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Realistic Mathematics Education
as

work in progress

Summary

This lecture addresses several “progress” issues related to the Dutch
approach to mathematics education, called “Realistic Mathematics Education”
(RME). The most important of these issues is the way in which RME facilitates the
progress of children’s understanding in mathematics. This topic forms the heart of
the lecture. Attention is paid to both the micro-didactic and the macro-didactic
perspective of the students’ growth. Progress in achievements, as the result of this
learning, is the next progress issue to be dealt with. Finally, the spotlights are
turned towards the developments within RME itself. The general focus in the
lecture is on primary school mathematics education.

1 Introduction

RME in brief

Realistic Mathematics Education, or RME, is the Dutch answer to the need,
felt worldwide, to reform the teaching of mathematics. The roots of the Dutch
reform movement go back to the beginning of the seventies, when the first ideas for
RME were conceptualized. It was a reaction to both the American “New Math”
movement, which was likely to flood our country in those days, and the then
prevailing Dutch approach to mathematics education, which often is labeled as
“mechanistic mathematics education.”

Since the early days of RME much design work connected to developmental
research (or design research) has been carried out. If anything is to be learned from
the Dutch history of the reform of mathematics education, it is that such a reform
takes time. It looks a superfluous statement, but it is not. Again and again, too
optimistic thoughts are heard about educational innovations. Our experience is that
reforms in education take time. The development of RME is thirty years old now,
and we still consider it as “work under construction.”
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That we see it in this way, however, has not only to do with the fact that
until now the struggle against the mechanistic approach to mathematics education
has not been conquered completely — especially in classroom practice much work
still has to be done in this respect. More determining for the continuing
development of RME is its own character. Inherent to RME, with its founding idea
of mathematics as a human activity, is that it can never be considered a fixed and
finished theory of mathematics education.

“Progress” issues to be dealt with

This self-renewing feature of RME was an important reason for choosing
“work in progress” as the title for this lecture. But there were more reasons for this
choice. The title also refers to another significant characteristic of RME, namely its
focusing on the growth of the children’s knowledge a nd understanding of
mathematics.

The way in which RME continually works on the progress of children is the
first progress issue to be dealt with in this lecture. This progress work is
distinguished in two levels of working on the mathematical development. Attention
is paid to both the micro-didactic perspective and the macro-didactic perspective of
the students’ growth. The micro-didactic perspective clarifies how within the
context of one or two lessons shifts in comprehension and abilities can happen. In
this process, models which originate from context situations and which function as
bridges to higher levels of understanding have a key role. The macro-didactic
perspective deals with the progress in understanding over a longer period of time.
The focus here is on learning-teaching trajectories – including the attainment
targets to be reached at the end of primary school and the landmarks along the route
– that serve as a longitudinal framework for teaching mathematics. The coherence
between the various levels of mathematical understanding that is made apparent in
this trajectory description plays a key role in stimulating students’ growth.

A following progress issue has to do with the students’ achievements in
mathematics. The question is whether RME brought Dutch primary students to the
top level of mathematics achievements. Although the TIMSS results and results
from other comparative studies are suggesting this, there are also arguments
against.

Finally, the lecture deals with the progress in the RME approach to
mathematics education. Although this approach is already some thirty years old it is
still “under construction.”

2 More about RME

History and founding principles

As I said already, almost thirty years ago the development of what is now
known as RME started. Freudenthal and his colleagues laid the foundations for it at
the former IOWO, which is the earliest predecessor of the Freudenthal Institute.
The actual impulse for the reform movement was the inception, in 1968, of the
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Wiskobas project, initiated by Wijdeveld and Goffree. The present form of RME
has been mostly determined by Freudenthal’s (1977) view about mathematics.
According to him, mathematics must be connected to reality, stay close to children
and be relevant to society, in order to be of human value. Instead of seeing
mathematics as subject matter that has to be transmitted, Freudenthal stressed the
idea of mathematics as a human activity. Education should give students the
“guided” opportunity to “re-invent” mathematics by doing it. This means that in
mathematics education, the focal point should not be on mathematics as a closed
system but on the activity, on the process of mathematization (Freudenthal, 1968).
Later on, Treffers (1978, 1987) formulated the idea of two types of
mathematization explicitly in an educational context and distinguished “horizontal”
and “vertical” mathematization. In broad terms, these two types can be understood
as follows. In horizontal mathematization, the students come up with mathematical
tools, which can help to organize and solve a problem located in a real-life
situation. Vertical mathematization is the process of reorganization within the
mathematical system itself, like, for instance, finding shortcuts and discovering
connections between concepts and strategies and then applying these discoveries.
In short, one could say — and here I am quoting Freudenthal (1991) — “horizontal
mathematization involves going from the world of life into the world of symbols,
while vertical mathematization means moving within the world of symbols.”
Although this distinction seems to be free from ambiguity, it does not mean, as
Freudenthal (ibid.) said, that the difference between these two worlds is clear-cut.
Freudenthal (ibid.) also stressed that these two forms of mathematization are of
equal value. Furthermore one must keep in mind that mathematization can occur on
different levels of understanding.

Misunderstanding of “realistic”

Despite of this overt statement about horizontal and vertical
mathematization, RME became known as “real-world mathematics education.”
This was especially the case outside the Netherlands, but the same interpretation
can also be found in our own country. It must be admitted, the name “Realistic
Mathematics Education” is somewhat confusing in this respect. The reason,
however, why the Dutch reform of mathematics education was called “realistic” is
not just the connection with the real world, but is related to the emphasis that RME
puts on offering the students problem situations which they can imagine. The Dutch
translation of the verb “to imagine” is “zich REALISEren.” It is this emphasis on
making something real in your mind that gave RME its name. For the problems to
be presented to the students this means that the context can be a real-world context
but this is not always necessary. The fantasy world of fairy tales and even the
formal world of mathematics can be very suitable contexts for a problem, as long as
they are real in the student's mind.

