar formele begrippen en grafieken bij deze onder-
werpen te groot is. Dit heeft tot gevolg dat leerlingen onvoldoende inzicht ontwik-
kelen in de wis- en natuurkunde van het modelleren van beweging.
In recente pogingen om inzicht te krijgen in een mogelijk leertraject zijn twee bena-
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deringen te herkennen. Beide hebben het modelleren van beweging als centraal
thema, maar kiezen een verschillende invalshoek.
In de eerste benadering wordt de oplossing gezocht in het creëren van een verbinding
tussen de wetenschappelijke kennis en de alledaagse ervaringen. Deze verbinding
wordt vormgegeven in computerprogramma’s waarbij de wetenschappelijke
beschrijvingswijzen gekoppeld zijn aan simulaties met fenomenen rond beweging.
Zo kunnen leerlingen hun alledaagse kennis over beweging benutten om die weten-
schappelijke beschrijvingswijzen te exploreren. Een voorbeeld hiervan is de soft-
ware die ontwikkeld is in het Simcalc-project (Kaput & Schorr, in press).
Het zien van een relatie tussen fenomenen en het ontstaan van continue grafieken
biedt echter niet de garantie dat leerlingen alle elementen van die grafieken goed
interpreteren. De activiteiten voor de leerlingen zijn gericht op het exploreren van
een computermodel dat gebaseerd is op een formeel systeem. Dit model is consistent
met het expert-beeld van een theoretisch systeem en het is maar de vraag of leerlin-
gen die consistentie overzien (Gilbert, 1998). 
Deze benadering is te contrasteren met een tweede benadering waarbij de informele
kennis van leerlingen als beginpunt wordt gekozen. Met betrekking tot computerge-
bruik geven Doerr (1997) en Gilbert (1998) een alternatief door de computer in te
zetten als gereedschap voor het construeren van modellen door leerlingen. Een voor-
beeld van een aanzet tot zo’n werkwijze is te vinden in het onderzoek van Boyd en
Rubin (1996).
Uit de analyse van deze twee benaderingen wordt geconcludeerd, dat voor de
beoogde aanpak meer inzicht nodig is in de mogelijkheden om leerlingen te onder-
steunen bij de ontwikkeling van inzicht in grafieken en het modelleren van bewe-
ging. We raadplegen hiertoe literatuur over perceptie en symboliseren.

Theoretisch kader
Om een beter beeld te krijgen van de oorzaak van de didactische problemen bij dif-
ferentiaalrekening en kinematica beschouwen we de relatie tussen perceptie, inter-
pretatie en kennisontwikkeling. Inzichten uit de semiotiek wijzen op de belangrijke
rol die voorkennis en verwachting hebben bij perceptie en interpretatie (Cunning-
ham, 1992; Jarvilehto, 1999). Bovendien blijken taal- kennisontwikkeling verwe-
ven, en als gevolg daarvan is communicatie met anderen, waarbij je pogingen doet
om nieuwe begrippen te verwoorden, hierbij een centraal aspect (Bartsch, 1998).
Een probleem voor het onderwijs is dus hoe je leerlingen kunt voorbereiden op het
interpreteren van een situatie zoals bedoeld is. Bij het gebruik van structuurmateri-
alen verwijzen specifieke kenmerken van die materialen naar kenmerken in de situ-
atie. De vraag is dan of leerlingen voor een correcte interpretatie niet eigenlijk al de
situatie georganiseerd moeten hebben? Cobb e.a. (1992) formuleren deze zoge-
naamde ‘learning paradox’ als volgt:
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In other words, the assumption that students will inevitably construct the correct
internal representation from the materials presented implies that their learning is
triggered by the mathematical relationships they are to construct before they have
constructed them. (Cobb, Yakel & Wood, 1992, p. 5)

De oplossing is dat deze paradox wordt vermeden door symbolen en begrippen
geleidelijk en gelijktijdig te ontwikkelen. Dit leidt tot een leerproces dat te vergelij-
ken is met wat Meira (1995) noemt: het creëren van een geleidelijk en dialectisch
proces van symbool- en betekenisontwikkeling.
We vermoeden dat een probleem, zoals omschreven in deze paradox, ook speelt bij
de presentatie van continue grafieken tijdens het onderwijzen van differentiaalreke-
ning en kinematica. Een leerproces, waarin leerlingen zelf bijdragen aan de ontwik-
keling van afstand-tijd en snelheid-tijd grafieken, zal het waarschijnlijk voorkomen
dat er een kloof ontstaat tussen de wetenschappelijke kennis en hun ervaringen.
Zo’n leerproces kan ook worden gekarakteriseerd als geleid heruitvinden. Met ‘uit-
vinden’ wordt hier het karakter van het leerproces bedoeld. De activiteiten van de
leerlingen zijn belangrijker dan de uitvinding als zodanig. De activiteiten moeten
ervoor zorgen dat leerlingen hun verkregen kennis zien als uitbreiding van hun eigen
kennis; een uitbreiding waarbij een inbreng van ze verwacht wordt en waarvoor ze
zelf medeverantwoordelijk zijn (Freudenthal, 1991). Zo ervaren leerlingen het
onderwijs alsof ze het geleerde zelf uitvinden.
Verscheidene ontwerpheuristieken zijn ontwikkeld voor het stimuleren van produc-
tieve uitvindingen van leerlingen en het realiseren van geschikte begeleiding in het
onderwijs (zie bijvoorbeeld Treffers, 1987). Twee heuristieken in het bijzonder zijn
van nut in het licht van de beschouwing over perceptie en symboliseren: het gebruik
van emergente modellen (Gravemeijer, 1994, 2004a) en de probleemstellende bena-
dering (Klaassen, 1995; Vollebregt, 1998).
Het gebruik van emergente modellen richt zich op de ontwikkeling van modellen bij
het organiseren van fenomenen vanuit een wiskundig perspectief. Tijdens dit orga-
niseren vindt een verschuiving plaats, waarbij eerst proberende beschrijvingen van
leerlingen een model van een specifieke situatie leveren, terwijl die later uitgroeien
tot een model voor meer wiskundige redeneringen (Streefland, 1985). Computerpro-
gramma’s kunnen leerlingen helpen bij het uitdrukken van hun ideeën (Cobb, 1999;
van Streun, 2000).
De probleemstellende benadering richt zich op het verschaffen van inhoudelijke
motieven aan leerlingen bij hun modelleeractiviteiten. Centraal staat daarbij een
overstijgend kernprobleem. Dat probleem zorgt ervoor dat het voor leerlingen dui-
delijk is hoe de beantwoording van de opgaven uit de leergang je verder kunnen hel-
pen. Het beantwoorden van een opgave roept bij leerlingen, denkend aan het kern-
probleem, vervolgvragen op die zouden moeten worden opgelost. Zo zullen ook de
leerlingen ervaren wat de logica is in de opgavenreeks.
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Dit brengt ons tot een splitsing van de hoofdvraag in twee onderzoeksvragen:

