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In this article, we report on a design experiment conducted in an 8th grade 
classroom that focused on students’ analysis of bivariate data. Our immediate
goal is to document both the actual learning trajectory of the classroom commu-
nity and the diversity in the students’ reasoning as they participated in the class-
room mathematical practices that constituted this trajectory. On a broader level,
we also focus on the learning of the research team by documenting the conjec-
tures about the students’ statistical learning and the means of supporting it that
the research team generated, tested, and revised on-line while the experiment
was in progress. In the final part of the article, we synthesize the results of this
learning by proposing a revised learning trajectory that can inform design and
instruction in other classrooms. In doing so, we make a contribution to the cu-
mulative development of a domain-specific instructional theory for statistical
data analysis.

Our purpose in this article is to report on a 14-week classroom design experi-
ment conducted with a group of eighth-grade students that focused on statistical
covariation. In presenting the analysis, we focus on both the trajectory of the
students’ learning and our own learning about the means of supporting the
students’ learning. This latter issue, the learning of the research team, is central
to the design experiment methodology, in that conjectures about the trajectory
of students’ learning are tested and modified on-line while experimenting in a
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classroom. As we will clarify, the theoretical insights gained while testing and
revising conjectures in this manner constitute the primary rationale for the
instructional design that is crafted in the course of a design experiment
(Gravemeijer, 1994). 

In the first section of the article, we discuss the design experiment methodology
by highlighting its key feature, tightly integrated cycles of instructional design and
classroom analysis. We then describe the data sources and clarify the analytical
method we followed. We argue that, for our purposes, a focus that encompasses
both the mathematical learning of the classroom community and the reasoning of
individual students as they participate in the activities of this community consti-
tutes an appropriate unit of analysis. Against this background, we describe the set-
ting and general organization of the classroom before outlining the hypothetical
learning trajectory that we formulated when preparing for the design experiment.
We next develop an analysis of the actual learning trajectory that was realized in
the classroom during the design experiment. In doing so, we describe the process
by which we tested and revised conjectures about the learning both of the class-
room community and of individual students. In the final section of the article, we
reflect back on the entire experiment in order to propose a new learning trajectory
that synthesizes what we learned.

THE DESIGN EXPERIMENT METHODOLOGY

The process of conducting a classroom design experiment can be divided into
three broad phases: preparing for the experiment, experimenting in the class-
room, and conducting a retrospective analysis (P. Cobb, 2000; Confrey &
Lachance, 2000; Simon, 2000). Gravemeijer (1994) described the preparation
phase in some detail and clarified that the research team initially conducts an an-
ticipatory thought experiment. In doing so, members of the team envision how
mathematical activity and discourse might evolve as proposed types of instruc-
tional activities are enacted in the classroom, thereby developing conjectures
about both (a) possible trajectories for mathematical learning and (b) the means
that might be used to support and organize that learning. These conjectures
compose what Simon (1995) termed a hypothetical learning trajectory, which
serves to provide an orientation during the second phase of experimenting in the
classroom.

In contrast to some types of classroom-based research, the primary motive for
conducting a design experiment is not to assess the effectiveness of an initial in-
structional design formulated in advance. Instead, the intent is to improve the ini-
tial instructional design by testing and modifying conjectures about the course of
the classroom community’s and the participating students’ mathematical learning
(Brown, 1992; P. Cobb, 2001; Collins, 1999; Suter & Frechtling, 2000). To fulfill
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this agenda, all members of the research team1 meet after each classroom session
to discuss their interpretations of classroom events and to propose possible modi-
fications to the learning trajectory. As a consequence, although we outline possi-
ble types of instructional activities when preparing for an experiment, the specific
instructional activities used in the classroom are developed only a day or two in
advance. Gravemeijer (1994) introduced the term minicycles to refer to these
tightly integrated cycles of design and analysis. As he noted, the hypothetical
learning trajectory evolves throughout a design experiment as a consequence of
daily decisions even as it serves to frame and orient those local decisions.2 It is by
means of this process of ongoing adjustment and revision that the actual learning
trajectory is realized in the classroom during a design experiment. Once the ex-
periment is completed, the divergence of the actual trajectory from the trajectory
hypothesized at the outset together with the justifications for the changes provide
a record of the research team’s learning as it enacted the daily minicycles.

The issues that arise while a design experiment is in progress are typically prag-
matic and relate directly to the goal of supporting the participating students’ learn-
ing. In contrast, the intent when conducting a retrospective analysis is to contribute
to the development of a domain-specific instructional theory that can feed forward
to guide instruction in other classrooms. A local instructional theory of this type
consists of (a) a demonstrated learning route that culminates with one or more sig-
nificant mathematical ideas and (b) substantiated means of supporting and organiz-
ing learning along that trajectory. As Steffe and Thompson (2000) clarified, it is this
domain-specific theory that makes the results of a design experiment potentially
generalizable even though they are grounded in the particulars of a single class-
room. In Steffe and Thompson’s terms, this is generalization by means of an
explanatory framework rather than by means of a representative sample, in that
insights and understandings gained when developing the retrospective analysis can
inform the interpretation of events and thus pedagogical judgment in other class-
rooms. As we will illustrate, these insights and understandings can also feed forward
to guide the formulation of a new hypothetical learning trajectory for a follow-up
design experiment. Gravemeijer (1994) called these cycles of design and analysis
that span an entire design experiment macrocycles to distinguish them from the
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1In addition to the authors, the members of the research team for the covariation design experiment
were Jose Cortina, Lynn Hodge, Maggie McGatha, Kazu Nunokawa, Nora Shuart, and Carrie Tzou.
Cliff Konold and Erna Yackel served as long-term consultants and visited the classroom approximately
once every 2 weeks throughout the experiment.

2This process of global plans evolving in response to local decisions that they serve to orient is
compatible with Suchman and Trigg’s (1993) analysis of design and with Lave’s (1988) description
of problem solving as a gap-closing process. It is also compatible with Nemirovsky and Monk’s 
(2000) discussion of creative mathematical activity as a process of trail making, which involves
moving toward a potentially revisable goal by making ongoing judgments about how to deal with
immediate circumstances.



daily minicycles. Thus, although we will document the local decisions we made
while the covariation design experiment was in progress, it should be clear that our
intent in doing so is to contribute to the development of a local instructional theory.
It is also with this in mind that we will conclude by drawing on what we learned to
outline a revised learning trajectory that might provide a basis for future work. In
general, this view of local instructional theories as emerging over the long term as a
sequence of macrocycles is enacted is consistent with the characterization of reform
as an iterative process of continual improvement (Stigler & Hiebert, 1999).

DATA SOURCES AND METHOD OF ANALYSIS

The data generated in the course of the 14-week design experiment that focused
on statistical covariation included (a) video recordings made with two cameras of
each of the 41 classroom sessions, (b) copies of all the students’ written work,
(c) two detailed sets of classroom field notes, and (d) audio recordings of all re-
search team meetings. One of the challenges when analyzing classroom data of
this type is to clarify the unit of analysis. It is, for example, tempting to character-
ize the shifts in activity and meaning that occur in a design experiment by speak-
ing of changes in the students’ reasoning, thereby implying that they have all
reorganized their activity in the same way. However, in our view, an analytic ap-
proach of this type is potentially misleading, in that we know only too well that
there are significant qualitative differences in individual students’ reasoning at any
point in time. To circumvent this difficulty, we take the microculture established
by the classroom community as a unit of analysis while acknowledging that stu-
dents participate in the communal activities that constitute this microculture in a
range of diverse ways. Our goal in analyzing the actual learning trajectory of the
classroom community is therefore to document the evolution of communal class-
room processes that constitute the immediate social context of all the individual
students’ learning. We contend that when researchers and designers seem to imply
that all the students have reorganized their reasoning in the same way, we can
make their claims more intelligible by recasting their comments in terms of claims
about the social context of all the students’ learning. This reframing rejects highly
questionable assertions about the homogeneity of all the students’ reasoning in fa-
vor of empirically grounded claims about the conditions for the possibility of all
the students’ learning.3
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3It should be clear in taking this approach that we are in no way ruling out the detailed analysis of
individual students’ reasoning. It is in fact because we acknowledge the diversity of students’ reason-
ing that we question claims that seem to imply relative homogeneity. In the hands of a skillful teacher,
this diversity can be a primary motor of the collective mathematical learning of the classroom com-
munity.



The analytical approach that we take differentiates among three distinct types
of classroom norms: classroom social norms, sociomathematical norms, and nor-
mative mathematical meanings.4 Briefly, an analysis of the social norms estab-
lished by a classroom community serves to document what Erickson (1986) and
Lampert (1990) termed the classroom participation structure. Examples of social
norms for whole-class discussions include the obligations that students explain
and justify solutions, attempt to make sense of explanations given by others, indi-
cate understanding or nonunderstanding, and ask clarifying questions or chal-
lenge alternatives when differences in interpretations have become apparent. As
these examples illustrate, classroom social norms are not specific to mathematics,
but instead apply to any subject matter area. For example, one might hope that stu-
dents would explain their reasoning in science or history classes as well as in
mathematics. In contrast, sociomathematical norms focus on regularities in class-
room actions and interactions that are specific to mathematics (Hershkowitz &
Schwartz, 1999; McClain & Cobb, 2001a; Sfard, 2000a; Simon & Blume, 1996;
Voigt, 1995; Yackel & Cobb, 1996). Examples of sociomathematical norms
include the criteria that are established in a particular classroom for what counts
as a different mathematical solution, a sophisticated mathematical solution, and
an efficient mathematical solution, as well as for what counts as an acceptable
mathematical explanation. 

If sociomathematical norms are specific to mathematics, then normative math-
ematical meanings are, by definition, specific to particular mathematical ideas and
are thus concerned with the emergence of what is traditionally called mathemati-
cal content. For example, in the case at hand, we will be concerned with the ways
of talking and reasoning about bivariate data that became normative in the design
experiment classroom. These normative meanings, it should be noted, do not cor-
respond to an overlap in the teacher’s and students’ individual interpretations
(Voigt, 1985). Any attempt to delineate an overlap of this type takes individuals as
the unit of analysis in that the focus is on the relation among individual interpre-
tations. In contrast, inferences about normative interpretations take the classroom
community as the unit of analysis and attempt to delineate meanings that are con-
stituted as legitimate in the classroom. Such meanings are communal rather than
individual accomplishments in that their status of legitimacy is established collec-
tively by the teacher and students.