The realistic approach versus the mechanistic approach

In any way, the use of context problems is very significant in RME. This is
in contrast with the traditional, mechanistic approach to mathematics education,
where programs mostly only contain problems with bare numbers. If in the
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mechanistic approach context problems are used, they are mostly used to conclude
the learning process. The context problems function only as a field of application.
By solving context problems the students can apply what was learned earlier in the
bare format. In RME this is different. Here, context problems function also as a
source for the learning process. In other words, in RME, context problems and real-
life situations are used both to constitute and to apply mathematical concepts.
While working on context problems the students can develop mathematical tools
and understanding. First, they develop strategies closely connected to the context.
Later on, certain aspects of the context situation can become more general which
means that the context can get more or less the character of a model, and as such
give support for solving other but related problems. Eventually, the models give the
students access to more formal mathematical knowledge. In order to fulfill the
bridging function between the informal and the formal level, models have to shift
from a “model of” to a “model for.” Talking about this shift is not possible without
thinking about our colleague Leen Streefland, who died in 1998. It was he who in
1985 detected this crucial mechanism in the growth of understanding.1 His death
means a great loss for the world of mathematics education.

Another notable difference between RME and the traditional approach to
mathematics education is the rejection of the mechanistic, procedure-focused way
of teaching in which the learning content is split up in meaningless small parts and
where the students are offered fixed solving procedures to be trained by exercises,
often to be done individually. RME, on the contrary, has a more complex and
meaningful conceptualization of learning. The students, instead of being the
receivers of ready-made mathematics, are considered active participants in the
teaching-learning process, in which they develop mathematical tools and insights.
In this respect RME has a lot in common with socio-constructivist based
mathematics education. Another similarity between the two approaches to
mathematics education is that crucial for the RME teaching methods is that students
are also offered opportunities to share their experiences with others.

This concludes a brief overview of the characteristics of RME. Now, I will
continue with the issue of progress in understanding and will start with the micro-
didactic perspective.

3 Progress in understanding — the micro-didactic perspective

In this section several aspects of RME are discussed that all give support to
elicit shifts to a higher level of comprehension.

                                                          
1 Streefland (1985). Later on, this idea of a shift in models became a significant

element in RME thinking about progress in students’ understanding of
mathematics (see Streefland, 1991; Treffers, 1991; Gravemeijer, 1994; Van den
Heuvel-Panhuizen, 1995).
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3.1 Progressive schematization

For the first example we have go to the domain of algorithms and to return
to the early years of RME. In the beginning of the eighties, in Dutch fourth-grade
classrooms it was customary that, for instance, long division was taught by starting
to explain the procedure with small numbers and gradually increasing the degree of
difficulty. The students were taught long division according to the teaching method
of “progressive complexity” (see Figure 1).

          

Figure 1   Teaching long division according to the method of progressive
complexity

Contrary to this approach, RME pleaded for “progressive schematization” as the
leading precept for organizing a teaching unit on algorithms. In this approach the
student have to cope with large numbers immediately, as is the case in the Stickers
problem2 (see Figure 2).

                                                          
2 This problem, or variations of it, can be found in Dekker, Ter Heege, and

Treffers, 1982; Treffers and Goffree (1985); Treffers (1987). At the same time,
a different problem was also used for learning long division, namely the
Supporters problem (see Gravemeijer, 1982). In this problem the students have
to find out how many buses are needed to transport a large number of
supporters to a football match. Compared to the Stickers problem the
Supporters problem contained more context information to take into account in
answering the question. Another, major difference is that the Stickers problem
implies division by distribution (quotitive division) while the Supporters
problem involves division by partitioning (partitive division). Later, the latter
was considered as being more suitable in the beginning of the process of long
division.
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> 342 match stickers are
fairly distributed among
five children.
How many does each of
them get?

Figure 2   Stickers problem

This method of “progressive schematization” implies that 342 ÷ 5 is not
situated at the final stage of the process of learning long division but at the very
beginning of it. That the students could solve these difficult problems from the
introduction on has all to do with the context in which the problems are presented.
It is the context of “fairly sharing” that makes that they have access to problems
like these. As a start the students can apply a natural strategy of sharing out.
Mathematically this means the repeated carrying out of a subtraction (see Figure 3).

Figure 3   Doing long division by repeated subtraction3

Later on, this repeated subtraction strategy in which a small number of
stickers is shared out each time, can be curtailed by doing the sharing more
efficiently in less steps by taking larger numbers. In this way the students gradually
arrive at the standard procedure of long division (see Figure 4).

                                                          
3 The picture of the student work is taken from Rengerink (1983).
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Figure 4   Progressive schematization in long division4

This approach of progressive schematization, here illustrated by an example
of long division, formed, in the days when it was formulated, a real break with the
past. Instead of step by step increasing the complicatedness of the problems, the
problems remain the same, but the strategies become more and more advanced. In
other words, the students’ growth is basically on the part of the applied strategies
and is in essence not necessarily prompted by offering problems of rising intricacy.
There are several advantages to this approach: the students can solve the problems
on their own level, they can start at a context-connected informal level, and all
different levels are “within reach” in the classroom.

3.2 Contexts as vehicles for growth

While the Stickers problem made clear how a context can endow the
students with cues for developing strategies – handing over an informal repeated
subtraction strategy as a pre-stage of the standard long division strategy – the
following example demonstrates even more strongly the role of the context in
building up mathematical knowledge. This example involves the context of a city
bus.5 The Bus problem that is based on this context turned out to be a very powerful
learning environment for first graders. First of all, this problem offers students
opportunities to develop a formal mathematical language. The teaching starts with a
                                                          
4 The picture of the student work is taken from Dekker, Ter Heege, and Treffers

(1982).
5 The use of this context was an idea of Van den Brink.
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“real life” situation in which the students have to act as the driver of a city bus. The
passengers are getting on and off the bus, and at each stop the students have to
determine the number of passengers in the bus. Later the same is done on paper
(see the worksheet in Figure 5).

Figure 5   Bus problem6

The development of mathematical language is elicited by the need to keep
track of what happened during the ride of the bus. Initially the language is closely
connected to the context, but later on it also used for describing other situations.
Gradually, the bus context loses its narrative feature and takes on more of a model
character. The following student work (see Figure 6) reflects how the context-
connected mathematical language can evolve progressively to a more general
formal mathematical language.

                                                          
6 Picture is an adapted version from Van den Brink (1989).
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Figure 7    Student work bus problem7

What started as a context-connected report of the story of the bus (A), is later
used for numerical operations in other contexts, e.g. keeping track of the number of
customers that are in a shop (B), and for expressing operations with pure numbers (C
and D).8 In (E) the transition to the standard way of notating number sentences is
visible.

In addition to offering the students a learning environment for developing a
formal mathematical language that makes sense to them, the bus context – and

                                                          
7 Picture is taken from Van den Brink (1989).
8 Although in (C) pure numbers are used, the shape of the notation betrays that it

still represents an operation with context numbers.