1 Hoe kunnen leerlingen de beginselen van differentiaalrekening en kinematica le-
ren volgens een leerproces dat gekarakteriseerd kan worden als begeleid heruit-
vinden?

2 In hoeverre ondersteunt het verloop van dit leerproces de adequaatheid van en
het inzicht in onze keuzen ten aanzien van emergent modelleren, de probleem-
stellende benadering en het gebruik van computerprogramma’s?

Methodologie
Het doel van het onderzoek is om een beoogde onderwijsbenadering te realiseren en
verwachtingen over het leerproces van de leerlingen te analyseren. Een uitwerking
van deze benadering moet dan eerst ontwikkeld worden. Ontwikkelingsonderzoek is
een methodologie die zich richt op het realiseren van innovatieve leeromgevingen
voor het onderzoeken van onderwijs- en leerprocessen. Dit onderzoek richt zich in
het algemeen op de ontwikkeling van empirisch ondersteunde, vakdidactische
onderwijstheorieen (Gravemeijer, 1994; Lijnse, 1995).
Ontwikkelingsonderzoek kent globaal drie fasen: het eerste ontwerp, het onder-
wijsexperiment en de analyse. De eerste fase start met het beschrijven van een
gewenste aanpak in een hypothetisch leertraject (Simon, 1995) of scenario (Klaas-
sen, 1995). Deze beschrijving is een lokale uitwerking van onze veronderstellingen
over hoe het onderwijs-leerproces te ondersteunen is, hoe we verwachten dat het zal
verlopen en waarom we dat verwachten. In ons geval is dit een eerste uitwerking van
de beoogde lokale onderwijstheorie over het leren en onderwijzen van differentiaal-
rekening en kinematica.
Zoals hiervoor beschreven is het onderzoek gestart met een literatuuronderzoek naar
problemen met, en benaderingen van deze onderwerpen. Parallel aan dit literatuur-
onderzoek is een pilotexperiment uitgevoerd om enkele leerlingactiviteiten te onder-
zoeken, en om te analyseren wat de mogelijkheden zijn voor de onderwijsexperi-
menten binnen de huidige schoolorganisatie. Vanwege het onderwerp is gekozen
voor experimenten in 4 vwo (Natuur-profielen).
Na de analyse van het pilotexperiment is een hypothetisch leertraject geformuleerd
en uitgewerkt voor een eerste versie van het lesmateriaal. Die versie is in het eerste
onderwijsexperiment uitgeprobeerd in twee 4 vwo klassen op verschillende scholen.
Het lesmateriaal en de verwachtingen zijn vooraf met de docenten doorgesproken.
Van alle lessen zijn geluidsopnamen gemaakt. Video-opnamen zijn gemaakt van
klassikale discussies en van een tweetal leerlingen tijdens de computeractiviteiten.
Na afloop van de lessenserie is het leerlingenwerk ingenomen en zijn de proefwerk-
uitwerkingen gekopieerd. Met deze data is geprobeerd om het leerproces van de leer-
lingen te reconstrueren en om veronderstellingen te toetsen. 
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Samenvatting
Een tweede onderwijsexperiment bleek nodig voor het optimaliseren van het lesma-
teriaal, voor een betere uitwerking van de overgang van discrete naar continue gra-
fieken, en om meer systematisch data te verzamelen over de bijdrage van de compu-
teractiviteiten aan het leerproces van de leerlingen. Dit tweede experiment vond op
één school plaats en data werd op een vergelijkbare manier verzameld als bij het
voorgaande experiment. Het voornaamste verschil is dat nu opnamen gemaakt zijn
van drie tweetallen tijdens de computeractiviteiten. 
Het interpretatieve kader voor het analyseren van de data werd voornamelijk
bepaald door keuzen ten aanzien van het lesmateriaal en de relatie met het begrijpen
en verbeteren van de leerprocessen.
Met de beschikbare data zijn we gekomen tot een empirisch onderbouwde bijdrage
aan een lokale instructietheorie voor het leren en onderwijzen van differentiaalreke-
ning en kinematica.