It is important to emphasize that when we analyze classroom video recordings,
we cannot see the classroom community as a discrete, concrete entity in the same
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4For the purposes of this article, we have simplified our interpretive framework by speaking of norma-
tive mathematical meanings rather than classroom mathematical practices. As we described and illustrated
elsewhere (P. Cobb, Stephan, McClain, & Gravemeijer, 2001), a classroom mathematical practice com-
prises three interrelated types of mathematical norms: a normative purpose for engaging in mathematical
activity, normative standards of argumentation, and normative ways of reasoning with tools and symbols.



way that we can see the teacher and students as distinct physical beings. As a con-
sequence, we cannot observe normative mathematical meanings directly any more
than we can directly observe the meanings that an individual student’s data analy-
sis activity has for her or him. We described and illustrated the methodological ap-
proach we take when inferring normative meanings in some detail elsewhere
(P. Cobb et al., 2001). For our purposes, it suffices to note that normative ways of
reasoning and acting are not mere arbitrary conventions for members of a commu-
nity that can be modified at will (Sfard, 2000a). Instead, these are ways of reason-
ing and acting that are constituted as legitimate or acceptable within a community.5

Consequently, in analyzing the data generated during the covariation design exper-
iment, we developed and tested conjectures about normative ways of talking and
reasoning about data by focusing on the status that students’ contributions came to
have in the classroom. For example, we documented whether the students were
obliged to give a justification when they first organized data in a novel way. The
need to give a justification is one indication that this particular way of structuring
data was still open to question. Evidence that students who later organized data in
this way no longer needed to give a justification indicated that this way of reason-
ing with data might have become normative. Beyond this, we opened our infer-
ences to the possibility of refutation by searching for instances where a student
appeared to have violated a way of reasoning that we conjectured was normative
(Much & Schweder, 1978). In each of these instances, we focused on the status that
the student’s contribution came to have as the classroom discourse progressed. We,
of course, had to revise our conjecture in those cases where the student’s contribu-
tion was constituted as legitimate. 

Thus far, our discussion of methodological issues has focused on the classroom
microculture as a unit of analysis. A second challenge that arises when analyzing a
large, longitudinal dataset of the type generated during a design experiment is to de-
velop a way of working through the data systematically so that the resulting account
is credible. In this regard, it is worth noting that analyses that locate students’ mathe-
matical activity in social context often deal with only a few lessons, or perhaps focus
on just a few minutes within one lesson. Detailed analyses of this type can clearly
make an important contribution to design research. However, a methodological issue
that we have sought to address is that of developing a way to account for the collec-
tive mathematical learning of the classroom community not during a 10-min episode,
but over the entire time period spanned by a design experiment. Consequently, al-
though the account we will offer of the covariation design experiment is grounded in
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a community. They become people who consider that their rights have been infringed when they
perceive that a norm has been breached.



the details of specific classroom events, it necessarily lacks the immediacy of more
closely circumscribed analyses. We argue that this trade-off is justifiable, given that
the process of supporting the development of significant mathematical ideas typically
takes a period of weeks or months. 

We follow the standard convention for reporting interpretivist analyses by pre-
senting a limited number of representative episodes to clarify the primary assertions
that emerged while conducting the analysis (Atkinson, Delamont, & Hammersley,
1988; Taylor & Bogdan, 1984). It is therefore important to emphasize that these as-
sertions about the classroom community’s mathematical learning did not typically
arise from the analysis of a single episode. Instead, as we illustrated elsewhere
(P. Cobb et al., 2001), the interpretation of specific episodes and the delineation of
general assertions are interdependent in that each informs the other. As a conse-
quence, the interpretations we will propose of particular episodes are located within
a network of mutually reinforcing inferences that span the entire dataset.

We have already indicated that the analytical method we take treats inferences
about normative ways of reasoning as conjectures that are open to refutation. This
approach is a variant of Glaser and Strauss’s (1967) constant comparison method as
adapted to the needs of design research (P. Cobb & Whitenack, 1996). Glaser and
Strauss’s (1967) method treats data as text and aims to develop coherent, trustworthy
analyses of their possible meanings. The hallmark of their method is that as new
classroom episodes are analyzed, they are compared with currently conjectured
themes or categories. This process of constantly comparing episodes leads to the
ongoing refinement of the theoretical categories that remain grounded in the data. As
Glaser and Strauss noted, negative cases that appear to contradict a current category
are of particular interest and are used to further refine the emerging categories. 

The specific analytical approach that we followed has two main phases
(P. Cobb et al., 2001). In the first phase, we worked through the data generated
during the covariation design experiment chronologically, episode by episode,
where the determining characteristic of an episode was that a single mathematical
theme was the focus of the teacher’s and students’ activity and discourse. In doing
so, we developed conjectures about ways of reasoning and communicating that
might have been normative in the classroom at a particular point in time. The re-
sult of this first phase was a chain of conjectures, refutations, and revisions that
was grounded in the details of specific episodes. In the second phase, the record
of the first phase itself became data that were (meta-) analyzed to develop a rea-
sonably succinct, empirically grounded chronology of the mathematical learning
of the classroom community. During this phase, we scrutinized the conjectures
developed during the first phase about the possible emergence of normative mean-
ings from a relatively global perspective that looked across the entire design ex-
periment. The resulting analysis of the evolution of normative meanings over the
course of the design experiment then provides an account of the actual learning
trajectory of the classroom community. 
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THE SETTING OF THE DESIGN EXPERIMENT

The design experiment was conducted over a 14-week period in an urban middle
school in the fall of 1998 and involved 41 classroom sessions of approximately
40 min duration. During the fall of the previous year, we conducted a design ex-
periment in a seventh-grade classroom in the same school that focused on the
analysis of univariate data. Our intent was to work with the same group of 29 stu-
dents during the first part of their eighth-grade year to investigate the analysis of
bivariate data with a particular emphasis on statistical covariation. However, the
teacher of the eighth-grade mathematics classes felt that she could not justify the
time away from instruction. Her students were required to take an end-of-grade
exam and she felt pressure to address concepts from that test. Her curriculum was
relatively prescriptive in that it specified the mathematical skills and concepts that
should be taught throughout the school year. We were therefore unable to conduct
the eighth-grade design experiment during regular mathematics periods and asked
for student volunteers to work with us during their afternoon activity period. Of
the original 29 students, 8 had transferred to other schools and 4 had other obli-
gations (e.g., practice for the school play or for the school band). Of the remain-
ing 17 students, 16 volunteered to give up their activity period and 11 continued
to attend throughout the 14 weeks of the experiment. The 5 students who dropped
out, all of whom were White, indicated that they were having difficulty complet-
ing their homework for other classes and wanted to use the activity period for this
purpose. Seven of the 11 students who participated for the entire experiment were
African American, 3 were White, and 1 was Asian American. An analysis of in-
terviews conducted with all of the original 29 students at the end of seventh-grade
design experiment indicated that these 11 students were reasonably representative
of the entire group in terms of the ways in which they reasoned about data. 

CLASSROOM ORGANIZATION

During the design experiment, Kay McClain assumed the primary teaching re-
sponsibilities and was assisted on occasion by Paul Cobb. For ease of explication,
we will not differentiate between their contributions to classroom discourse, but
will instead speak simply of the teacher. The flow of classroom activities typically
had the following structure, which might span two or more class sessions: (a) a
whole-class discussion in which the teacher and students talked through the data
creation process, (b) individual or small-group activity in which the students
worked at computers to analyze data, and (c) a whole-class discussion of the stu-
dents’ analyses. The rationale for the first phase of this activity structure stemmed
from our prior work with the students during their seventh-grade year (McGatha,
Cobb, & McClain, 1999). In the prior design experiment, it proved crucial that
datasets had a history for the students such that they were grounded in the situation
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from which they were generated and that they reflected the particular interests and
purposes that had led to their creation (Latour, 1987; Lehrer & Romberg, 1996;
Roth, 1997). It was to this end that the teacher talked through the process of gener-
ating the data with the students. This involved discussing the particular problem or
question to be investigated, clarifying its social or scientific significance, delineat-
ing aspects of the situation that might be relevant to the question at hand, and
developing procedures for measuring them. The data the students were to analyze
were then introduced as having been generated in this way. An analysis of students’
participation in the data creation process across the two design experiments indi-
cates that the approach we took was generally successful (Tzou, 2000). There was
a clear handover of responsibility from the teacher to the students in the course of
which the students initiated discussions with increasing frequency about the need
to control extraneous variables and about sampling methods. 

Once the teacher and students had resolved issues about the process of generat-
ing the data, the students analyzed the data and wrote a short report for a person
who would make a policy decision based on their analysis. In the first eight class-
room sessions, the students used a computer minitool from the seventh-grade
experiment with which they were already familiar to analyze univariate datasets. In
the next five classroom sessions, the teacher and students developed ways of in-
scribing bivariate data before a new computer minitool for analyzing bivariate data
was introduced in the 14th classroom session. This minitool was used during most
of the remaining sessions of the experiment. The students conducted their analyses
either individually or in pairs as they chose, subject to the constraint that the class
had access to a total of eight computers.

The research team prepared for the final phase of the classroom activity struc-
ture, the whole-class discussions of the students’ analyses, by developing conjec-
tures about mathematically significant issues that might, with the teacher’s proactive
guidance, emerge as topics of conversation. Our intent was to capitalize on the
diversity in the students’ reasoning about data by identifying analyses that, when
discussed directly or compared with other analyses, might lead to substantive math-
ematical conversations that advanced our pedagogical agenda. As a consequence,
whole-class discussions were not viewed merely as opportunities for students to
share their reasoning. Instead, they focused on selected ways of reasoning that could
be justified in terms of their contribution to the realization of a potentially revisable
learning trajectory. A computer projection system that enabled the students to
demonstrate how they had structured particular datasets was used to support these
discussions throughout the design experiment.

THE HYPOTHETICAL LEARNING TRAJECTORY

The process of formulating a hypothetical learning trajectory that provides an ini-
tial orientation for a design experiment involves specifying (a) the significant
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mathematical ideas that constitute the potential developmental endpoints, (b) the
anticipated starting points, and (c) the envisioned learning route and means of
support. We discuss each of these three aspects of the hypothetical trajectory in
turn for the covariation design experiment.

Potential Endpoints

Our overall goal in the design experiment was to support the emergence of increas-
ingly sophisticated ways of analyzing bivariate data as part of the process of devel-
oping effective data-based arguments. The overarching mathematical idea that
served to orient our design effort was that of bivariate distribution. We wanted the
students to come to view bivariate datasets as distributed within a two-dimensional
space of values (Wilensky, 1997). Notions such as the direction and strength of the
relationship between the two sets of measures generated when creating the data
would then emerge as ways of describing how the data are distributed within this
space of values.

Our reference to a two-dimensional space of values indicates the central role that
we attributed to the scatter plots as a way of inscribing bivariate data. The image of
classroom discourse that we had in mind was that of scatter plots coming to be talked
about and referred to as texts of situations from which the data were generated. We
therefore wanted it to become normative that aspects of the situation that were meas-
ured when generating the data covary in some way, and that the nature of that covari-
ation can be read from a scatter plot. In considering what might be involved in
reasoning about a scatter plot in this way, we took account of the observation that stu-
dents frequently read graphs of this type diagonally rather than vertically, focusing on
the distance of points from a line of best fit rather then on deviations in the y direc-
tion (Clifford Konold, personal communication, July 18, 1998). For these students, it
is the line of best fit rather than the two sets of measures that have been plotted
orthogonally that constitutes the frame of reference. We conjectured that, in contrast,
proficient data analysts view the graph as organized into vertical slices, each of which
can be viewed as the (univariate) distribution of the measures of one quantity for an
interval of values of the other quantity. In the example shown in Figure 1, the process
of reading the graph involves discerning trends and patterns in the distribution of
average SAT scores as measures of expenditure increase.6
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Our claim is not, of course, that skilled readers of scatter plots consciously par-
tition graphs into slices. Instead, we conjectured that the perceptual activity of
skilled readers implicitly involves tracking the distribution of measures of the
y quantity as they scan across the graph. This process of scanning across a scatter
plot vertically rather than diagonally is explicit in procedures for finding the line
of best fit (i.e., minimize the squares of the deviations of the y measures). As will
become apparent, this view of a bivariate distribution as a distribution of univari-
ate distributions strongly influenced the design of the new computer minitool that
we introduced during the design experiment.