   D

E
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particular the context of the bus stop – is also very suitable to elicit mathematical
reasoning. Evidence for this suitability was illuminated by developmental research
on negative numbers carried out by Streefland (1996). In a Dutch grade five-six
classroom he presented the students – who never had dealt with negative number
before – the problem that is pictured in Figure 8 and asked them first how many
passengers were in the bus after the bus left the bus stop. Then he asked them the
challenging question of what else could have happened at the bus stop with the
same result in terms of passengers in the bus after the bus stop. Figure 9 shows how
the students worked out this question.

      
Figure 8   Getting on and off the bus                                  Figure 9   Bus stop stories

Later on in the lesson, the students could even use the bus stop model to
generate problems with a fixed starting number and a fixed result (see Figure 10).

Figure 10   Student-generated problems based on experiences with the bus stop
context

The bus and the bus stop context are an example of how experiences from a
“daily life” situation can be the impetus for growth in mathematical understanding.
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Compared to the context of the stickers this bus context evolves to a model to
support mathematical thinking. An important requirement for models functioning in
this way is that they are rooted in concrete situations and that they are also flexible
enough to be useful in higher levels of mathematical activities. This means that the
models will provide the students with a foothold during the process of vertical
mathematization, without obstructing the path back to the source.

3.3 Connected models as the backbone of progress

As became already visible in the previous examples, progress implies that
students arrive at more general solutions from context-related solutions. Contexts
that have model potential serve as an important device for bridging this gap
between informal and more formal mathematics. First, the students develop
strategies closely connected to the context. Later on, certain aspects of the context
situation can become more general, which means that the context more or less
acquires the character of a model and as such can give support for solving other,
but related, problems. Eventually, the models give the students access to more
formal mathematical knowledge.

In order to make the shift from the informal to the formal level possible, the
models have to modify from a “model of” a particular situation (e.g. a scheme that
represents the situation of passengers getting on and off the bus at a bus stop) to a
“model for” all kinds of other, but equivalent, situations (e.g. a scheme that can be
used for expressing shop attendance, but that also can be used to find number pairs
that give the same increase or decrease as a result).9

This important role of models has all to do with the level principle of RME.
This principle implies that learning mathematics is considered as passing through
various levels of understanding: from the ability to invent informal context-related
solutions, to the creation of various levels of shortcuts and schematizations, to the
acquisition of insight into the underlying principles and the discernment of even
broader relationships. Crucial for arriving at the next level is the ability to reflect on
the activities conducted before.10 This reflection can be elicited by interaction. I will
come back to this later.

The strength the level principle is that it guides growth in mathematical
understanding by giving the curriculum a longitudinal coherency. This long-term
perspective is characteristic of RME. There is a strong focus on the relation between
what has been learned earlier and what will be learned later. This means also that the
use of models should not be considered as isolated activities. On the contrary, the
progressive power of the models is based on the connections between them. The longer
a model – or adaptations of it – can “keep pace” with the development in mathematical
understanding, the more it can prompt and elicit the student’s progress.

                                                          
9 For more about the idea of “model of” and “model for” see Section 2 of this

paper and Note 1.
10 This idea of accumulated reflection was based on the work of the Van Hieles

(see Freudenthal, 1991).
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A powerful example of such a “longitudinal” model is the number line.
Figure 11 shows the various ways in which the number line can appear in the
different stages of the learning process.

Figure 11   Various ways in which the number line can appear

The number line begins in first grade as (A) a beaded necklace on which the
students can practice all kind of counting activities. In higher grades, this chain of
beads successively becomes (B) an empty number line for supporting additions and
subtractions, (C) a double number line for supporting problems on ratios, and
finally (D) a fraction/percentage bar for supporting working with fractions and
percentages.
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3.4 Interactive whole-class teaching as a lever

Apart from the models that give a hold for progress, the teaching methods
are also an important lever for students to make steps forward in mathematical
understanding.

Within RME, the learning of mathematics is considered as a social activity.
Based on this idea the interaction principle is one of the major characteristics of
RME. Education should offer students opportunities to share their strategies and
inventions with each other. By listening to what others find out and discussing
these findings, the students can get ideas for improving their strategies. Moreover,
the interaction can evoke reflection, which is necessary to reach a higher level of
understanding.

The significance of the interaction principle implies that whole-class
teaching plays an important role in the RME approach to mathematics education.
However, this does not mean that the whole class is proceeding collectively and
that every student is following the same track and is reaching the same level of
development at the same moment. On the contrary, within RME, children are
considered as individuals, each following an individual learning path. This view on
learning often results in pleas for splitting up classes into small groups of students
each following their own learning trajectories. In RME, however, there is a strong
preference for keeping the class together as a unit of organization11 and for adapting
the education to the different ability levels of the students instead. This can be done
by means of providing the students with problems that can be solved on different
levels of understanding.

The next example involves a lesson12 in which the interaction principle of
RME is made concrete. It gives an impression of how a whole-class setting can
contribute to students’ progress in the applied mathematical strategies. Starting
point is the exploration of a context problem which — and this is very essential —
can be solved on several levels of understanding. By discussing and sharing
solution strategies in class the students who first solved the problem by means of a
longwinded strategy can come to a higher level of understanding and new
mathematical concepts can be constituted.

The scene of the action is a third-grade classroom. The students are eight
through nine years old. The teacher starts with the presentation of a problem, called
the Parents evening problem (see Figure 12).

                                                          
11 Within the structure of keeping the group together, a variety of teaching

methods can be applied: ranging from whole-class teaching, to group work, and
to individual work.

12 This classroom activity originates from Van Galen and Feijs (1991); the
vignette was also used by De Lange in his plenary lecture at ICME 1996 in
Seville, Spain.
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 “...Tonight, a parents’ evening will be held...
  ...The slips I received from you told me that 81
persons will attend...
  ...The meeting will take place in the large
conference hall...
  ...The parents will be seated at large tables...
  ...At each table six persons can be seated...”

Then the teacher makes a drawing of such a
table on the blackboard:

After doing this, the teacher concludes with the
following question: “How many tables do we
need for 81 persons?”

Figure 12   Parents evening problem

The students begin to work and the teacher is walking around the classroom.
Whenever necessary she gives some help. Some ten minutes later she asks the
students to show their work and explain their solutions.

Badr drew as many tables as he needed to have all the parents seated (see
Figure 13).