De leergang
Wiskunde is de discipline waarmee we de wereld om ons heen structureren. Dat
maakt het noodzakelijk voor ontwerpers van lesmateriaal zich te verplaatsen in leer-
lingen en zich hun perceptie van probleemsituaties voor te stellen. Daarbij kan het
helpen om de historische ontwikkeling van de onderwerpen te analyseren. Welke
problemen waren de aanleiding en hoe werden ze aangepakt door mensen die de
standaardoplossingsmethoden nog moesten ontwikkelen?
De eerste ideeën over bewegingsleer komen we tegen bij Aristoteles (circa 350 v.
C). Hij probeerde verschillende soorten materie te karakteriseren op grond van hun
eigenschappen, en veronderstelde dat objecten naar hun natuurlijk plaats vallen met
een constante snelheid die evenredig is met het gewicht van het object. 
Heel lang blijven de ideeën van Aristoteles gangbaar en onaangetast. Het bestuderen
van bewegingen en veranderingen wordt op een aantal plaatsen in Europa pas weer
onderwerp van studie in de dertiende en veertiende eeuw. Men bestudeert in die tijd
situaties waarbij een eigenschap bezig is te veranderen. Rond 1360 geeft Oresme aan
deze discussie een − voor ons − belangrijke bijdrage, namelijk die van de grafische
voorstelling. Het ging hem hierbij niet zozeer om wat er precies gebeurt, maar hoe
je dat wat er gebeurt, kunt beschrijven.
Oresme paste deze techniek ook toe op − geïdealiseerde − bewegingen. De bijzon-
dere denkstap die hij hierbij maakte, was dat snelheid een eigenschap van objecten
is die afhangt van de tijd. Dankzij zijn keuze worden de meetkundige figuren dis-
crete varianten van de ons bekende snelheid-tijd grafieken.
Oresme, en later vooral ook Galileï (1564-1642) bij empirisch vastgestelde bewe-
gingen, geven betekenis aan het werken met grafieken zonder dat momentane snel-
heid gedefinieerd is als differentiaalquotiënt. Dijksterhuis merkt hierover op:
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Het is een situatie, die zich in de geschiedenis van de wiskunde herhaaldelijk
heeft voorgedaan: mathematische begrippen worden vaak - men kan bijna wel
zeggen: in den regel - reeds lang intuïtief gehanteerd, voordat men ze met volko-
men scherpte kan omschrijven, en fundamentele stellingen worden vaak intuïtief
ingezien voordat men ze strikt kan bewijzen. (Dijksterhuis, 1980, p. 218)

Vanaf dan ontwikkelt zich de differentiaalrekening via Newton en Leibniz (beiden
17e eeuw) en via Cauchy (19e eeuw) tot de uitwerking die de basis vormt voor het
huidige onderwijs.
Deze geschiedenis leert ons dat de aanzetten voor de differentiaalrekening voortko-
men uit het modelleren van beweging. Er werd in eerste instantie niet gekeken naar
grafieken van functies, maar naar meetkundige vormen die direct betekenis hebben
in de context. De grafieken komen naar voren als modellen van relaties tussen
afstand, tijd en snelheid van bewegende objecten. Geleidelijk aan worden grafieken
een opzichzelfstaand object: de grafiek representeert de samenhang tussen twee
variabelen. Pas in een later stadium gaan grafieken functioneren als model voor wis-
kundig redeneren over het differentiëren en het integreren van functies.
Op basis van de geschiedenis en van ervaringen in een pilot-experiment besluiten we
dat het thema greep krijgen op verandering in de lessenserie centraal moet staan en
dat we leerlingen kunnen ondersteunen met een serie grafieken: van discrete con-
text-nabije grafieken tot de continue snelheid-tijd en afstand-tijd grafieken.
Dit thema is uiteindelijk geconcretiseerd binnen de context van een naderende
orkaan. De vraag voor de leerlingen is: Hoe kun je voorspellen wanneer de orkaan
het land zal treffen? Die situatie wordt gepresenteerd aan het begin van de leergang
en gedurende de lessenserie wordt daar een aantal keren op teruggeblikt: Wat kun-
nen we nu beter? Hoe zouden we nog preciezer kunnen zijn? In deze aanpak sluiten
we niet aan bij intuïties van leerlingen over snelheid en gemiddelde snelheid als
samengestelde grootheid, maar bij intuïties over verplaatsingen als maat voor een
veranderende snelheid.
Bovendien zijn bij deze opzet computerprogramma’s ingezet. Leerlingen werken
onder andere met het programma Flits waarin bewegingen zijn vastgelegd met stro-
boscopische foto’s. Leerlingen kunnen met dit programma redeneren over die bewe-
gingen zonder belemmerd te worden door de tijdrovende activiteit van het meten
zelf. Hierdoor kunnen ze sneller ingaan op kenmerken van bewegingen in relatie met
grafieken.