Starting Points

To clarify the starting points for the covariation design experiment, we refer to the
prior design experiment that we conducted when the students were seventh
graders. As we noted, the instructional activities used in this experiment involved
analyzing univariate datasets. The means of supporting the students’ learning
included two computer minitools that we developed when preparing for the ex-
periment. The second of these tools, which was used in the latter part of the design
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experiment, enabled students to analyze one or two univariate datasets of up to
400 data points. Individual data points were inscribed as dots on a horizontal axis
of values (see Figure 2). 

The tool provided the students with a variety of options for structuring
datasets. The first, called “Create Your Own Groups,” involved dragging vertical
bars along the axis to partition the datasets into groups of points. The remaining
four options were:

• Partitioning the data into groups of a Specified Size (e.g., 10 data points in
each group).

• Partitioning the data into groups with an Equal Interval Width (i.e., a pre-
cursor to histograms).

• Partitioning the data into Two Equal Groups.
• Partitioning the data into Four Equal Groups (i.e., a precursor of box plots). 

In each of these options, the students could elect to hide the individual data points
or leave them visible. If the Hide Data option is chosen, the dots signifying indi-
vidual data points disappear, leaving only vertical partition lines. 

Analyses of the classroom community’s actual learning trajectory in this
design experiment can be found in P. Cobb (1999), McClain and Cobb (2001b),
and McClain, Cobb, and Gravemeijer (2000). Briefly, the metaphor of a hill to de-
scribe the shape of datasets such as those shown in Figure 2 emerged shortly after
the students began using the second minitool. In addition, the interpretation that

12 COBB, MCCLAIN, GRAVEMEIJER

FIGURE 2 Data inscribed as line plots in the second minitool.



the data in a particular interval were a qualitative proportion of the entire dataset
rather than a mere additive part of it had become normative by the end of the ex-
periment. As an example, Figure 3 shows the T-cell counts for 46 patients who en-
rolled in an experimental protocol for the treatment of AIDS and 186 patients who
enrolled in a standard treatment protocol.7 Both datasets have been partitioned at
the T-cell count of 525 by using the Create Your Own Groups option. In a case
such as this, the students routinely spoke of the “majority” of the data or “most of
the people” being above a T-cell count of 525 in the experimental treatment and
below this value in the standard treatment. In these conversations, there was every
indication that the meaning of terms such as the majority and most as signifying a
qualitative proportion of a dataset and thus a qualitative relative frequency was
normative.

In the example shown in Figure 3, the students who partitioned the datasets at
T-cell counts of 525 did so because what they referred to as the “hill” in the
experimental protocol data was above 525, whereas the hill in the standard
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7These datasets were introduced only after a lengthy discussion of the data creation process.



treatment data was below 525. In reasoning in this way, they used the second mini-
tool to identify and describe perceptually based patterns in the data. In contrast to
this perceptually based reasoning, a number of the students compared the two
treatment programs by using the minitool to organize datasets independently of
visual features. Consider, for example, Figure 4, in which the AIDS data are par-
titioned into Four Equal Groups and the individual data points are hidden. In this
case, the partitions do not isolate perceived clumps or hills in the data that could
be read as qualitative proportions. Instead, the graphs serve as a means of com-
paring and contrasting the ways in which the two sets of data are distributed. A se-
ries of discussions conducted near the end of the seventh-grade design experiment
indicated that reasoning of this type in which the distribution of data is inferred
from a graph was yet to become normative. It was also noticeable that, in these
discussions, the teacher and students rarely spoke of hills or used other terms that
referred to the shape of datasets when they reasoned about graphs of Four Equal
Groups. Instead, they typically talked about these graphs of Four Equal Groups by
referring to the percentage of the data above or below a particular value or within
a particular interval. In the case of Figure 4, for example, some of the students
noted that the T-cell counts of the lowest 75% of the patients in the standard pro-
tocol were in approximately the same interval as the counts of only the lowest 25%
of the patients in the experimental protocol (i.e., the ranges of the lowest quartile
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of the experimental treatment and the lowest three quartiles of the standard treat-
ment were approximately the same). This way of speaking and reasoning about
data organized into Four Equal Groups might well have reflected the fact that the
datasets the students analyzed in the latter part of the seventh-grade design exper-
iment were typically not particularly smooth and thus did not lend themselves to
being described in terms of shape. As will become apparent, this exclusion of
descriptions cast in terms of shape had unanticipated consequences in the eighth-
grade design experiment. 

In summary, we concluded from our analyses of the seventh-grade design
experiment that the basis for communication at the beginning of the eighth-grade
experiment might include: 

• Using the hill metaphor to describe the shapes of datasets inscribed as line
plots.

• Comparing univariate datasets by structuring them in terms of perceptu-
ally based patterns.

• Reasoning multiplicatively about datasets structured in this manner in
terms of qualitative proportions.

In addition, we anticipated that an appreciable number of the students would
readily partition data into Equal Interval Widths or Four Equal Groups to com-
pare how two sets of data were distributed. Interviews conducted shortly after the
seventh-grade experiment was completed indicated that 19 of the 29 students
could use graphs of Equal Interval Widths and of Four Equal Groups in which the
data were hidden to develop effective data-based arguments (P. Cobb, 1999).
Eight of these 19 students were among the 11 who participated in the entire
eighth-grade experiment.

The Conjectured Learning Route and Means of Support

We stress that because there was a 9-month gap between the two experiments, we
viewed our assumptions about the starting points for the eighth-grade experiment
as conjectures. The initial activities we planned were therefore designed to serve
as performance assessment tasks and involved using the second computer mini-
tool to compare two univariate datasets. If necessary, we intended to revisit issues
that had been the focus of discussions in the latter part of the seventh-grade
experiment before moving to the analysis of bivariate data. 

Our immediate goal when the students began to analyze bivariate data was to
support the development of ways of inscribing the data. At a minimum, we wanted
to ensure that the students viewed the inscriptional form of scatter plots as a solu-
tion to a problem that they considered significant. To this end, we planned to ask
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the students to develop a graph or a diagram of a bivariate dataset that would en-
able them to make a decision or a judgment. Although we expected that some of
the students might create inscriptions similar to scatter plots by drawing orthogo-
nal axes, we also anticipated that some might develop double-bar graphs or other
potentially less useful inscriptional forms. To frame the discussion of the students’
graphs, we planned to raise the issue of the extent to which their various inscrip-
tions enabled them to assess how one of the measured quantities varied as the
other increased. It was only when the relevance of this criterion had become
normative that we planned, if necessary, to introduce the scatter plot as a way of
inscribing data that made it easier to address the question at hand.

A second related issue that we considered when preparing for the design ex-
periment concerned the importance of it becoming normative that bivariate data
consist of the measures of two attributes of each of a number of cases. To address
this concern, we discussed at length the type of language that the teacher might
support when talking through the data creation process with the students. As we
noted, this process would involve first discussing the particular question or issue
to be investigated and clarifying its social or scientific significance. Against this
background, the teacher would guide the delineation of aspects of the situation
that were relevant and should be measured to address the issue. We conjectured
that both here and in the subsequent discussions of the students’ analyses, it
would be important to develop ways of talking that referred explicitly to cases
whose attributes had been measured rather than to speak solely in terms of the
measures. This, we reasoned, might support the view that each dot on a scatter
plot signifies a single case whose measures are indicated by its location with re-
spect to the axes.

The issues we have discussed thus far relate to what we anticipated would be
the introductory phase of the design experiment. It was against this background
that we planned to introduce the third computer minitool, in which bivariate data
are inscribed as a scatter plot. The students could adjust the scales of the axes by
changing the maximum and the minimum values. We also included a feature
called Dots, by which, if the students clicked on any data point, perpendiculars
from the axes to the dot would be shown (see Figure 5). We anticipated that the
use of this feature in whole-class discussions would aid the teacher in ensuring
that discourse was about relationships between the two measures of each of a
number of cases rather than about a mere configuration of dots scattered between
two axes.

Beyond this simple feature, the minitool offered four differing ways of organ-
izing bivariate data: 

Cross. This option divides the data display into four cells and shows the
number of data points in each cell (see Figure 6). The students could drag the cen-
ter of the Cross to any location on the display, thereby changing the size of the
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cells. As they did so, the record of the number of data points in each cell adjusted
automatically. In terms of the students’ prior instructional history, the Cross can
be viewed as the two-dimensional correlate of the Create Your Own Groups option
included in the second minitool. As we noted, the students typically used this lat-
ter option to identify and describe perceptually based patterns in univariate
datasets.

Grids. The students could select from a pull-down menu of Grids that ranged
in size from 4 × 4 to 10 × 10. The selected Grid was shown superimposed on the
data display and the number of data points in each cell was shown. The Grids op-
tion can be viewed as the two-dimensional correlate of the Equal Interval Width
option included in the second minitool.

Two Equal Groups. This option partitions the data display into columns or
vertical slices, the widths of which divide the horizontal axis into equal intervals
(see Figure 7). The minimum number of slices that the students could choose was
4 and the maximum was 10. Within each slice, the data points are partitioned into
two equal groups (i.e., the display shows the median and the low and high values
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within each slice). This option can be viewed as the two-dimensional correlate of
the Two Equal Groups option included in the second minitool.

Four Equal Groups. This option is similar to the Two Equal Groups option
except that the data points within each slice are partitioned into Four Equal
Groups (see Figure 8). It can be viewed as the two-dimensional correlate of the
Four Equal Groups option included in the second minitool.

The only remaining feature of the minitool to note is that the individual data
points could be hidden. This option was designed to support conversations in
which trends and patterns in the distribution of data are inferred from graphs. The
remarks we made about potential relationships between the options of this tool
and of the second minitool hint at our underlying rationale. At a deeper level, this
rationale for the design of the third minitool stems from our conjecture that it
might be productive for pedagogical purposes to view a bivariate distribution as a
distribution of univariate distributions. In the case of the Grids option, for exam-
ple, the cell values in each vertical slice might be read as signifying a univariate
distribution. Similar comments can be made about the inscriptions within each
slice of the Two Equal Groups and Four Equal Groups options. For its part, the
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Cross option can be viewed as both a precursor to 2 × 2 contingency tables and a
simple case of the Grids option with the added flexibility that students can vary
the interval widths.