Figure 13   Badr’s work
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Roy started in the same way, but after he drew two complete tables he drew
two rectangles and put the number six in them. While he was drawing more of
these rectangles he suddenly realized that if you have five tables, 30 parents can be
seated. He continued drawing rectangles and after another five he wrote down 60.
Then he drew another two, wrote down 72, and another one, and wrote down 78.
He finished with a rectangle with the number 3 in it (see Figure 14).

Figure 14   Roy’s work

A third student, Abdelaziz, was even a little bit more advanced in
mathematizing the problem situation. Although he also started with drawing a copy
of the table that was on the blackboard, he immediately moved up to a more formal
solution by using his knowledge about multiples of six. He wrote down: 6 x 6 = 36,
doubled this number and came to 72, and then he added two more tables to 72 and
came to the answer of 84 (see Figure 15).

Figure 15   Abdelaziz’ work
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When we look at these three different solutions, we can see that at each level
some mathematization took place. Even in the work of Badr, since visualization
and schematization are also powerful tools for mathematizing. In the other two
examples of student work the mathematics is more visible, but not yet at the level
that is aimed at. This problem was namely meant as a start for learning long
division. In order to achieve this goal, the problem should be followed by other
problems.

Therefore, after the class discussion about the different strategies had been
finished, the teacher presented a new problem: the Coffee pots problem (see Figure
16).

 “...The 81 parents will be offered a cup of
coffee...
  ...With one coffeepot you can fill 7 cups...
  ...How many coffee pots will be needed?”

Figure 16   Coffee pots problem

From a mathematical point of view this problem is the same as the previous
one. Instead of dividing by six, now, the students have to divide by seven. For the
students, however, this is (still) a completely different problem. Moreover, it is
more difficult to make a visual presentation of this new problem. Tables are easier
to draw than coffeepots. Yet, Badr tried to draw them (see Figure 17).

Figure 17   Badr’s work of the Coffee pots problem

After he drew two pots he remembered the discussion about how the answer
can be found more quickly by multiplying. He continued with 10 x 7 = 70 followed
by 70 + 11 = 81, and decided that 12 pots are needed.



Realistic Mathematics Education as work in progress
17

Both the constitution of mathematical tools (the representation of the
problem situation, the schematization, the repeated addition, the application of
number fact knowledge, the way of keeping track of the results, and the
communicating about the strategies) and Badr’s level shift were evoked by the
problems given to students, and more precisely, by the “cluster of problems.” In a
way the contexts in this cluster of problems – that can be considered as a micro
learning teaching trajectory – prompted him to this growth.

4 Progress in understanding — the macro-didactic perspective

The previous vignette showed an example of progress in understanding in
one lesson. In the following section I will move to progress in understanding over a
longer period of time. RME has a high concern with the longitudinal perspective of the
learning-teaching process. In our view a theory of mathematics education cannot be
complete if it is restricted to the micro perspective of an instructional environment. It
should also cover the longitudinal macro perspective. This perspective goes together
with a strong focus on the subject matter content and the goals to be achieved. For RME
the what of the teaching is at least as important as the how of it. Because of its strong
connection to mathematics and the central place that the content of the curriculum has
in its thinking about mathematics education, RME can be considered as a didactical-
oriented approach to mathematics education.13

For answering these macro-didactical what-questions “didactical
phenomenological analyses” – as Freudenthal (1983) called them – have a crucial value.
These analyses reveal what kind of mathematics is worthwhile to learn and which actual
phenomena can offer possibilities to develop the intended mathematical knowledge and
understanding. Important is that one tries to discover how students can come into contact
with these phenomena, and how they appear to the students. This means that problems
and problems situations must be identified that give students opportunities to develop
insight in mathematical concepts and strategies. To have the power of stimulating and
guiding the students’ learning the problems should be embedded in a long-term learning-
teaching trajectory. Therefore the longitudinal perspective of problems should never be
neglected.

                                                          
13 In this respect, RME differs from approaches to mathematics education that are

more psychological-oriented, like the constructivist approaches to mathematics
education. Whereas on the micro-didactic level RME has a lot in common with
the constructivistic way of thinking, on the macro-didactic level of the
curriculum some major differences between the two become apparent. As a
matter of fact, constructivistic approaches do not have a macro-didactic level in
which decisions are made about the goals for education and the learning-
teaching trajectories that need to be covered in order to reach these goals. In
contrast with RME, the constructivistic approaches are more a learning theory
than a theory of education.
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4.1 Learning-teaching trajectories as a framework for didactical decisions

In line with this emphasis on the longitudinal perspective,  the TAL Project
has worked on the development of learning-teaching trajectories for primary school
mathematics since 1997. In 2001 an English version was published of the first
product of this project, a learning-teaching trajectory for calculation with whole
numbers (Van den Heuvel-Panhuizen (ed.), 2001).

What is meant by the TAL learning-teaching trajectories? To put it briefly, a
learning-teaching trajectory describes the learning process the students follow. It
should not be concluded from this, however, that it only contains the learning
perspective. In our view, the term learning-teaching trajectory14 has three
interwoven meanings:

� a learning trajectory that gives a general overview of the learning process of
the students

� a teaching trajectory, consisting of didactical indications that describe how
the teaching can most effectively link up with and stimulate the learning
process

� a subject matter outline, indicating which of the core elements of the
mathematics curriculum should be taught.

A learning-teaching trajectory puts the learning process in line, but at the same time
it should not be seen as a strictly linear, singular step-by-step regime in which each
step is necessarily and inexorably followed by the next. A learning-teaching
trajectory should be seen as having a certain bandwidth, instead of being a single
track. It is very important that such a trajectory description is doing justice to:

� the learning processes of individual students
� discontinuities in the learning processes; students sometimes progress by

leaps and bounds and at other times can appear to relapse
� the fact that multiple skills can be learned simultaneously and that different

concepts can be in development at the same time, both within and outside
the subject

� differences that can appear in the learning process at school, as a result of
differences in learning situations outside school

� the different levels at which children master certain skills.