Twee onderwijsexperimenten
De veronderstellingen over de achtereenvolgende denkstappen van de leerlingen en
hoe die te ondersteunen zijn uitgewerkt in een serie van tien lessen voor 4 vwo. Deze
lessenserie is uitgeprobeerd op twee scholen.
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Samenvatting
Uit de analyse van dit eerste experiment concluderen we dat het deels is gelukt om
de leerlingen de beginselen van de differentiaalrekening en kinematica te leren in
een proces dat kan worden gekarakteriseerd als geleid heruitvinden. Op een aantal
punten verliep het echter niet zoals bedoeld. Het bleek voor de docenten niet altijd
duidelijk hoe de klassendiscussies zouden moeten leiden tot probleemstellingen
voor het vervolg. Dit deed zich met name voor bij het problematiseren van patronen
in verplaatsingen, en bij het bespreken van de overgang van grafieken van metingen
naar grafieken met een continue tijd-as. Dit had onder andere tot gevolg dat leerlin-
gen tijdens de computerpractica niet direct in de gaten hadden hoe ze de grafieken
van de software konden gebruiken en voor welke problemen die grafieken een
oplossing boden. Bovendien ging op één van de twee scholen het eerste computer-
praktikum met Flits niet door vanwege technische problemen.
We concludeerden dat een tweede experiment nodig was. Voor dat tweede experi-
ment werd het lesmateriaal herzien. We voegden meer open opgaven toe om leerlin-
gen de gelegenheid te geven greep te krijgen op de centrale probleemstelling, en
opdat een verwachte variëteit aan leerlinguitwerkingen kon worden gebruikt voor
klassendiscussies. Dankzij het eerste experiment konden we de gewenste leerroute
bovendien beter articuleren en verwerken in lesbeschrijvingen in de docentenhand-
leiding. Tot slot zorgden we ervoor dat we meer data konden verzamelen over de
computeractiviteiten van de leerlingen om die te kunnen analyseren. Het tweede
onderwijsexperiment vond plaats op één school, wederom in 4 vwo.
Deze wijzigingen hadden inderdaad tot gevolg dat de verschillende bijdragen van
leerlingen aanleiding waren voor productieve klassendiscussies. In de meeste geval-
len kon de leerkracht deze discussies zo begeleiden, dat er consensus leek te ontstaan
over het geleerde en dat de richting voor het vervolg voor leerlingen duidelijk was.
Op deze wijze konden leerlingen beter voorbereid aan de computeractiviteiten
beginnen en hoefden ze minder tijd te besteden aan het achterhalen van de betekenis
van de grafieken en van het doel van de activiteiten.

Bevindingen
Het doel van dit onderzoek is een bijdrage te leveren aan een theorie over het leren
en onderwijzen van differentiaalrekening en kinematica. De kern hiervan is het
modelleren van beweging voor het doen van voorspellingen. Het blijkt dat dit kan
worden geïntroduceerd in de context van een orkaan die een kust nadert. In die con-
text ligt het voor de hand om positieverandering vast te leggen en te gebruiken voor
voorspellingen. Het voorspellen leidt tot een onderzoek van patronen in verplaatsin-
gen. Dit is een motivatie voor het construeren van twee-dimensionale grafieken van
verplaatsingen en van afgelegde weg.
Door met een computerprogramma veel situaties te onderzoeken − waarbij de moge-
lijkheid blijft om betekenissen van die grafieken te traceren − ontwikkelen leerlin-
gen inzicht in grafische kenmerken van die grafieken, zoals ‘helling’ en de interpre-
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tatie van ‘snijpunten’. Kenmerken die voorbereiden op redeneringen met continue
snelheid-tijd en afstand-tijd grafieken.
Voor het motiveren van de overgang van discreet naar continu maken we gebruik
van een beperking van discrete grafieken en van een onderzoek naar een door Gali-
leo verondersteld continu model voor vrije val. Dit is aanleiding voor een stroken-
benadering met stukjes constante gemiddelde snelheid. Voor leerlingen blijkt deze
overgang moeilijk en de docent heeft een belangrijke rol om de probleemstelling en
de gevolgen van een bewering als ‘valsnelheid is evenredig met de valtijd’ met leer-
lingen te bespreken.
De volgende stap naar het differentiequotiënt en momentane snelheid vindt nog
steeds plaats in het thema ‘greep krijgen op verandering’. We hebben gekozen voor
een context met een continue afstand-tijd grafiek van een object dat voortbeweegt
met veranderende snelheid. Het probleem voor de leerlingen is te achterhalen hoe de
grafiek zou verlopen als de snelheid op een zeker moment niet meer zou veranderen.
In deze leergang gebeurt dat in de context van een vermeende snelheidsovertreding.
Deze probleemstelling blijkt leerlingen te helpen bij het formuleren van redenerin-
gen die bruikbaar zijn voor het vervolg. Een deel van de grafiek kan vervolgens wor-
den benaderd met een functie om meer precieze berekeningen mogelijk te maken.
Voor de docent is het dan de taak om die diversiteit aan redeneringen te verbinden
met meer wiskundige redeneringen die gebruikmaken van een functie en haar gra-
fiek.
Als leerlingen een beeld hebben van de mogelijkheden om met een differentiequo-
tiënt momentane verandering te benaderen, kan een computerprogramma helpen om
de dynamiek van dat proces grafisch te verankeren. Bovendien helpt dat grafische
beeld ook bij latere discussies als de computer niet beschikbaar is. Een hele compu-
terles werken met het programma bleek voldoende om ook achteraf te kunnen ver-
wijzen naar grafisch-dynamische beelden van het programma die het benaderings-
proces ondersteunen.