We anticipated that the envisioned learning trajectory would give rise to several
challenges for the teacher. The most pressing of these involved supporting discus-
sions in which it became normative to interpret the vertical slices in the various
options as the distribution of the measures of one quantity for cases whose meas-
ures of the second quantity were within the indicated interval. Only then could the
issue of how the distribution of the measures of one quantity changed as measures
of the second quantity varied become a topic of conversation. We again stress that
we viewed the envisioned trajectory as potentially feasible only because the
teacher might be able to build on the starting points that we outlined. As we noted,
these provisional starting points were themselves a consequence of the students’
participation in the prior seventh-grade design experiment. 

A final issue that we took account of when preparing for the design experiment
concerned lines of best fit. We intended to approach this issue informally and
wanted it to become normative that a line fitted through the configuration of dots
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on a scatter plot signifies a conjectured relationship of covariation about which the
data points are distributed. We therefore planned to delay line fitting until the read-
ing of scatter plots as bivariate distributions (i.e., as distributions of univariate dis-
tributions) had become normative. As a consequence, we decided not to activate a
curve-fitting option on the minitool when the students first used it, but instead to
focus classroom activity on various ways of structuring and organizing bivariate
datasets.

It should be clear in this discussion of the hypothetical trajectory that we
viewed the development of increasingly sophisticated ways of reasoning about
data as being inextricably bound up with the development and use of increasingly
sophisticated ways of inscribing data (Biehler, 1993; de Lange, van Reeuwijk,
Burrill, & Romberg, 1993; Lehrer & Romberg, 1996; Roth & McGinn, 1998).
More generally, the approach we planned to take is broadly consistent with theo-
retical perspectives that treat tools and symbols as reorganizers rather than mere
amplifiers of activity (Dörfler, 1993; Kaput, 1994; Meira, 1998; Pea, 1993). It
should also be apparent that, in line with our discussion of the design experiment
methodology, the conjectures we developed when formulating the hypothetical

20 COBB, MCCLAIN, GRAVEMEIJER

FIGURE 8 The Four Equal Groups option of the third minitool.



learning trajectory deal with the learning of the classroom community rather than
of any particular students. In reporting the actual learning trajectory enacted in the
course of the design experiment, we continue to focus on communal learning
while also attending to the quality of individual student’s reasoning.

THE ACTUAL LEARNING TRAJECTORY

In presenting the analysis, we first document the social and sociomathematical
norms that were established in the design experiment classroom. Against this
background, we then give an account of the actual learning trajectory by dividing
it into five broad phases, each of which involves the emergence of a distinct
nexus of normative meanings.8 In discussing the first of these phases, we present
sample episodes to illustrate the types of issues that typically came to the fore
during data creation discussions. In discussing the remaining four phases, we
present sample episodes to clarify the claims we make about the development of
normative mathematical meanings. Throughout the analysis, we also attend to
our own activity as well as that of the teacher and students by documenting our
ongoing pedagogical decision making. This record of the process of testing and
revising pedagogical conjectures will serve as a basis for our subsequent reflec-
tions and thus for the formulation of a new learning trajectory that synthesizes
what we learned. 

Social and Sociomathematical Norms

The social norms and sociomathematical norms that we previously documented
when analyzing the seventh-grade design experiment (P. Cobb, 1999; McClain &
Cobb, 2001b; McClain et al., 2000) were quickly reestablished at the beginning of
the eighth-grade experiment. The social norms for whole-class discussions
included the obligations that the students explain and justify their reasoning, ask
clarifying questions to understand other students’ reasoning, and indicate agree-
ment or disagreement with others’ arguments. These norms, which were inferred
by analyzing classroom discourse, proved to be highly consistent with students’un-
derstanding of their obligations as revealed in a series of interviews conducted with
them outside the classroom while the eighth-grade experiment was in progress
(Hodge, 2001). These interviews were conducted as part of a separate investigation
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by a member of the research team who was not directly involved in the design ex-
periment. The following comments are representative

Interviewer: How would I be a good student [in the statistics class]? 
Kim: You just ask questions about what you don’t understand and tell

them what you think. 
Ben: Your job is to know how to express your opinion and know how

to do it. And not worry about it if someone disagrees with you. 
Janice: You ask questions and contribute to what we’re talking about. 
Sinae: You have to do a good job explaining how you looked at the

problem. That’s important since you didn’t talk with everybody
else when you were looking at the graph. 

Interviewer: If I were a new student [in statistics], tell me some advice about
doing well.

Martha: Talk a lot and
Interviewer: (Interrupts) About anything? 

Martha: Not just anything. You talk about your way, or you add something
to someone else’s way. You can’t just say that you agree or you
disagree. Ms. M [statistics teacher] makes you explain it. You
have to ask questions about things that you don’t understand. 

Interviewer: What do you mean?
Martha: If you, um, don’t understand why someone did something you

have to ask them about it. You can’t just say, oh yeah, that’s okay,
what you did. 

Interviewer: So to be a good student you have to listen and bring up good
arguments?

Brad: Yeah. You have to listen and ask questions about other people’s
ways. That’s really what you have to do. When you explain what
you did you have to make sense. You can’t just talk about what
you ended up with.

Suzanne: You can’t just talk about your conclusion because that doesn’t let
anybody know why you did things.

Interviewer: Is that important?
Suzanne: If you don’t talk about what you were thinking about then we

don’t know if it all is okay…we can’t figure out if it is a good
point.

Clearly, the teacher’s success in negotiating these obligations with the students fa-
cilitated the task of inferring the emergence of normative mathematical meanings.

For the purposes of this analysis, two of the most important sociomathematical
norms are those of what counts as a different solution and as an acceptable argu-
ment. In line with our prior analysis of the seventh-grade experiment, the norm of
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what counted as a different solution centered on the way in which the data had
been structured and interpreted rather than on the final conclusion reached during
the analysis. Thus, analyses were constituted as different even if the computer
minitool was used in the same way provided that the data were interpreted differ-
ently. With regard to the norm of what counted as an acceptable argument, it was
not necessarily sufficient for students to explain how they had structured the data
during an analysis. Instead, the students were obliged to explain their reasons for
structuring the data in a particular way when this was not clear to other students.
Typically, in stating these reasons, the student had to explain how a particular way
of structuring the data was relevant with regard to the question or issue being ad-
dressed by the analysis. As a consequence, the classroom discourse was, for the
most part, conceptual rather than calculational in nature in that students had to
explain not only the process by which they arrived at a result, but the reasons for
following that particular process (P. Cobb et al., 2001; Thompson, Philipp,
Thompson, & Boyd, 1994). 

Comparing Univariate Datasets

Turning now to consider the first phase of the actual learning trajectory, the stu-
dents used the second minitool to compare univariate datasets with unequal num-
bers of data points in the first 8 of the 41 sessions of the design experiment. In one
instructional activity, for example, the students compared the response times of
two commercial ambulance companies. In talking through the data creation
process, the teacher explained that the school district had to decide which of two
companies would receive a contract to provide service to the school district. The
first part of the data creation discussion focused on clarifying why this question
was significant:

Teacher: Do you know how expensive it is to call an ambulance? 
Kim: $75.

Teacher: You would say $75?
Kim: Yeah.

Teacher: The ones that I’ve talked to charge $125 just to show up and
that’s if they don’t do anything. 

Wes: For an ambulance?
Teacher: Yes, if you were able to crawl in to the ambulance and go to the

hospital by yourself that’s $125. That’s a real expensive taxi
ride.

Janice: So, what you’re saying is that they charge it to the school?
Teacher: Yeah, yeah, just to take the students or the teacher or whoever to

the hospital. 
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Wes: Does that count for everyone?
Teacher: Yeah, one person.

Mark: (Inaudible).
Teacher: This is just for Nashville. Ambulance service in Nashville.

Suzanne: So, basically you’re paying to get your life saved?
Teacher: Yes, exactly. That’s a good point.
Martha: Do they charge if you call and you don’t need them?
Teacher: Yes, if they come it’s $125. Just for showing up. 
Martha: Even if you don’t need them when they come?
Teacher: When they get there and you say false alarm. 125 bucks. If they

do something. They have drivers with some medical training.
Student: Paramedics.
Teacher: Yes, paramedics. If they do something they add those charges on

to the $125.

The students’ need to understand the situation from which the data were generated
had come to typify data creation discussions by the end of the seventh-grade ex-
periment. As we documented elsewhere (Tzou, 2000), the students refused to be-
gin an analysis if the phenomenon under investigation did not make sense to them.

Once the situation had been clarified to the students’ satisfaction, the teacher
asked them which aspects of the situation they thought should be considered when
selecting one of the two companies. During this exchange, the teacher recorded
the suggestions on a whiteboard:

Teacher: So, in making this decision, what kinds of things would you want
to know about the ambulance company? Ben?

Ben: How fast it can get there.
Teacher: Okay, I’m going to call that response time. Is that what you were

talking about?
Ben: (Nods).

Suzanne: How efficient they are.
Teacher: What do you mean by efficiency, Suzanne?

Suzanne: Like they actually know what they’re doing and they don’t do
something that doesn’t need to be done.

Teacher: So, how well trained their medical people are. Martha?
Martha: Locations to all the schools.
Teacher: Location.
Martha: Yeah, because you don’t want, you want something in the middle

of Nashville. Not off to the side. Like if something happens in
East Nashville and you’re in West Nashville. 

Teacher: That’s a very good point, and in fact what happens with most
ambulance companies is they have what are called dispatch
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locations where they would have ambulances positioned all over
the city.

The manner in which the students generated the resulting list of relevant issues is
again typical of the data creation discussions conducted at the end of the seventh-
grade experiment (Tzou, 2000). This contrasts sharply with the data creation dis-
cussions conducted at the beginning of the seventh-grade experiment in that the
students had frequently told personal narratives that related to the topic at hand
(e.g., accounts of incidents with which they were familiar in which an ambulance
had been called to assist a friend or relative).

As was typical in data creation discussions, the teacher next explained that the
people making the decision had narrowed the question down to one of the aspects
that the students had identified, in this case response time.

Teacher: What do you think we mean when we say response time. Brad?
Brad: How fast, how fast they get there.

Teacher: Exactly. Is everybody okay with that? So, how would they meas-
ure response time? If they got some information on it, what would
they do to find out which has got the better response? 

Kim: They’d do drills.
Teacher: What do you mean by drills?

Kim: They could call the ambulance there, not on purpose. Tell them
what they were doing and see how fast they get there. 

Teacher: When you say fast, what would they be timing?
Kim: The speed.

Teacher: Okay, the speed. Let’s hear from somebody else. Mark?
Mark: I was going to ask a question.

Teacher: Can you hold it for a second? Suzanne?
Suzanne: Well, like let’s say there’s ambulance two miles away from here,

but it takes them a half an hour to get here. But then the other
company has an ambulance that’s two miles away and it takes
them 5 minutes to get here.