The main purpose of a learning-teaching trajectory is to give the teachers a
pointed overview of how children’s mathematical understanding can develop from
K1 and 2 through grade 6 and of how education can contribute to this development.
It is intended to provide teachers with a “mental educational map” which can help
them to make didactical decisions, for instance making adjustments to the textbook
that they use as a daily guide. The learning-teaching trajectory serves as a guide at a
meta level. Having an overview of the process the students go through is very
important for working on progress in students’ understanding. To make adequate
decisions about help and hints, a teacher must have a good idea of the goals, the

                                                          
14 In Dutch, a learning-teaching trajectory is called “leerlijn”. The Dutch verb

“leren” has a double meaning: It stands for “to learn” and for “to teach”.
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way that can lead to these goals and the landmarks the students will pass in one
way or another along the route, when selecting new problems. Without this outline
in mind it is difficult for the teacher to value the strategies of the students and to
foresee where and when one can anticipate the students’ understandings and skills
that are just coming into view in the distance (see also Streefland, 1985). Without
this longitudinal perspective, it is not possible to guide the students’ learning.

The TAL learning-teaching trajectories are meant to give this longitudinal
perspective. Compared to the goal descriptions that were traditionally supposed to
guide education and support educational decision-making, the TAL learning-
teaching trajectories are a new educational phenomenon.

First of all, the trajectory is more than an assembled collection of the
attainment targets of all the different grades. Instead of a checklist of isolated
abilities, the trajectory makes it clear how the abilities are built up in connection
with each other. It shows what comes earlier and what comes later. In other words,
the most important characteristic of the learning-teaching trajectory is its
longitudinal perspective.

A second characteristic is its double perspective of attainment targets and
teaching framework. The learning-teaching trajectory does not only describe the
landmarks in student learning that can be recognized en route, but it also portrays
the key activities in teaching that lead to these landmarks.

The third feature is its inherent coherence, based on the distinction of levels.
The description makes clear that what is learned in one stage, is understood and
performed on a higher level in a following stage. A recurring pattern of interlocking
transitions to a higher level forms the connecting element in the trajectory. It is this
level characteristic of learning processes, which is also a constitutive element of the
Dutch approach to mathematics education, that brings longitudinal coherence into
the learning-teaching trajectory. Another crucial implication of this level
characteristic is that students can understand something on different levels. In other
words, they can work on the same problems without being on the same level of
understanding. The distinction of levels in understanding, which can have different
appearances for different sub-domains within the whole number strand, is very
fruitful for working on the progress of children’s understanding. It offers footholds
for stimulating this progress.

The fourth attribute of the TAL learning-teaching trajectory is the new
description format that is chosen for it. The description is not a simple list of skills
and insights to be achieved, nor a strict formulation of behavioral parameters that
can be tested directly. Instead, a sketchy and narrative description, completed with
many examples, is given of the continued development that takes place in the
teaching-learning process.

4.2 The TAL trajectory for whole number calculation

In the TAL trajectory for calculation with whole numbers, calculation is
interpreted in a broad sense, including number knowledge, number sense, mental
arithmetic, estimation and algorithms. In fact the trajectory description is meant to
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give an overview of how all these number elements are related to each other. The
following I will zoom in on this trajectory of whole number calculation. To begin
with, some general characteristics of the trajectory are discussed. Consequently,
some snapshots will be presented from the trajectory for the lower grades with the
spotlight on the coherence between the different levels of counting and calculating.

Some general characteristics of the trajectory for whole number calculation

As can be seen in Figure 18, the TAL trajectory for whole number calculation
contains two parts: one for the lower grades and one for the upper grades. Although
the learning-teaching process in both parts forms a continuous process, it cannot be
neglected that each has its own characteristics. The students gradually come from a
non-differentiated way of counting-and-calculating to calculations in more
specialized formats that are dedicated to particular kinds of problems in a particular
number domain. In other words, in the lower grades, all activities with numbers can
be generally labeled by “arithmetic”, whereas in the upper grades different forms of
calculations can be distinguished, like mental arithmetic, estimation, column
arithmetic, algorithms, and calculation by using a calculator.

Another characteristic of the trajectory is the central role of mental
arithmetic. It is seen as an elaboration of the arithmetic work that is rooted in the
lower grades and forms the backbone in the upper grades.

Another feature of this trajectory is the explicit attention that is paid to
numbers and number relations. The idea is that if the students are familiar with the
context of numbers, their position in terms of magnitude and their internal
structure, an important foundation is laid for the development of their calculation
abilities. The more the students know about numbers, the easier the problems
become for them. Or put it differently, if one invests in the numbers one gets the
operations, so to say, for free.

Figure 18   The TAL learning-teaching trajectory for whole number calculation in
primary school
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New in this trajectory is also that it contains a didactic for learning
estimation. Although estimation is considered an important goal of mathematics
education, in most of the textbooks a structure for how to learn to estimate is
lacking. The textbooks at most only contain some problems on estimation, but
doing some estimation problems from time to time is not enough to develop real
understanding in how an estimation works and it is not sufficient to comprehend
what is possible and what not when estimating.

Another novelty is the distinction that is made between algorithms and a less
curtailed way of calculating in which whole numbers are processed instead of
digits, which is called “column calculation”.

Finally, learning to calculate with whole numbers, of course, should include
being able to use a calculator. The trajectory describes how this ability can be built,
but at the same time it reflects to be very cautious. The main goal is that the
students can in the end make sensible decisions about whether to use the calculator
or not. Therefore, in the scheme, calculator use is placed between parentheses.

4.3 Coherence between the different levels of counting and calculating

The coherence between the various levels of mathematical understanding
that is made apparent in the trajectory description plays a key role in stimulating
students’ growth. It clarifies how  learning in one stage is related to learning in
other stages, and how the understanding gradually can evolve.

To give an idea of this coherence, I first zoom in on a teaching activity in
grade 1. In this grade the Restaurant lesson is set up to offer the students a learning
environment in which they can develop strategies for solving addition problems up
to twenty in which they have to bridge the ten. The lesson that is described in the
TAL book actually was given in a mixed class containing K2 and grade 1 children,
aged five and six years. The teacher, Ans Veltman, is one of the staff members of
the TAL team. She also designed the lesson, although she would disagree with this
— Ans feels that her student Maureen was the developer of this lesson. Maureen
opened a restaurant in a corner of the classroom and everybody was invited to have
a meal. The menu card shows the children what they can order and what it costs.
The prices are in whole guilders (see Figure 19).