Conclusies en aanbevelingen
Leerlingen ontwikkelden zo hun kennis over snelheid als samengestelde grootheid,
de samenhang met verplaatsingen en afgelegde weg en het differentiequotiënt als
maat voor verandering. Deze kennis is ondersteund door een serie van grafieken die
het voor leerlingen mogelijk maakt betekenissen te construeren en te traceren. Hier-
door zijn de uiteindelijke begrippen geworteld in hun redeneringen over beweging
en voorspellingen bij veranderingsprocessen.
Vervolgexperimenten moeten ervoor zorgen dat deze bijdrage aan een instructiethe-
orie uitgroeit tot een robuuste theorie voor het leren en onderwijzen van differenti-
aalrekening en kinematica die geldt in verschillende onderwijssituaties.
De keuze voor emergent modelleren heeft ertoe geleid dat leerlingen met het lesma-
teriaal symbolen en betekenissen ontwikkelen in een dialectisch proces. Het blijkt
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Samenvatting
dat de docent niet alleen kennis moet hebben van de beoogde ontwikkeling van gra-
fieken, maar ook van de bijbehorende taalontwikkeling van leerlingen.
De probleemstellende benadering bleek waardevol voor het geven van betekenis aan
en het creeëren van inhoudelijke motieven voor de activiteiten. Leerlingen ervaren
dan de achtereenvolgende activiteiten als een samenhangend geheel. De overstij-
gende problematiek is behulpzaam bij het reflecteren op de stand van zaken en om
leerlingen te betrekken bij het denken over de volgende problemen die zouden moe-
ten worden opgelost om verder te komen met het beschrijven van veranderingspro-
cessen. We zijn echter niet overal geslaagd in deze benadering.
De dynamiek van de computerprogramma’s en de mogelijkheid om veel situaties te
onderzoeken bieden leerlingen de gelegenheid om zelf ideeën te ontwikkelen. Com-
putergebruik in de klassenpraktijk heeft echter als risico dat leerlingen te oppervlak-
kig en te snel door de activiteiten heengaan, zelfs als ze de bedoeling niet volledig
begrijpen. Een goede voorbereiding in het lesmateriaal en klassendiscussies onder
leiding van de docent moeten zorgen voor afstemming van de mogelijkheden van de
programma’s met de redeneringen van de leerlingen. Activiteiten achteraf zijn nodig
voor reflectie op en een klassikale consensus over het geleerde.
In deze benadering van geleid heruitvinden is het ons opgevallen dat leerlingen de
mogelijkheid hebben om betekenissen te traceren, maar dat dit niet vanzelf gaat. We
bevelen aan dat met name in het wiskundeonderwijs regelmatiger aandacht wordt
besteed aan de oorsprong van wiskundige begrippen, omdat die snel een eigen leven
kunnen gaan leiden in beoogde algoritmen.
Onze interpretaties en redeneringen zijn vooral gebaseerd op analyses van klassen-
gesprekken en leerlingenwerk. Vervolgonderzoek is nodig om te onderzoeken of de
symboliseringen die we met deze lessenserie ondersteunen inderdaad passen bij de
individuele leerprocessen van diverse leerlingen.
Nader onderzoek moet inzicht geven in het gebruik van computerprogramma’s als
gereedschap bij het leren van wiskunde. Het onderscheid tussen geleid exploreren
en geleid construeren lijkt in de klassenpraktijk minder groot dan de theoretische uit-
gangspunten doen vermoeden. Het is ons namelijk niet gelukt om de computer zo in
te zetten, dat tijdens de activiteiten alle leerlingen het geleerde ervaren als eigen uit-
vindingen.
In het huidige wetenschappelijke onderzoek liggen de belangrijkste doorbraken op
grensgebieden van verschillende disciplines. Bovendien komen bij modelleeractivi-
teiten meestal aspecten van verschillende disciplines aan de orde. Tot slot bevelen
we daarom aan dat meer onderzoek zich richt op het onderwijs in de samenhang tus-
sen de bètavakken.
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Appendix: The pilot experiment 

In this appendix we describe the learning processes of four students we followed
during the pilot experiment. This description gives an impression of the practices
and possibilities of these students within this experiment.
The students used their mathematics booklet (Bos et al. 1998). This booklet contains
a chapter on the basic principles of calculus in ten lessons. For our pilot experiment
we planned to use the time needed for this chapter, and this booklet together with
alternative materials. 
The first alternative activity concerned an orientation on modelling motion. This ac-
tivity should evoke both the need for drawing graphs, and initial reasonings about
the relation between distance travelled and a changing velocity. With this activity we
could also gain insight in the level of these students’ reasoning. We choose a series
of photographs by Muybridge (inspired by an idea of Speiser, 1994). This photogra-
pher investigated motion of animals and humans with such series. Motion in front of
a grid was recorded with photographs in a fixed frequency. We used a serie of a cat
(see fig. 1) that starts running the questions are posed on his walking velocity, run-
ning velocity and how this changes (Muybridge, 1985).

figure 1 A series of photographs by Muybridge: A Catwalk

The topic of sums and differences is inspired by Leibniz’ work, and is also based
upon an instructional sequence concerning the basic principles of calculus (Kindt
1997). Properties of, and the relations between series, their sums and their incre-
ments are investigated by the students in the context of mathematical formulas. In
this process, the students are supposed to develop notions that can be used for prob-
lems later on. Moreover, it is a first introduction to the mathematical relationship be-
tween sums, summation symbols, increments and difference symbols. The notion of
limit is only used in an intuitive way at the end of the unit. 
The relationship between sums and differences is explored by the students with var-
ious graphical representations (fig. 2). From the picture and the graph, students can
become challenged to proof that the sum of successive odd numbers is a square, and
the difference between two successive squares is an odd number.
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The relationship between these sums and differences is represented with symbols: 
∆ n2 = 2k+1 and Σ 2k+1 = n2. 
Students are expected to use graphing calculators when dealing with these investi-
gations. From graphs and tables they can deduce that ∆3n = 2 . 3k and, with the the-
orem they can prove that Σ3k = 1/2 . (3n - 30). 