Teacher: So you think the number of minutes is more important?
Suzanne: How long it takes compared to where they are. 
Teacher: So, from when you make the phone call to when they actually get

here. Is that what you were going to say, Martha?
Martha: From when they make the phone call.
Teacher: From the time they place the call to the time the ambulance ar-

rives is called response time.

The issue addressed in the remainder of the discussion, which continued for
several minutes, was that of how to generate data on the response times of the two
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companies. During this part of the discussion, the teacher used the computer pro-
jection system to show the students line plots of 205 response times for one com-
pany and 162 for the other (see Figure 9). Once she had done so, the students
raised a number of concerns about the sampling procedures that had been used.
These included the lengths of the emergency runs made by each company, the
traffic conditions, and the relevance of the data to the question at hand (i.e., the re-
lation between the location of the ambulance stations and the calls they responded
to on the one hand, and the locations of schools within the city on the other). It was
only when these issues had been resolved that the students moved to the comput-
ers to analyze the data.

We have discussed the process of talking through how the data might be gen-
erated for the ambulance response time activity at some length because it is rep-
resentative of the data creation discussions conducted during the remainder of the
eighth-grade experiment (Tzou, 2000). As the sample episodes indicate, there
were no signs of regression when compared with the ways in which the students
had participated in these discussions during the latter part of the seventh-grade de-
sign experiment. The concerns that the students raised about sampling procedures
and the control of extraneous variables indicate that most anticipated that the con-
clusions that could be drawn from the data depended on the soundness of the data
creation process. It is also worth mentioning that, from the students’ point of view,
it was crucial that both the purposes for analyzing the data and the audience for
their reports be clarified. In both the latter part of the seventh-grade experiment
and in the eighth-grade experiment, they considered that a norm had been violated
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when the teacher failed to address these issues, and in these instances they refused
to conduct an analysis (Tzou, 2000).

As the students worked in pairs at the computers to analyze the data, the
teacher and other members of the research team monitored their activity to make
decisions about the most effective way to structure the subsequent whole-class
discussion. Both these initial observations and a retrospective analysis indicate
there was also no regression in the students’ ways of organizing data. The major-
ity of the students reasoned multiplicatively about the datasets as they developed
their arguments. This observation is consistent with the issues that emerged as
topics of conversation in the whole-class discussion. For example, the second
pair of students who shared their analysis during this discussion explained that
they had partitioned the datasets using the Two Equal Groups option and rea-
soned with the data points hidden as shown in Figure 10. As they talked, the
teacher wrote “1⁄2” in each of the intervals to clarify their approach. The students
then explained that the lower 50% of the response time data on the upper graph
(Acme Ambulance Company) fell in the range of 6 to 10 min, whereas the lower
50% of the response time data on the lower graph (Lifeline Ambulance Company)
fell in the range of 6 to 12 min. This, in their judgment, justified recommending
that the school district choose Acme Ambulance Company. Crucially, this argu-
ment appeared to be constituted by the classroom community as legitimate and
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beyond question. Our conjecture that reasoning of this type had been established
as normative by the classroom community proved viable as we analyzed the re-
mainder of the data corpus in that we did not find any incidents in which either
such reasoning was constituted as illegitimate or reasoning that violated this
proposed norm was constituted as legitimate.

The next pair of students who presented their argument built on this analysis
by explaining that they had reasoned about the data in a similar manner, but had
partitioned the datasets using the Four Equal Groups option (see Figure 11). We
note in passing that their reference to the similarity between their own and the
previous analysis itself contributed to the constitution of the prior analysis as
legitimate. They then went on to explain that they had noticed that if the datasets
are partitioned at 13 min, only 50% of the Lifeline ambulances are below this
value compared to almost 75% of the Acme ambulances. This explanation was
again constituted as legitimate and our examination of subsequent episodes indi-
cated that reasoning in this way about data partitioned into Four Equal Groups
had been established as normative.

Taken together, these claims about normative ways of reasoning about univari-
ate data indicate that the conjectures we made about the starting points for the
eighth-grade experiment were viable. As a point of clarification, it is worth recall-
ing that these claims have as their focus the classroom microculture that consti-
tuted the social context of the students’ learning rather than individual students’
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reasoning. As a consequence, we are not claiming that all the students could com-
pare univariate datasets by creating graphs of data partitioned into two or four
equal groups or even that they could all interpret such graphs as texts that showed
how datasets were distributed without assistance. However, we did observe indi-
cations of progress when we focused on individual student’s reasoning. At the end
of the seventh-grade experiment, almost all the students kept the individual data
points visible when they used the minitool to conduct analyses. In contrast, early
in the eighth-grade experiment all but a few students began to hide individual data
points when conducting their analyses. This was the case when they used the
Equal Interval Widths option as well as for the Two Equal Groups and the Four
Equal Groups options.

As a final observation, we also note that the normative ways of describing
graphs both when the students worked at the computers and during whole-class
discussions involved talking about the proportion of data in various intervals
without reference to the shape of the data. In this respect, the classroom discourse
was consistent with the normative ways of reasoning about Equal Interval Width
and Four Equal Groups displays that had been established in the latter part of the
seventh-grade experiment. Although we did not realize it at the time, this exclu-
sion of a concern for the underlying shape of data distributions from classroom
discourse was to prove significant later in the design experiment.

Inscribing Bivariate Data

The focus of the next phase of the design experiment, which spanned six class-
room sessions, was on developing ways of inscribing bivariate data. The first in-
structional activity dealt with the relation between the speed a car was driven and
the amount of carbon dioxide (CO2) that it emitted. This activity was one of sev-
eral that were organized around the theme of global warming. During a lengthy
discussion of the data creation process, the teacher established with the students
that a car was driven for 1 mile at different constant speeds and that the amount 
of carbon dioxide emitted during each test run was measured by weight in
milligrams. The students were then given data that had been generated in this way
and were asked to draw a diagram or graph that would enable them to develop a
recommendation for the speed limit on interstate highways. Approximately half
the students drew double bar graphs as we had anticipated. In addition, a number
of these students treated one or both quantities as nominal rather than continuous
quantities (i.e., they ordered the measurements of speed and marked them at
equal intervals along an axis rather than structuring the axis as a metric space of
speed values). In contrast, two pairs of students drew orthogonal axes and plotted
the data points as dots. However, one pair put speed on the horizontal axis and
carbon dioxide on the vertical axis, whereas the other pair did the reverse. When
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questioned, the students in these pairs explained that each dot on their graph
showed “the speed and [amount of] carbon dioxide together.” This indicates that,
for these students, the data consisted of cases for each of which two measurements
had been made. The remaining pair of students also constructed orthogonal axes,
but then drew bars to indicate the carbon dioxide measurements (see Figure 12).
When questioned, these students indicated that they viewed their graph as a bar
graph and said that the points at the top of each bar did not show the speed meas-
urements. Thus, although the axes they drew seemed to indicate that they viewed
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speed as a continuous quantity, they in fact appeared to treat it nominally. A speed
measurement in effect served as the label for a test run during which the amount
of carbon dioxide signified by the bar was emitted.

The subsequent whole-class discussion initially focused on the two scatter
plots that two pairs of students had produced, but with the axes oriented differ-
ently. The teacher first asked about the meaning of the dots on these graphs:

Teacher: So, if I picked any dot what would that tell me? What informa-
tion would I get from the dot? I’m asking everybody that’s in
here. What information does that dot give me? What do I know?
You got any ideas Mark.

Mark: Do I have any ideas? Yeah. It represents, like lines that go this
way, all these numbers and stuff here, the lines that go vertically,
like the 53, speed, miles per hour. If it goes this way its’, it’s …

Teacher: Carbon dioxide.
Mark: Yeah how much carbon dioxide. If you put it together then you

get a dot. 
Teacher: Brad, did that make sense?

Brad: Yes. 
Teacher: So did Mark’s explanation make sense? People have questions

for him? Kyle?
Kyle: I agree with Mark. You’ve got to have the miles per hour and the

CO2. And when you connect the two together you get this. It’s
kind of like showing how the difference varies. I can’t find out
the information if I only have one, like miles per hour.

Teacher: Okay, so Kyle said I can’t find out the information if I only know
one of these things. Is that fair? I can’t find the information by
finding one of those things. If I find one of these dots, what could
I use this graph to find out about that dot? Wes?

Wes: You could find out, find out the carbon dioxide and the miles per
hour.

In the course of this brief exchange, the interpretation of a dot on a scatter plot as
signifying a case with two measures appeared to be established as normative. We
make this claim for several reasons. First, we could not identify a single incident
in the remainder of the data corpus in which a student violated this interpretation.
Second, when the teacher later focused the discussion on the graph in which a pair
of students had drawn bars to indicate the carbon dioxide measurements (see
Figure 12), one of the students who had produced the graph explained that it
showed the “same thing” as the scatter plots. He went on to clarify that the speeds
were shown by the distance of the bars from the vertical axis. Crucially, his expla-
nation was constituted as legitimate. Third, in a later session, the teacher
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introduced the third computer minitool and showed students the Dots option. The
students all seemed to indicate that they considered the subsequent discussion of
the meaning of individual dots to be pointless because they took it as self-evident
that each dot signified a case with two measures. 

The final indicators concern the ease with which the teacher was able to initiate
shifts in the discourse such that the relationship between sets of measures became
the topic of conversation. In the case at hand, for example, the following exchange
occurred as the teacher and students discussed the scatter plot in which the amount
of carbon dioxide emissions was marked on the horizontal axis and speed on the
vertical axis. The students who produced this graph had drawn line segments
between adjacent dots: 

Val: If these are the speeds like these are the vertical lines, you can
see how fast they go. One of the lowest speeds has the highest
emission of carbon dioxide. And the fastest speed has a relatively
low emission. 

Mark: I understand.
Teacher: You do or don’t?

Mark: I do.
Teacher: Something to add to that Ben? 

Ben: I was gonna say that what the graph shows is that since the order
that the lines are in, the order of lowest to highest speeds, it
shows you the rise and fall of how much carbon dioxide is let off
as you go from a low speed to a high speed. 

Teacher: Who understands what Ben just said? Who has a question for
Ben if you didn’t understand what he said? 

Mark: Can you say it slower?
Teacher: Maybe it would help if you came up here and point to the graph. 

Ben: (Comes to the front of the classroom). Okay, because the dots
are, the order of how they connected the dots are in order from
the lowest to the highest speed like they did and not this dot is
over there and they’re all over the place. It shows you from low-
est to high speed the rise and fall of how much carbon dioxide
was emitted. So as the speed goes up, it’s mostly at the beginning
the carbon dioxide goes down.

Ben’s explanation was taken as a basis for the remainder of the discussion, which
focused on setting an interstate speed limit that minimized carbon dioxide
emissions.