The teacher’s purpose with this lesson is, as said before, to work on a
difficult addition problem bridging the number ten. The way she does this,
however, reflects a world of freedom for the students. The teacher announced that
two items could be chosen from the menu and asked the children what items they
would choose and how much this would cost. In other words, it appeared as if there
was no guidance from the teacher, but the contrary was true. By choosing a
pancake and an ice cream, costing 7 guilders and 6 guilders, respectively, she knew
in advance what problem the class would be working on; namely the problem of
adding above ten, which is what she wanted them to work on.
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Figure 19: The menu card for Maureen’s restaurant

And there is more, there is a purse with some money to pay for what is
ordered. The teacher had arranged that the purse should contain five-guilder coins
and one-guilder coins. This again shows subtle guidance from the teacher. Then the
students start ordering. Niels chooses a pancake and an ice cream. Jules writes it
down on a small blackboard. The other children shout: “Yeah ... me too.” They
agree with Niels’ choice. Then the teacher asks what this choice would cost in total.
Figure 20 shows a summary of what the children did.

Figure 20: The students’ strategies to solve 7+6

Maureen counted 13 one-guilder coins. Six coins for the ice cream and
seven coins for the pancake. Thijs and Nick changed five one-guilder coins for one
five-guilder coin and pay the ice cream with “5” and “1” and the pancake with “5”
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and “1” and “1”. Then they saw that the two fives make ten and the three ones
make 13 in total. Later Nick placed the coins in a row: “5”, “5”, “1”, “1”, “1”. Luuk
came up with the following strategy: “First put three guilders out of the six to the
seven guilders, that makes ten guilders, and three makes thirteen.” Hannah did not
make use of the coins. She calculated: “6 and 6 makes 12, and 1 makes 13
guilders.” Another student came with: “7 and 7 makes 14, minus 1 makes 13.”

This Restaurant lesson makes it clear that children who differ in skill and
level of understanding can work in class on the same problem. To do this, it is
necessary that problems that can be solved on different levels be presented to the
children. The advantage for the students is that sharing and discussing their
strategies with each other can function as a lever to raise their understanding. The
advantage for teachers is that such problems can provide them with a cross-section
of their class’s understanding at any particular moment. Such a cross-section
includes the different levels on which the students can solve the problem:

� calculating by counting (calculating 7+6 by laying down seven on-guilder
coins and six one-guilder coins and counting the total one by one)

� calculating by structuring (calculating 7+6 by laying down two five-guilder
coins and three one-guilder coins)

� formal (and flexible) calculating (calculating 7+6 without using coins and by
making use of one’s knowledge about 6+6).

The power of this cross-section is that it also offers the teachers a
longitudinal overview of the trajectory the students need to go along (see Figure
21). The cross-section of strategies at any moment indicates what is coming within
reach in the immediate future. As such, this cross-section of strategies contains
handles for the teacher for further instruction.

Figure 21   The cross-section shows “the future”
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The next question – and this is really what the learning-teaching trajectory is
about, namely showing the coherence of the whole process – is what this
calculating in grade 1 has to do with resultative counting in Kindergarten and
calculation up to one hundred in grade 2?

Regarding the ability of resultative counting15 that the children attain in
Kindergarten, again different levels of working can be differentiated (see Figure
21). In the very beginning of the children’s learning process – when the concept of
number is not very thoroughly established – they can meet difficulties in answering
direct “how many” questions. To overcome this problem, a context-related question
can be asked instead, like:

� how old is she (while referring to the candles on a birthday cake)?
� how far may you jump (while referring to the dots on a dice)?
� how high is the tower (while referring to the blocks of which the tower is

built)?

Figure 21   Different levels of counting (and calculating) in Kindergarten

In the context-related questions, the context gives meaning to the concept of
number. This context-related counting precedes the level of object-related counting in
which children can handle the direct ‘how many’ questions in relation to a collection of
concrete objects without any reference to a meaningful context. Later on, the presence
of the concrete objects is also no longer needed to answer ‘how many’ questions. Via
symbolizing, the children have reached a level of understanding in which they are
capable of what might be called formal counting, which means that they can reflect
upon number relations and that they can make use of this knowledge.

                                                          
15 By resultative counting the ability to determine the number of objects in a group

is meant. One could also say that resultative counting signifies the finding of the
cardinal number. To indicate that resultative counting at Kindergarten level is
already a preliminary stage of calculation, in the learning-teaching trajectory,
the skill of counting is called “counting-and-calculating.”
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Regarding calculation up to one hundred in grade 2 the following main
strategies have been distinguished in the learning-teaching trajectory:

� the stringing strategy in which the first number is kept as a whole and the
final answer is reached by making successive jumps

� the splitting strategy in which use is made of the decimal structure and the
numbers are split in tens and ones and processed separately

� the varying strategy in which use is made of knowledge of number relations
and properties of operations.

Examples of these different strategies for solving 48+29 are shown in Figure 22.

Figure 22   Different strategies for solving 48+29

The scheme in Figure 23 shows how the different calculation strategies are
connected to each other, and that they all are based upon counting.

Figure 23   Coherence of the different levels of counting and calculating
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And, of course, the feasibility of these strategies does not stop at the end of
the lower grades. The strategies keep their importance when the students, for
instance, have to solve problems with larger numbers and operations other than
addition and subtraction. In Figure 24 the same basic strategies can be recognized
in the student work of grade 4 students when they had to explain how they solved
the problem about the coffee boxes.

 

Figure 24   Strategies that grade 4 students applied for finding the number of coffee
packets

The above examples of strategies show a clear longitudinal coherence of
counting and calculating. It explains how learning to calculate in one grade is
connected to the learning process in another grade. Insight into these levels in
strategies provides teachers with a powerful foundation for gaining access to
children’s understanding and for working on shifts in their understanding.

Whether RME can really offer students a fertile soil for progress in
mathematics achievements will be dealt with in the next section.

5 RME as an elicitor of progress in mathematics achievements?

According to the TIMSS results, Dutch students achieve very well in
mathematics. Restricting us to the primary school study, the Dutch fourth grade
students can be seen to lead the field of Western countries, including East-
European countries (see Figure 25). Regarding the third-grade results, the Czech
students took this place, leaving the Dutch students just behind them.

It should be acknowledged that in the ranking order as shown in Figure 25,
it is not taken into account that The Netherlands did not satisfy the guidelines for
sample participation rates. But suppose for a longer or a shorter moment that this
shortage did not affect the reliability of the findings. Could these results then be
interpreted as the yield of 30 years of RME?
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Figure 25   TIMSS results mathematics achievements grade 4
(adapted from Mullis et al., 1997, p.24)

I am afraid they can not. RME is namely striving for a different output. The
problem with the TIMSS results is that the test does not fit our approach to
mathematics education nor the content of our curriculum. Some topics in the test,
like decimals, are not addressed until grade 5 in our curriculum. Other topics, like
formal geometry, probability and making true statements and sentences are simply
missing in our primary school curriculum. If anything from the results could be
interpreted as an outcome of RME then it would be the ability of Dutch students to
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use their common sense to solve problems. Often, high scores were found on topics
which are not taught in school. Take, for instance, the following probability item
about the chance of picking a red marble out of a bag (see Figure 26).