figure 2 The relation between squares and the sum of successive odd numbers

The second alternative activity on modelling motion concerned the transition from
reasonings about velocity with continuous time-distance graphs to the mathematical
notion of a difference quotient. This activity, about a comic-strip (see page 115) is
inspired by instructional sequences that fitted this line of thinking (Kindt, 1996, de
Lange, 1987). Students have to determine velocities from distance-time graphs. The
intervals in these continuous graphs, which are necessary for the difference quotient,
will probably derive their meaning from the preceding discrete work.
We expected that students were able to interpret the graph in terms of a slope that is
related with - change of - velocity, and that they were able to measure displacements
in time-intervals that can be used to calculate average velocities over the time-inter-
val (especially when the graph is straight over the corresponding time-interval).
From there the step is made to a fictive motion according a formula: s = t3. Questions
deal with average velocities and whether the velocity at t = 5 sec can be determined
(or approximated) and what the graph would look like when the velocity shouldn’t
change from that moment.
In this context students might come up with a relation between average velocity and
instantaneous velocity and the use of a difference quotient for approximating the
slope ‘in a point’ of a graph.
We describe our observations of Suzanne, Lennert, Loes and Jonas respectively.
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Case studies from the pilot experiment
Suzanne

Suzanne measured distances to describe the cat’s motion. She placed the distances
between the cat and a fixed starting point in the table. From the ninth frame she also
wrote increases below the cells of her table (see fig. 3). Probably it became difficult
to determine the distances to the starting point, and she measured displacements be-
tween two frames for calculating the new distances to the starting point.

figure 3 Suzanne’s table for the catwalk

In the subsequent activities she did not manage to determine increases with formu-
las, and neither to use the graphing calculator for this. In her written materials were
a few blank pages, but she continued in the contextual situations where she had to
reason with data. However, halfway the chapter she hardly answered any of the
questions on the situation of Mr Bommel. The next task dealt with a fictitious motion
according to a place-time formula s = t3. In the questions for average velocities in
time-intervals with a length of 1 second, she wrote correct calculations with ∆t = 1.
How you can use such a calculation for decreasing ∆t to determine instantaneous ve-
locity seemed not clear to her. She calculated the average velocity from t = 0 and
drew a linear continuation according to this velocity in her graph fig. 4. 

figure 4 Suzanne’s graph

The activities on Mr Bommel were important to understand a approximation proce-
dure. It is not surprising that gets stuck in the subsequent problems. She seems to un-
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derstand how to calculate with a difference quotient, but isn’t possible to use it for
approximating local change. An example of either not understanding the idea of lo-
cal change, or of being able to treat an algorithm in a specific situation but not un-
derstanding for what kind of problems the algorithm is a solution nor being able to
deal with it flexible. In the first case, the question didn’t evoke the intended associ-
ations.
The responsibility for Suzanne to deal with the course description for the students,
and to plan her own activities, had consequences that can have big influences for
what has to follow. She skipped the activities of Mr Bommel, and wasn’t able to re-
ally understand what came next.
Suzanne showed much attention during the classroom discussions in the subsequent
lessons. She posed questions and seemed eager to understand how to use the graph-
ing calculator for solving problems on instantaneous change. In her writing we find
the teacher’s notations like: (y1(5.0001) − y1(5) ) / 0.0001.
In the final assessment she showed that she could calculate instantaneous change
with her graphing calculator in standard situations (even with a linear formula she
used the above procedure). However, she got stuck with a contextual problem with-
out a formula, on instantaneous velocity. Suzanne seems to master the algorithms
and the use of the graphing calculator, but doesn’t really understand the (graphical)
meaning of these algorithms.

Lennert

Lennert started in the catwalk context with a table of displacements and total distanc-
es. In the first half of the chapter he followed the course description rigorously, in
the second half he misses some problems. Just like Suzanne, it is not easy for him to
keep up with the intended pace of the course description. From the notations in his
activity book it appears that he worked a lot with the graphing calculator. Before this
options is suggested he studies increases in formulas by using: y2 = y1(x+1) − y1(x).
His great care for his work is shown by a few summaries that he wrote down during
the chapter.
In the question on the motion according to s = t3 Lennert used graphical reasonings
and the given graph. This is in line with the kind of reasoning that was evoked by the
problem on Mr Bommel. He succeeded in drawing a linear continuation from a cer-
tain moment that approximates the instantaneous velocity at that moment.
In the subsequent activities we see how he is going to use the difference quotient for
calculating average and approximating instantaneous velocity. He drew arrows in a
graph to explain for himself the meaning of the horizontal and vertical intervals and
their quotient.
Lennert didn’t use the teacher’s procedure with the graphing calculator. He deter-
mined function values with the trace-option and calculated ∆y and ∆x and the differ-
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Case studies from the pilot experiment
ence quotient with these values. In the final assessment he scored good. He seemed
to work in his own pace, seemed to understand the notions aimed at and was able to
make adoptions to the algorithms for serving his purpose. He hardly participated in
classroom discussions and didn’t copy the algorithms that were presented by the
teacher as black box procedures for specific situations.