Taken together, these indicators that the interpretation of a dot in a scatter plot
as signifying a case with two measures was normative imply that the conjectures
we developed when formulating a hypothetical learning trajectory appeared to be
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viable for this initial phase of the experiment. As will become clear, we had far
more opportunities to learn in the remaining phases of the experiment. We can
also note in passing that a significant aspect of the teacher’s role was to initiate
shifts in classroom discourse. In the sample episodes, for example, she first
framed the topic of conversation as that of the meaning of individual dots before
initiating shifts so that it became the relation between the speed and the carbon
dioxide measures and then setting the interstate speed limit. Although the students
could also initiate such shifts, the teacher was typically able to sanction them if
they would not, in her view, be productive with regard to her evolving instruc-
tional agenda. The teacher was therefore constituted as a social authority in the
classroom (P. Cobb, 1995) in that she was able to control the nature of the discus-
sions in which the students participated.9 One of her primary obligations was to
guide the emergence of mathematically significant issues as topics of conversation
by building on the students’ contributions. Beyond this, she also attempted to en-
sure that these issues emerged in such a manner that they built on each other. For
example, it was evident that as the students worked in pairs, the task for most of
them became to draw a graph rather than to develop a way of inscribing the data
that was relevant to the question of setting the interstate speed limit. However, the
teacher did not attempt to focus the discussion on this issue until she judged that
both the interpretation of dots as signifying cases with two measures and the in-
terpretation of a scatter plot in terms of a relationship between the two sets of
measures had become normative. The individual interpretations that the students
developed as they participated in the discussion of these latter two issues then
served as intellectual resources when the teacher finally initiated a shift to the is-
sue of the interstate speed limit. As a consequence, the discussion could focus on
interpolating between data values to identify the speed at which the minimum
amount of carbon dioxide would be produced. In the process, the students were
afforded the opportunity to reconceptualize the purpose for which they had
produced the graphs.

Reducing Scatter Plots to Lines

The third phase of the design experiment, which involved 12 lessons, began with
the introduction of the third computer minitool. The teacher first showed the stu-
dents the four options for structuring data in the minitool (i.e., the Cross, the Grids,
Two Equal Groups, and Four Equal Groups). The data used in this introduction
were those of carbon dioxide level (particles per million or ppm) and time (years)
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for a 22-year period as shown in Figures 5 through 8. Our intent in allowing the stu-
dents to select from the four options when they conducted analyses was to enable
them to organize data in ways that they viewed as reasonable. The initial discus-
sions of the various options progressed smoothly. For example, the teacher estab-
lished with the students that, in the Four Equal Groups display, 25% of the data for
the indicated years were in each of the four regions within a slice. In addition, most
of the students used the Grids, the Two Equal Groups, or the Four Equal Groups op-
tions, which partition data into vertical slices, when they analyzed datasets at the
computers. In addition, almost all the students indicated that they found the task of
describing a global relationship between the two quantities relatively routine. For
example, the students quickly agreed that the data in Figures 5 through 8 showed
that the CO2 level had increased continuously between 1957 and 1979. Most also
indicated that the data display showed “the same thing” when the minimum value
of the vertical axis was changed from 300 ppm to 0 ppm despite the dramatic
transformation in the visual appearance of the data.

Although these observations were encouraging, it also appeared that the dots
within a slice signified nothing more than a configuration of data points. In the
case of the data in Figures 5 through 8, for example, a vertical slice did not ap-
pear to show the distribution of carbon dioxide measures for a particular time
period for any of the students when they used either the Grids or the Four Equal
Groups option. Instead, most of the students appeared to read the scatter plot by
identifying a global relationship among the measures by “eyeballing” the data
and then using either the Grids, the Two Equal Groups, or the Four Equal
Groups option to trace a line that fixed this relationship precisely. For example,
in a subsequent instructional activity, the students again analyzed data on CO2

(particles per million) and time (years), but this time for a 40-year period (see
Figure 13). In the whole-class discussion of the students’ analyses, the students
all seemed to assume without question that the purpose was to discern the over-
all trend in the data. The issue at hand was that of determining the relationship
between CO2 level and time. The students made a range of proposals that all in-
volved using either Grids, Two Equal Groups, or Four Equal Groups displays to
trace lines through the configuration of dots on the scatter plot. The discussion
continued for some time because the different methods the students described
gave rise to several points of controversy (e.g., whether the carbon dioxide level
increased more quickly after 1979 and whether it was relatively constant from
1990 to 1999). 

The first student to explain his reasoning demonstrated how he had focused on
the lower cells of the 10 × 10 Grids display (see Figure 14):

Brad: OK, on the 3-by-3 [Grid] we couldn’t really tell anything so we
put it on the 10-by-10 [Grid] and you could tell about right here
(points to the graph at about 1970) the data took a very steep turn
and started going up.
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Teacher: So, based on your observations, what’s your prediction? 
Brad: That it’ll keep going up. 

Teacher: So what’s the “it” in that case, Brad? 
Brad: The data.

Teacher: The data? But I thought this was about global warming. You’re
telling me about…suppose I am a delegate to that conference
and you’re one of the experts they have brought in to help us
decide what we should do about global warming. 

Brad: The CO2 level.
Teacher: OK, the CO2 level.

This exchange was representative of the entire discussion in that the task for most
of the students had become to discern a pattern in a configuration of dots rather
than to understand the situation from which the data were generated. This was in
contrast to the discussions conducted in both prior and subsequent phases of the
design experiment. 

As the exchange continued, Brad clarified that he was focusing on the lowest
cells in each slice of the Grids display (see Figure 14):
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Janice: I don’t really see that the, steep, whatever it is he’s talking about.
Brad: OK, right here (runs a finger along the lowest cells of the first

three slices), you are going kind of straight looking. And then
right here (points to data around 1970 mark), it goes up. 

In addition, he explained that he discerned this pattern in the entire configuration
of dots: 

Teacher: Brad, what would help me: are you talking about in the bottom
part of the graph, you talked of the graph, which part of the data
are you talking about? Are you talking about all of it or are you
talking about…

Brad: This right here (circles the dots in the lower left corner of the
graph with both hands).

Several students responded by arguing that several dots did not fit the pattern that
Brad claimed to have identified. Mike, Brad’s partner, replied by first drawing a
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line that connected the highest values in each slice of a Two Equal Groups display
and a second line that connected the lowest values of each slice. He then sketched
a third line approximately midway between the first two, arguing that it slanted up
more steeply at about 1979. Mike’s attempt to support Brad’s argument is of inter-
est because it indicates what he and most of the other students meant by a trend or
pattern. He used the Two Equal Groups option to determine the upper and lower
boundaries of the configuration of dots and then drew a third line to specify the
trend in the entire configuration. It is in this sense that we speak of the students
reducing a scatter plot to a line. This is presumably what Brad meant when he ges-
tured with both hands while explaining that he had identified a pattern in the entire
configuration of dots. It is important to note that the students did not challenge this
general method of attempting to determine the boundaries of the configuration. In-
stead, they challenged the specific proposals for specifying the boundary. However,
because the focus of the discussion was empirical and on whether some of the dots
violated a claimed pattern, the students were unable to resolve the differences in
their viewpoints. This was in contrast to other phases of the design experiment in
which the students were obliged to explain why the way in which they had struc-
tured the data was relevant to the question or issue being addressed.

We stress that the conclusions we drew from the exchanges involving Brad and
Mike apply both to the remainder of this discussion and to other discussions in
this phase of the design experiment. It is also worth noting that the students could,
without exception, describe the trends they identified in terms of a relationship
among quantities (e.g., CO2 level and time) when they were pressed to do so by
the teacher. When we discussed our observations during research team meetings,
we distinguished reasoning that involves reducing a scatter plot to a line from an
alternative type of reasoning in which a line is traced to indicate a conjectured re-
lationship of covariation about which the data are distributed. Our inference that
scatter plots had not been constituted in the classroom as bivariate distributions
implies that most of the students were, in a very real sense, not doing statistics.
The generally accepted ways of dealing with bivariate data that seemed to be
emerging involved substituting certainty for variation rather than developing
ways to manage uncertainty. Clearly, these developments were highly problem-
atic given the overall goals that we had established for the design experiment at
the outset.

On the basis of this analysis, we decided to modify the planned instructional
sequence in two ways. First, we decided to develop instructional activities in
which the students would analyze what we referred to as stacked data. These were
datasets in which the measures of one quantity were ordered but discontinuous so
that the data appeared on a scatter plot as a series of vertical stacks. The example
shown in Figure 15 reports the results of an experiment that investigated the effect
of alcohol consumption on reaction time. We conjectured that, with the teacher’s
guidance, datasets of this type might come to be viewed as a series of univariate
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distributions. As some of the dots overlapped, students would have to read how the
data were distributed by using Grids or Four Equal Groups displays. However, this
appeared to be feasible given the advances made during the first phase of the de-
sign experiment when the students used the Equal Interval Widths and the Four
Equal Groups options of the second minitool. If the interpretation of data stacks
as univariate distributions became normative, we planned to build on it during
subsequent discussions that would focus on the distribution of data within slices
of scattered data (i.e., a scatter plot).

The second design decision we made was precipitated by the apparent arbi-
trariness of the lines the students traced through datasets. This indicated that it
might be important to engage the students in discussions in which characteristics
of univariate data that are relatively stable across samples became an explicit topic
of conversation. We reasoned that if the view that the median of a dataset is rela-
tively stable when compared with the extreme values became normative, the stu-
dents might consider it natural to trace a line roughly through the medians of uni-
variate stacks (or slices) to indicate a relationship of covariation about which the
entire bivariate dataset is distributed. To this end, we planned to use stacked data
as the basis for discussions in which the teacher would ask the students about the
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stability of the median and extreme values if an experiment were repeated and
another sample were generated. We chose to focus on the median rather than the
mean because the students were relatively familiar with it as a consequence of
using the Two Equal Groups and the Four Equal Groups options of the second
minitool during the seventh-grade experiment.

Negotiating the Median

As will become apparent, we were repeatedly surprised by the students’ reasoning
during the nine classroom sessions in which we investigated the two revisions we
made to the initial learning trajectory. The teacher typically responded to students’
unanticipated contributions by asking follow-up questions in an attempt to under-
stand their thinking. As a consequence, the sessions often had the feel of ex-
ploratory interviews that were being conducted with an entire class rather than
with a single student. There were frequent indications that the students responded
on the basis of their mathematical interpretations of the teacher’s probes even
when sequences of questions could clearly have cued them to an alternative re-
sponse. It appeared that most of the students had come to view themselves as ac-
tive collaborators in the design experiment and saw it as their role to help us learn
about their thinking and thus improve the instructional activities and the third
computer minitool. This impression was confirmed by a number of the students
during conversations that a member of the research team conducted with them
outside the classroom sessions as part of a separate study. Although we did not
consciously attempt to guide the development of a classroom participation struc-
ture of this type, we realize with hindsight that the teacher’s obvious interest in and
responsiveness to the students’ contributions contributed to its emergence. The
sessions conducted during this phase of the experiment are therefore a particularly
rich source of insights into the students’ statistical reasoning.