Figure 26   TIMSS item about probability (from Mullis et al., 1997, p. 94)

On this item the Dutch third graders had the highest percentage (56) correct
scores after Japan (64) and the Dutch fourth graders had the highest percentage
correct of all countries (74; the scores for fourth-grade students in Japan was 70, in
Hong Kong 69, in Singapore 61, and in Korea 39). Moreover, the Dutch fourth-
grade score even equaled the seven graders’ international average score.
Nevertheless, this result cannot be seen as the direct result of our curriculum. If
there is any influence it might be the emphasis in the Dutch curriculum on common
sense thinking and strategies to solve problems.

Another reason that the TIMSS results cannot be regarded as an indication
of our supposed progress in mathematics achievements is that in the TIMSS test
several topics are missing which have a prominent role in our curriculum — or the
topics are not in the test in the way they should be. This is especially true of the
topics mental arithmetic, estimation, and number sense.

Problems like, for instance, the ones which are shown in the Figures 27 and
28 are not a part of the TIMSS test.
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Figure 27   4000 students problem (adapted from Buys, 1998)

Figure 28   Marbles problem16

                                                          
16 This item I designed for the AMI Pilot test. AMI is a comparative study on

mathematics achievements and stands for “Applying Mathematics
International”. In this study “applying mathematics” is taken as a criterion for
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More in general, what is especially missing in the TIMSS test is “applying
mathematics” in the RME sense of “mathematization”. This ability, however, can
only be assessed if the students are provided with problems that are suitable for
mathematization. In other words, they should not be presented problems in which
everything is already prepared and the only thing a student has to do is finding —
or rather fishing for— the one and only correct solution. Instead, the problems
handed out to the students should offer them a rich context that can be organized,
analyzed, and elaborated by means of mathematical tools. These tools can be
standard ones or informal ones. As said earlier, mathematization can occur on
different levels. These levels are connected to the various levels of understanding
through which students can pass: from the ability to invent informal context-related
solutions, to the creation of various levels of shortcuts and schematization, and
finally, to the acquisition of insight into the underlying principles and the
discernment of even broader relationships. So , important for the choice of
problems is that they can be solved on different levels.

The problems in Figures 27 and 28 make clear that assessment tasks like
these that can make the ability of mathematization assessable do not quite meet the
requirements for standardized testing. Not only can these problems be solved by
different solution strategies, even worse is that the answers can differ. In other
words, RME has consequences for assessment (De Lange, 1987; Van den Heuvel-
Panhuizen, 1996) and asks for rethinking the psychometric model of assessment.17

If we restrict ourselves to Dutch studies about the effect of mathematics
education in primary school then the picture is also not very clear. Comparisons of
mathematics scores on the PPON18 tests of grade 6 students in 1987, 1992 and 1997
do not show a very convincing progress (Janssen et al., 1999). On the contrary, it
looks as if the output of Dutch mathematics education is deteriorating (see Figure
29).19

                                                                                                                                      
comparing mathematics achievements of fourth graders in different countries.
The participating countries all agreed that applying mathematics is an important
goal of mathematics education. The research report is not yet published.

17 More about this topic in my lecture about assessment.
18 PPON stands for Periodical Assessment of Educational Achievements. It is a

NAEP-like study carried out by the CITO, the National Institute for Educational
Assessment.

19 Qualifications of the effect sizes: -0.8 (large negative effect); -0.5 (moderate
negative effect); -0.2 (small negative effect); 0.0 (no effect); 0.2 (small positive
effect); 0.5 (moderate positive effect); 0.8 (large positive effect).
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Figure 29   Comparison of PPON mathematics scores on number scales20

In the Netherlands, there was a lot of discussion about these results. People
wondered whether the analyses were done in the right way21 and whether the
problems are suitable for revealing the students’ mathematical knowledge and
understanding.

A more positive result came recently from an international comparison
between England and the Netherlands, carried out by Anghileri and Beishuizen (in
press). In their research, in which English and Dutch fourth-grade students were
tested in January and June, they revealed a remarkable progress of the Dutch students
in the way they carry out division problems.22 In January the Dutch students were
successful with 47% of the problems and the English students with 38%. In June the
results were 68% and 44% respectively. When individual students were compared for
the two test results the changes in scores of the Dutch students (n = 259) were much
better than those of the English students (n = 276) (see Figure 30).

                                                          
20 Picture from Janssen et al. (1999).
21 Very questionable is, for instance, that in the analyses the text books used in the

school were considered as a control variable, while the change and
improvement of text books is an important result of the implementation on
RME.

22 The test contained ten division problems (five context problems and five bare
number problems). The problems that were “bare” in January were presented in
context in June, and vice versa. The numbers and the contexts remained the
same.
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Figure 30   Changes on test scores of English and Dutch fourth-grade students

In January both groups applied informal strategies but in the English sample
no clear progression was evident from these informal strategies to the standardized
procedure. Although the English students showed sound informal approaches they
were often disorganized in their recording. The Dutch students, however, showed a
clearer organization in their recording methods that could be associated with the
taught procedure based on repeated subtraction. The study revealed that “the Dutch
approach [...] leads to a chunking procedure that the pupils are confident to use and
that they used effectively. Because this procedure can be used at different levels of
efficiently [(see Figure 31)] an element of choice is retained so the pupils continue
to have some ownership of thinking within the structured approach. This appears to
achieve a smooth transition from strategy to procedure which avoids the
mechanical application of taught rules.” (Anghileri and Beishuizen, in press).
Again, these results make it apparent that making progress detectable makes
demands on assessment.
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Figure 31   Similar procedures used at different levels of efficiency by individual
students

To conclude this lecture I will say some words about the developments
within RME as a theory of mathematics education by discussing some trends in
RME.