Loes 

For describing the catwalk Loes draws a graph with time vertical and covered dis-
tance horizontal. The larger the cats displacements become, the less steep her graph
is. When asked where you can do a good estimation of the speed, she answers:
“where the graph is flat (...) with a constant speed.”
For the problems with formulas she tries to use the idea of y1(x+1) − y1(x) without
a GR (with y(x) = 2x). However, her notation is incorrect, it appears to be a multipli-
cation of 2x with (x+1) (fig. 5). 

figure 5 Loes’ incorrect understanding of calculating differences

This might be the result of something we overlooked. In algebra it is common to
leave the multiplication symbol out of the expression. As a result of sentences like
“the graph of f ” students might interpret “f(x+1)” as f times (x+1). Loes did a lot of
work on the problems in the Bommel context. Just like Lennert she also did the fol-
lowing problems with movement according to s = t3, but she read function values
from the graph. 

figure 6 Loes’ drawing of a constant velocity from t = 5 seconds
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She calculated the average distance over that time interval with the differences be-
tween these values and the corresponding time intervals. She approximated the av-
erage speed on the time interval [4, 6] for the question about the speed at moment t
= 5, and noticed that the speed she finds is exactly in between the average speeds on
[4 , 5] and [5 , 6]. She then used that average speed to draw the graph as it would be
if the speed wouldn’t change beyond t = 5 (fig. 6). 
According to her you can’t calculate the speed at t = 5 with a method based on in-
creases. Loes emphasizes that the value which you calculate with a difference quo-
tient is the average increase for one x. It seems that the number she calculates with
∆s/∆t is interpreted as the distance travelled in one time unit, something quite differ-
ent from instantaneous velocity. It looks as if she doesn’t quite know yet how a dif-
ference quotient (or even the graph) can help here for quantifying instantaneous ve-
locities.
In the next classroom discussion the teacher doesn’t quite manage to show how the
graphing calculator can be used for approximating instantaneous speed. He makes a
small mistake and, as a consequence, he can’t answer all questions of students during
the lesson. One of those questions is the same as Loes’ question on approximating
the instantaneous speed. The teacher wanted to illustrate the process of approxima-
tion at x = 3 by defining the function y2 in the graphing calculator as: y2 = y1(3+x)
− y1(x), and decreasing the value of x. He got stuck and realised his mistake just as
the bell goes. In Loes’ activity book the mistake is written down. This is something
we saw more often. During classroom discussions the teacher had to watch time
carefully. As soon as the school bell rang, the students closed their books and packed
their bags, the lesson is finished.
Next, Loes made a diagnostic test from her mathematics book. Calculating averages
is no problem for her. When she had to approximate instantaneous change, e.g. the
slope of the graph of f(x) = x4 − 3 in (1, -3), she made errors (fig. 7). 

figure 7 Loes’ mistake

Probably she tried to find the algorithm with a summary and an example in the book.
She wrongly interpreted the numbers of the table in the book (see fig. 8). In her cal-

1
2
---
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Case studies from the pilot experiment
culation it seems as if she approximated the interval [1 , 2] and calculated with the
corresponding function values. 
As a result of the course of affairs during the classroom discussion and the last les-
sons Loes didn’t grapple the notion of instantaneous change and how to approximate
it. 
In the final assessment she didn’t give any answer on questions concerning these is-
sues, such as the questions on determining slopes in a point of the graph (fig. 8). 

figure 8 The example from the book (Bos et al. 1998, p. 77)

Jonas 

The written materials of Jonas looked a bit sloppy. In the catwalk activity Jonas drew
a table with total distances and a graph of these numbers with a frame-axis horizon-
tally. He seemed to have little problems with this activity and with the subsequent
activities on sums and differences. However, he didn’t prove that the difference be-
tween two successive squares is an odd number. Jonas gave short and correct an-
swers in the Bommel activities. In the final pieces of the chapter he correctly calcu-
lated average speeds using the difference quotient. For approximating instantaneous
velocities he used a method on the graphing calculator (fig. 9).

figure 9 Jonas’ writing

From similar answers in subsequent questions we can conclude that he is able to use
the graphing calculator. But how much did he understand? This is difficult to deduce
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from his written materials. We also had hardly any data of his contributions to class-
room discussions or small group work. 
In the final assessment Jonas showed an excellent understanding of approximating
with a difference quotient from accompanying sketches (see fig. 10). 

figure 10 Jonas’ work on a test item 
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Appendix: Student activities
The student activities of the second teaching experiment are available in Dutch and
can be retrieved at http://www.fi.uu.nl/~michiel.

figure: A part of the first page of the student-activities

§ 1 Niets veranderlijker dan het weer
Van alles om ons heen verandert: je kledingmaat, de gemiddelde lengte van de Neder-
lander, het aantal levende diersoorten, de hoogte van de zeespiegel en natuurlijk het
weer van dag tot dag. Bij veranderingen is het vaak handig en soms zelfs van wezen-
lijk belang om verandering te kunnen voorspellen.
Bij voorspellingen van het weer wordt gebruik gemaakt van het weer van vandaag.
Men begint dan met een beschrijving van het weer in Europa. Voor dergelijke
beschrijvingen worden satellietfoto’s gebruikt. Met satellietfoto’s is bijvoorbeeld
direct te zien waar het in Europa bewolkt is en hoe de wolken bewegen.
Op 16 mei 2000 om 10:30 uur zag de hemel boven Europa er zo uit:

Die dag wilde een groepje skaters ’s avonds een tochtje ten noorden van Utrecht
maken. Zoals je ziet is het om 10:30 uur in Nederland zonnig.
>> Heb je met deze foto voldoende zekerheid dat het die avond ook droog is? Zo ja,
waarom? Zo nee, welke informatie zou je dan nog nodig hebben om met meer zeker-
heid te kunnen voorspellen?
>> Hieronder zie je de situatie aan het begin van die middag. De witte vlekken boven
het westen van België blijken regen- en onweersbuien te zijn. Wat denk je, kan de
skate-tocht nog doorgaan?