In the first of these sessions, each student generated 10 measures of his or her
reaction time using the procedure of grasping a meter ruler that was dropped
through an open hand.10 The teacher began the subsequent whole-class discus-
sion by showing plots of 10 of the students’ reaction time measured in centime-
ters with the medians marked (see Figure 16). She then questioned them about
their expectations if another eighth grader’s reaction time was measured using the
same method. Although some students specified ranges of varying magnitudes,
others argued that it depended on the student and that there was not enough
information:
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Teacher: If these [the reaction times of ten students in the class] are typi-
cal of eighth graders, what do you think the median of any other
eighth grader that did this might be? What might you say about
the median?

Brad: Twenty.
Teacher: The median would be about twenty. Suzanne?

Suzanne: I’ll say about fifteen and twenty. 
Teacher: So Suzanne is saying that in a range of between fifteen and

twenty the median would lie. Val?
Val: I don’t think you can really tell.

Teacher: You don’t think, why not?
Val: Because it’s like you don’t really have like enough information, I

mean, you have information about us but you don’t have infor-
mation about the rest of the students. I mean you just say any
eighth grader it could be anything, it could be just up at twenty,
it could be at thirty, it could be at ten, it could be anywhere…

In the course of a long exchange with the teacher, the next student to explain her
reasoning supported Val’s argument:

Sinae: OK, so, OK, if you look at every one of the people, if you look at
all of us individually we all vary in so many places, it’s like some
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of us can’t even catch the stick (inaudible) fifty, you know stuff
like that, while some of us you know can catch it within one cen-
timeter, stuff like that, so I mean it is impossible to say how that
person is going to do because they can be like the first person or
they could be like second person, or they could be like the third
person, fourth, fifth, sixth… 

Teacher: Yeah, but if I look at your medians, Sinae, to me they don’t seem
to be all over the place.

Sinae: I know but…
Teacher: (Interrupts) So I am asking you to talk about the next person’s

median, not all of their scores. 
Sinae: OK, but that person is going to vary, that person, I mean, we are

not alike.

The arguments that Val and Sinae proposed appeared to involve what Konold
(1989) called an outcome approach in that the task for them was to predict the
actual reaction time measure for an unknown eighth grader rather than to make a
probabilistic inference. 

In contrast to these responses, questions about the reaction times of another
group of 10 eighth graders led to little discussion:

Teacher: If ten more eighth graders did this, ten more eighth graders, what
would you think about the range of their medians, if ten more did
it. Janice?

Janice: I think that basically they will be the same as that [the reaction
time data for the students in the class] because like we are all dif-
ferent, like those students up there are all different and they all
had different results but I think it’ll be the same cause, if you ran-
domly pick ten, some will be slow, some will be extremely fast
like, you know, like some of us.

Teacher: Right.
Kim: I would like to say.

Teacher: All right, Kim. 
Kim: Eleven to 21 will be somewhere in there or maybe a little higher

than that or a little lower than that, but that is where most of us
are, so… 

Teacher: So you think that the next ten might be in that same, in that same
range.

The important aspect of Janice’s argument was her assumption that some of the
new group of students would be fast and some would be slow, as was the case
with the students in the class. We viewed this argument, which was treated as
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legitimate, as encouraging in that it indicated a possible concern for the way in
which the data were distributed.

The datasets the students analyzed in subsequent sessions were organized
around the theme of driving safety and accident rates. The first stacked dataset that
the teacher introduced involved reaction time data stacked at 10-year age intervals
(see Figure 17). During the discussion of the data creation process, the teacher
clarified that the 10 data points for each age level had been generated by follow-
ing the same procedure that the students had used to measure their reaction times
(i.e., each data point was the median of 10 measurements for one individual). As
was the case during the discussion of previous instructional activities, a general
description of an overall trend in the data quickly became accepted. Further, the
observation that reaction time becomes more consistent with age was legitimized
relatively quickly (i.e., if the outlier in the 50-year-old stack is ignored, the spread
of the stacks tends to decrease with age):

Suzanne: I just wanted to add on to Shane’s (comment) that from 20 to
whatever that, 90, as they get older, not only does the range
ascend, but the range gets smaller.
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Teacher: So there are two things that I keep hearing you refer to. You’re
saying that as we look at older groups of people, that the range
got higher. (inaudible) And also the range got tighter. Is that
correct? Is that what I’m hearing you say? Val.

Val: Didn’t you just like cancel yourself out by saying that the range
got higher and the range got smaller? I don’t understand.

Teacher: Brad help me out.
Brad: Okay. What they mean is the range of the amount of centimeters

that it took to catch it went higher, but the range of the dots from
the lowest amount to the highest amount. OK, look.

Val: Isn’t that the same?
Brad: No. From here to here it went up (points across ages), but from

this dot and this dot of the ages it got smaller (points to extremes
within the age). 

Val: The first range got higher than what? I don’t…You just said from
here on the 20-year-olds and here on the 90-year-olds it got
higher. Higher than what?

Brad: Work with me, okay? The amount of centimeters that it took for
them to catch it went higher as the age went up, basically. 

Teacher: OK. As people got older, it took more centimeters before they
could catch it. 

Val: OK, I understand it, never mind.

One student did raise the issue of whether the outlier should be excluded. How-
ever, her concern appeared to be that a line traced through the highest values of the
stacks would be inconsistent with the overall trend that had been described if it
were included. In response, another student recommended focusing on the medi-
ans of the stacks because this made it easier to see the “steps”: 

Kim: If you use the median it’s much easier to see if they’re going up,
down, up, instead of going uh, uh, uh, 

Teacher: If we use the median?
Kim: Instead of using the top parts. And you just skip that top part in

that 50 one or whatever. 
Teacher: So Kim thinks we should use the median.

In making this proposal, Kim suggested a method for reducing the scatter plot to
a line that ignored the variability in the data. Contrary to our rationale for intro-
ducing stacked data, there was no indication in the course of this discussion that
any of the students interpreted the stacks as univariate distributions. Instead, the
stacks appeared to be constituted in public discourse as collections of data points
that occupied intervals bounded by their highest and lowest values.
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We were surprised by these observations, given our assumption that the con-
stitution of the stacks as univariate distributions would involve little if any mod-
ification of the normative ways of reasoning that had been established when the
students used the second minitool. In an attempt to better understand their rea-
soning, we decided to probe their views about the behavior of the median if new
data were generated. To this end, the teacher began a discussion of the same
age–reaction time datasets in the next classroom session by first reminding the
students that 10 individuals’ reaction times had been measured at each age level.
She then focused on the data stack for 70-year-olds and asked the students how
the median might change if they were to measure the reaction times of 10 addi-
tional 70-year-olds. During the exchange, most of the students indicated that they
expected the medians of the two samples to be close, but not exactly the same.
However, some of these same students argued that the median would be either
lower or higher for a new sample of fifty 70-year-olds. Further, all but one of the
students who thought the medians would be about the same gave empirical argu-
ments (e.g., because the data for the 70-year-olds are “close together,” the median
is “predictable but not exactly”). The student who gave a nonempirical explana-
tion argued as follows:

Ben: I think it be about the same.
Teacher: Why?

Ben: Because if it’s the same for the next 10 people why shouldn’t it
be the same for the next 10 and the next 10 and the next 10 and
the next 10?

The teacher subsequently revoiced Ben’s argument in some detail, but the other
students were not convinced. It appeared that many of them did not view his
argument as being relevant to the question of predicting the median of fifty
70-year-olds. Instead, it seemed that these students viewed a data stack as an
amorphous collection of data points located within a particular interval rather
than as a distribution. 

The teacher continued to explore the behavior of the median with the students
in the next classroom session when she introduced data generated during an ex-
periment that investigated the effects of alcohol consumption on reaction time
with 20 data values at each alcohol level (see Figure 15). During the initial dis-
cussion of these data, it became apparent that almost all the students focused on
the highest values of each stack when they described a trend. Once again, there
was no indication that any of the students interpreted the stacks as univariate dis-
tributions. The teacher next clarified that the legal driving limit in their state was
approximately 2 oz of alcohol, which corresponded to two alcoholic drinks of ei-
ther beer or wine. She then showed the students the reaction time data for only
the 0-oz and 2-oz levels and asked them whether the two-drink limit was justified
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(see Figure 18). Our rationale for posing this task was that this comparison of two
data stacks corresponded reasonably closely to the types of instructional activi-
ties the students had completed when they used the second minitool. We there-
fore conjectured that some of the students might view the two stacks as data
distributions. However, it became clear almost immediately that most of the stu-
dents viewed the stacks as collections of data points that occupied an interval
rather than as distributions. 

In response, the teacher initiated a shift in the discussion by marking the medians
of the two stacks. She then asked the students how many reaction time measures
they would expect to be above and below the marked medians if the experiment
were repeated with 20 people at each alcohol level. The teacher and students quickly
established in the ensuing exchange that about half the data points would be above
and half below the medians, and the new medians would be close to, but not exactly
the same as, the marked medians. We viewed this as an advance when compared to
a previous exchange, in which a number of the students indicated that they expected
the median to change significantly if the size of the sample were increased. The
teacher’s questions appeared to have oriented the students to consider where the data
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points might be located in relation to the median. This contrasted with the previous
exchange, in which most of the students seemed to view the median merely as a
point somewhere in the interval occupied by a data stack.

In the next classroom session, the teacher continued to focus the discussion on
the relation between data and the median by asking the students to imagine that 20
people’s reaction times had been measured after they had consumed 1 oz of alco-
hol. She then asked the students to suggest reasonable data values if the median
was 25 cm. Several students commented that they found this task challenging be-
cause they did not know the range. These responses seemed to indicate that the
median was for them simply a value somewhere in the interval occupied by a
dataset. A second group of students responded by specifying ranges, presumably
by drawing on their familiarity with reaction time data (i.e., they expected the me-
dian to be approximately in the middle of the range). In contrast, a third group of
students appeared to reason in terms of the relation between data and the median
when they argued that half the data would be greater than 25 cm and half would
be less.

The teacher next plotted a stack of data values with a median of 25 cm and the
students indicated that they viewed this dataset as plausible. The teacher then posed
a series of questions that explored how the data points would have to be changed to
change either the range or the median by specified amounts. In the course of this
discussion, the teacher and the students established that the range was sensitive to
changes in a small number of data points and that plausible datasets with the same
median could have substantially different ranges. They also established that, in
contrast, a relatively large number of data points had to be changed to change the
median significantly.

Against this background, the teacher then asked the students whether it was
more informative to know the range of a dataset or its median. All but one stu-
dent indicated that knowing the range was more informative because the median
was “just one number.” We were initially surprised by these responses because
we had assumed that the students had reflected on the relation between data and
the median as they had participated in the immediately prior exchange. Our in-
tent was that the view of the median as characteristic of a dataset that depended
on how the data were distributed might become normative. However, it appeared
that, for the majority of the students, the discussion had involved an empirical
demonstration of the process of manipulating data points to change the range or
median.