6 Progress in the RME theory of mathematics education

In the previous sections I gave an impression of what is meant by RME. Of
course it is not doable to give a complete picture of RME in one lecture. RME is too
complex for that. Moreover — and that might be a surprise —, another “difficulty” is
that RME is not a unified approach to mathematics education. That means that the
various lectures about RME given at this conference will contain different accentuations
and interpretations of RME. At first glance this might be confusing and not workable.
After rethinking this phenomenon it becomes obvious how important these differences
were – and still are – for the development of RME. As a matter of fact, the different
accentuations are the impetus for the continuing progress of the RME theory.

Rather than being a clear-cut theory of mathematics education, RME
consists of some shared basic ideas about the what-and-how of teaching
mathematics. These ideas have been developed over the past thirty years and the
accumulation and repeated revision of these ideas has resulted in what is now
called “Realistic Mathematics Education”. During the development of RME,
emphasis has been placed on differing aspects of the theoretical framework that is
connected with RME, and this has guided the research and developmental work in
the field of mathematics education. Along with this diversity, the theoretical
framework itself was also subject to a constant process of renewal. Inherent to
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RME, with its basic idea of mathematics as a human activity, is that RME can
never be considered as a fixed or finished theory of mathematics education. In other
words, not only the work with the students is seen as “work in progress” but also
the RME theory itself (see also Van den Heuvel-Panhuizen, 1998).

In the beginning stage of RME, the main framework by means of which the
RME approach was explained consisted of the five characteristics of RME
curricula: (1) the dominating place of context problems; (2) the broad attention paid
to the development of models; (3) the contributions of students by means of own
productions and constructions; (4) the interactive character of the learning process;
and (5) the intertwinement of learning strands (see Treffers and Goffree, 1985).
Later on, these characteristics of RME curricula and teaching units evolved into a
set of principles that formed a framework for an instruction theory. The
characteristics were interpreted as the five instruction principles that guided the
process of “progressive mathematization” (Treffers, 1987). A further development
was the distinction between the learning aspect and the instruction aspect of the
principles: (L-1) the concept of learning as construction and (I-1) starting with a
concrete orientation basis; (L-2) level character of learning and (I-1) the provision
of models; (L-3) the reflective aspect of learning and (I-3) the assignment of special
tasks in particular own production tasks; (L-4) learning as a social activity and (I-4)
interactive instruction; (L-5) the structural or schematic character of learning and
(I-5) the intertwinement of learning strands (see Treffers, 1991).

As is indicated by Treffers (1991), the relationships between the learning
aspect and the instruction aspect of the RME principles must not be seen as one-to-
one connections. Actually, each learning aspect can be connected with each
instruction aspect; resulting in a very complex pattern of learning-instruction
principles. Although this complex model will be more in tune with the complex
process of learning and instruction in reality, I prefer to stick to the five principles
that were originally formulated; of which some are more connected to teaching and
some to learning (see figure 32). Moreover, I like to add the guidance principle.23 A
more detailed description of this list of six founding principles of RME can be
found in Van den Heuvel-Panhuizen (2001a and 2001b).

The scheme in Figure 32 also reflects that presently there is more and more
awareness of a distinction between a global theory and a local theory for different
content domains.

                                                          
23 In this respect differs the RME approach from the constructivist approach. See

Note 13.



Realistic Mathematics Education as work in progress
35

GENERAL
RME THEORY

WHAT HOW
Meaningful human activity Teaching Context or reality principle
Horizontal and vertical mathematization Intertwinement principle
Low-level skills and high-level skills Guidance principle

Learning Activity principle
Level principle
Interaction principle

LOCAL
RME THEORIES

WHAT HOW
Whole number calculation Understanding of numbers as a basis

Progressive schematization
Connected strategies
Productive practicing

ETC ETC

Figure 32   Theoretical framework of the RME approach

Compared to the RME approach in the seventies and the eighties, today’s
RME approach to mathematics education is more differentiated and more in
balance.

Let me start with the growth in balance. One crucial point of evolution has
to do with the interpretation of the concept of mathematization. As I said in the
beginning, Freudenthal already laid the foundation for this vital focal point of RME
in the sixties. But it was Treffers’ distinction into “horizontal” and “vertical”
mathematization that gave this concept the key role it now has in RME. Although
these two ways of mathematization were formulated halfway through the seventies,
it took much longer to get the balance between the two. Reflecting about the history
of RME, Treffers (1992) called the period from 1972 through 1982 the “horizontal
period”. In that time there was no sharp view on the function of context and model
situations for the vertical aspect. There was no balanced interplay between the two
ways of mathematization. Nevertheless, at that time, there was already some
awareness (see Treffers 1978; De Lange, 1979, 1987) that in this interplay the heart
of RME can be found. According to Treffers (1992) this balanced view came into
being during the eighties. Therefore he called the years from 1982 through 1992 the
“vertical period”. As the most paradigmatic example of this he mentioned long
division. Although “progressive schematization” is a clear example of this vertical
aspect of mathematization (the process of reorganization within the mathematical
system itself, by, for instance, finding shortcuts), in the beginning of the nineties
there was not really a full breakthrough of vertical aspect. Moving within the world
of symbols by doing problems with bare numbers and doing investigations into
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properties of numbers were not really accepted as belonging to RME, but were in
that time still associated with the traditional “mechanistic” approach to
mathematics education. However, these ideas are changing now (see Van den
Heuvel-Panhuizen (ed.), 2001). Actually, now – at least at theory level – the
intended balance is reached. 24

Another balance that is reached is the one between insight and skills. This
also includes a revised opinion about exercising. Instead of simply rejecting the
traditional drill-and-practice methods, new ideas have been developed about basic
abilities and how students can build up these abilities (Van den Heuvel-Panhuizen
and Treffers, 1998; Menne, 2001).

A further point of growth is that there is more awareness of the different
requirements that particular groups of students have, like immigrants’ children (Van
den Boer, 1995;), children with learning difficulties (e.g. Boswinkel and Moerlands,
2001), gifted children (e.g. Goffree, 2000a; 2000b), girls and boys (e. g. Van den
Heuvel-Panhuizen, 1998; Van den Heuvel-Panhuizen and Vermeer, 1999) and students
in vocational education (e. g. Van der Kooij, 2001).

RME is undeniable a child of its time and can also not be isolated from the
present worldwide concern about the improvement of mathematics education. This
implies that RME has a lot in common with other reform movements in
mathematics. In other words, you will certainly recognize similarities with your
own ideas on teaching and learning mathematics and your own agenda for further
development. On the other hand, however, there might also be some dissimilarities.
Again, it is worthwhile to reflect on these differences. It can provide us with clues
for further improvement of the what-and-how of mathematics education.
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