Appendix: Computer tools
Flash and Slope are the computer tools used within the instructional sequence. The
full-colour screenprints of these tools give a better impression of the tools than the
other figures in this book. Two screendumps of Flash are displayed below:
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The first screendump of Flash shows two graphs of displacements of a rotating stick
(see page 108). The second screendump shows the graphs of distances travelled.
The other computer tool is Slope. The first screendump of Slope shows the possibil-
ity of approximating change by adjusting a red continuation of the curved graph, or
by using the two blue points of a chord on the graph (see page 116). The second
screendump shows how an approximation can be improved by using the zoom-tool:
241



242



Curriculum Vitae

Michiel Doorman was born on 1 october 1962 in Eindhoven, the Netherlands. He
completed his secondary education in 1981 at the Minkema College in Woerden. In
1988 the Utrecht University awarded him a masters in Mathematics for his thesis on
the extension of a proposition in intuitionistic logic for automated theorem proving.
He minored in Computer Science. From 1988 he has been working at the Freu-
denthal Institute. Until 1992 he was mainly devoted to software development. Dur-
ing the following years he has been involved in curriculum and teacher training
projects, mainly concerning the role of information and communication technology
in mathematics education. Since 1994, this work concentrated on upper secondary
(pre-university) mathematics education in a research project on the integration of the
graphing calculator, in a curriculum development project (Profi), and in a project
that aimed at guiding the Biology, Chemistry, Physics and Mathematics departments
in schools to cooperate. In 1998 he started his PhD research study.
243



244


	Preface
	Table of contents
	1 Introduction 1
	1.1 Reasons for this study 1
	1.2 Context for this study 3
	1.3 Aims of this study 5
	1.4 Overview 6

	2 The teaching and learning of calculus and kinematics 9
	2.1 Conceptual problems in calculus and kinematics 9
	2.1.1 Intuitive notions of velocity 10
	2.1.2 Systematics in textbooks 14
	2.1.3 Formal language 17
	2.1.4 The role of graphs 19
	2.1.5 Conclusions 25

	2.2 Approaches to the learning of calculus and kinematics 26
	2.2.1 Discovery learning approaches 27
	2.2.2 Invention approaches 36

	2.3 Conclusions and discussion 41

	3 Theoretical framework 43
	3.1 Notes on perception and interpretation 43
	3.2 External and internal representations 49
	3.3 Symbolising 53
	3.4 Reflection on discovery and invention-oriented approaches 55
	3.5 Towards a solution: guided reinvention 58
	3.5.1 Emergent modelling 60
	3.5.2 Problem posing 61
	3.5.3 Computer tools 62

	3.6 Research questions 63

	4 Methodology 67
	4.1 Consequences of the research questions 67
	4.2 Design research 68
	4.3 The design of the instructional sequence 70
	4.4 Teaching experiments and data collection 72
	4.5 Data analysis 77
	4.6 Validity 80

	5 The instructional design 83
	5.1 The emergence of calculus and kinematics in history 84
	5.1.1 A historical sketch 84
	5.1.2 Looking at history through a didactical lens 95

	5.2 Pilot experiment 98
	5.3 Modelling motion as a conjectured local instruction theory 101
	5.3.1 Concept development through emergent modelling 101
	5.3.2 The instructional design for modelling motion 105

	5.4 Summary 117

	6 Teaching experiments 119
	6.1 First teaching experiment 119
	6.1.1 Weather forecasts to introduce the concept of change of position 119
	6.1.2 Using IT to induce reasoning with discrete graphs of motion 124
	6.1.3 Introduction of a continuous model: Galileo and free fall 135
	6.1.4 Further development of the continuous model 141
	6.1.5 Evoking the need to determine instantaneous velocity 145
	6.1.6 Final test 154
	6.1.7 Interview with three students 158

	6.2 Reflection on the first experiment 159
	6.2.1 Focus on patterns 159
	6.2.2 From discrete to continuous models 160
	6.2.3 Class discussions for reflection and consensus 161

	6.3 Modifications to the instructional design 162
	6.4 Second teaching experiment 167
	6.4.1 From time series to continuous models of motion 167
	6.4.2 The role of Flash 181

	6.5 Summary 184

	7 Conclusions and discussion 187
	7.1 Question 1: the emergence of a local instruction theory 187
	7.2 Question 2: design heuristics and computer tools 197
	7.3 Discussion 203
	7.3.1 Guided reinvention 203
	7.3.2 Integrating science and mathematics 205
	7.3.3 Symbolising 206
	7.3.4 Computer tools: discovery versus invention 208

	7.4 Recommendations 208


	1 Introduction
	2 The teaching and learning of calculus and kinematics
	3 Theoretical framework
	4 Methodology
	5 The instructional design
	6 Teaching experiments
	7 Conclusions and discussion
	References
	Samenvatting
	Introductie
	Leren en onderwijzen van differentiaalrekening en kinematica
	Theoretisch kader
	Methodologie
	De leergang
	Twee onderwijsexperimenten
	Bevindingen
	Conclusies en aanbevelingen

	Appendix: The pilot experiment
	Appendix: Student activities
	Appendix: Computer tools