The lone dissenter who said that the median was more informative argued that
“the median tells you where the majority [of the data] is.” However, the other stu-
dents rejected her argument even though the teacher repeated it by clarifying that
the reaction time data were tightly clustered in a portion of the range that centered
on the median. This argument was nonetheless significant from our point of view
in that it suggested how we might be able to further revise the conjectured learning

46 COBB, MCCLAIN, GRAVEMEIJER



trajectory. As we noted when we discussed the starting points for the design exper-
iment, the students had used the term majority frequently when they had discussed
analyses that they had conducted using the second minitool. This term was typi-
cally used to indicate a relatively large proportion of a dataset that was located in a
particular interval. We also noted that the origin of this term could be traced to the
notion of a hill, which referred to the shape of a univariate distribution and indi-
cated an interval where the majority of the data were clustered. The contrast
between the dissenting student’s reference to the majority and the explanations of
the other students alerted us to the possibility that the discussions in recent class-
room sessions might have been completely disconnected from the normative mean-
ings established when the students used the second minitool to analyze univariate
data. This possibility would, of course, account for the observations that we had
found surprising in these sessions.

In hindsight, it is apparent that we had assumed that the median is a relatively
unproblematic notion and had failed to realize that there could be two distinct
meanings for the term that are grounded in differing types of activity. The first of
these meanings derives from the activity of “finding the median” by manipulating
individual data points (e.g., dividing a dataset in half, finding the “middle number,”
etc.). On reflection, it is apparent that most of the students had reasoned about
medians from this perspective in recent classroom sessions. The second type of
meaning derives from the activity of viewing univariate datasets as having shape
according to how the data are distributed. In this case, the median can indicate a
feature of the shape of a data distribution (e.g., a hill where the majority of the data
are clustered in the case of reaction time data) as well as a partition of the dataset
in half or into two equal groups.

We drew on this distinction to revise the conjectured learning trajectory for
the remainder of the design experiment. The first step involved investigating
whether the interpretation of data stacks as having shape might become norma-
tive. We conjectured that data stacks would then be constituted as distributions
rather than collections of data points. This might then make it possible for a dis-
play of data stacks to be constituted as a bivariate distribution (i.e., a distribu-
tion of univariate distributions). If the revised learning trajectory proved viable
to this point, we next planned to investigate the transition from stacked data to
scatter plots. We anticipated that a key step in this transition would involve
interpreting the slices of Grids and Four Equal Groups displays as univariate
distributions.

Reading Stacks and Slices as Distributions

Our investigation of the revised learning trajectory spanned the final six ses-
sions of the design experiment. As an initial assessment of the feasibility of the
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trajectory, a member of the research team questioned several of the students as
they worked at computers individually or in pairs to analyze stacks of 50 reac-
tion time measures for the 0-oz, 1-oz, and 2-oz alcohol levels. It quickly became
apparent that these students could readily interpret these data stacks in terms of
shape when either the Grids option or the Four Equal Groups option was used
(see Figure 19). This was indicated by the ease with which they traced a hill-like
shape with a finger on the computer screen. In the case of Four Equal Groups,
for example, the students said that the relatively small range of the middle 50%
of the data (i.e., the second and third quartiles) indicated a hill. They also said
that they expected the shapes of the data stacks to be similar if the data creation
process were repeated.

The teacher attempted to capitalize on these observations during the subsequent
discussion of the students’ analyses. The first student to explain his and his part-
ner’s reasoning said that they had used the 10 × 10 Grid option (see Figure 19a)
and asked the teacher to hide the data (see Figure 20). He then explained that it was
not possible to compare the stacks by looking only at the cells with the highest
counts because a lot of the data were in other cells as well: 

Mike: You see if you look carefully at it (points to the data stack for 0 oz
of alcohol in the Grids display) [see Figure 20], um, there’s not
really much of the consistency. Because there is also a large
amount of data points here (points to a cell with 16 data points).
So, you can’t just decide on the set [of 17 data points] in here be-
cause there are 17 data points in this square and there are also 16
in this square. 

Teacher: OK, I’m gonna say what I think you said, and then you tell me if
I’m right. So you’re saying that you would need to look at maybe
this interval (points to the cell containing 17 data points) because
it has 17 data points in it and this one (points to one of the cells
containing 16 data points) because you are looking at where the
majority of the data is clustered here and that would be important
because you have all the way across (points to the other two data
stacks), right?

In restating this explanation, the teacher attributed to Mike and his partner the in-
tention of using the Grids to find where the majority of the data were located in
each stack. She then asked the students if they remembered using the second mini-
tool. All indicated that they did and one student sketched a horizontal axis with a
curved line above it to signify the shape of a univariate dataset. Pointing to his
drawing, the teacher reminded the students that they had previously referred to
this shape as a hill and asked if they could tell from the drawing where the data
were bunched up. All indicated that they could and most appeared to view the
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FIGURE 19 (a) Alcohol and reaction time data for 0-oz, 1-oz, and 2-oz levels organized
using the Grids option. (b) Alcohol and reaction time data for 0-oz, 1-oz, and 2-oz levels
organized using the Four Equal Groups option.



response to the teacher’s questions as self-evident. The teacher then returned to the
10 × 10 Grid display with the data hidden and the discussion proceeded smoothly
as she and the students sketched the shape of each data stack. Mark, for example,
made the following comments as the teacher sketched the shape of the data stack
for 2 oz of alcohol:

Teacher: So if I did the same thing here (points to the data stack for 2 oz
of alcohol), I’m just gonna use this for my baseline (runs a finger
along the data stack)…that one kind of goes like that…and this
one kind of does like that (sketches the shape).

Mark: It’s a sideways hill, man.
Teacher: It is a sideways hill. Now, let me ask you, what if we looked at it,

anybody have a question about this, does this make sense? 
Mark: I can see why you have two little bunches, but you know, it’s like,

irrelevant. 
Teacher: Yeah, because I’m trying to show you where the data’s bunched

up.
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Mark: Trying to show where the like 10 and the 9 and the 13…
Teacher: Right, exactly Mark. 

The teacher next showed the students the Four Equal Groups display (see
Figure 19b) projected onto the shapes she had sketched and asked the students
what this told them. The students’ initial comments focused on either the median or
the percentage of data in various parts of the display. This type of discourse is rem-
iniscent of that which had occurred when the students used the Four Equal Groups
option of the second minitool during the first phase of the design experiment. As
we noted, normative ways of talking about Four Equal Groups displays involved
describing the proportion of univariate datasets in various intervals rather than their
shape. However, a shift occurred in the discourse when the teacher pointed to the
1-oz stack and asked how much of the data was in the middle two sections (i.e., the
second and third quartiles): 

Teacher: How much of the data is in this one and this one together (points
to the second and third quartiles of the 1-oz data stack)?

Students: 50 [percent].
Teacher: Well how come this one (points to the first quartile of the 1-oz

data stack) is so much wider than these two put together? 
Kim: Because they’re spaced out.

Teacher: Brad.
Brad: Because right there in that little middle spot there is a whole lot

of data points. That’s where the hill is because that’s, they’re
more clumped together in the middle than up top and down bot-
tom there is not as many.

Teacher: Which is what you said, Kim. They are more spread out. So,
that’s why my hill is happening right there because that’s where
they’re bunched up. Same thing here, right?

The teacher next asked the students if they could predict what the data might look
like if the reaction times of 50 people who had consumed 1/2 oz of alcohol were
measured. As she and the students interpolated from the 0-oz and 1-oz stacks, it
became established almost immediately that the Four Equal Groups display
showed the shape of the data stacks. Further, the students indicated without dis-
sention that the shapes of the data stacks would be similar if the experiment were
repeated with samples of 50 people at each alcohol level, and with samples of 100
people.

We interpreted these observations as indicating that the revised learning trajec-
tory might be viable. It might also seem reasonable to conclude that the interpreta-
tion of the Grids and the Four Equal Groups displays of stacked data in terms of the
shape of univariate data distributions had been established as normative. However,

LEARNING ABOUT STATISTICAL COVARIATION 51



an exchange that occurred at the end of this class discussion calls this latter con-
jecture into question. Immediately after the students had agreed that the shape of a
data stack was predictable (i.e., it would be similar if the data creation process were
repeated), the teacher asked them whether the median or the high and the low
values of a data stack were more predictable. As in previous class sessions, several
students argued in favor of the high and the low values. One reasoned, for example,
that the median “can be anywhere in there.” This suggests that the teacher’s ques-
tion had oriented these students to view a data stack as a collection of data points
occupying an interval rather than a data distribution that had shape. Several other
students who contributed to this exchange indicated that they thought the median
was more predictable, perhaps because they saw it as indicating the location of a
relatively stable hill. 

In light of this exchange, we modified our conjecture about reading the Grids
and the Four Equal Groups displays in terms of shape by adding the qualification
that this interpretation appeared to be normative only when reasoning about data
stacks, but not when reasoning about individual points within a stack. We stress
that it was not the diversity in individual students’ views of the predictability of
the median and extreme values that led us to make this qualification. Instead, it
was that none of the students’ interpretations were established as more legitimate
than those of other students.

One of the students who argued that the median was more predicable than the
extreme values developed a relatively sophisticated explanation. His argument
gives insight into the demands of viewing the median as a characteristic of an en-
tire dataset rather than as a point in the range when the interpretation is not
grounded in an image of the shape of the data distribution. He argued that if the
experiment were repeated and one person who was not alcohol-tolerant took
60 cm to catch the meter stick, the range would move a lot, but the median would
move only a little. The teacher asked the other students for their views on this ar-
gument, but elicited little reaction. Crucially, in articulating his argument, this stu-
dent had reasoned about the relation between changes in individual data values
and changes in the median. He had proposed several other arguments in prior
classroom discussions that reflected this relatively sophisticated view of the rela-
tion between data and the median. From conversations conducted outside the
classroom sessions as part of a separate study, we found that most of the other stu-
dents viewed his contributions as irrelevant and as disrupting the flow of discus-
sions. Presumably, in situations where we failed to support a focus on the shape of
a distribution, for these students the median was a value within the range that was
identified by carrying out a calculational process that they had previously been
taught. However, for the student whose contributions were viewed as irrelevant,
the median was not a value in the range on a par with individual data values. In-
stead, it seemed that he viewed this calculational process as not merely one of find-
ing a numerical value, but also as one of structuring a dataset by partitioning it. 
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As a consequence, he could treat the median as a structural characteristic of a
dataset that could be reasoned about in relation to the entire dataset.11 The repeated
miscommunications between this student and the other students highlight the epis-
temological gulf between their ways of participating in classroom activities when
their reasoning was not anchored in images of the shape of data distributions.

The next analysis that the students conducted involved a comparison of two
sets of stacked data of salary against years of education, one for men and the
other for women (see Figure 21). There were 20 data points in each of the six
stacks in each dataset. We developed this comparison activity with the expecta-
tion that general descriptions of global trends (e.g., salary increases with years of
education) might be seen as inadequate, given the issue of investigating possible
inequities. When the students worked at the computers, none interpreted the
stacks in terms of shape on their own initiative. However, most could do so read-
ily when a member of the research team asked them to trace the shape of a stack
organized into Four Equal Groups. Furthermore, this brief intervention was suf-
ficient to reorient several students’ analyses. For example, one student explained
that there was a lot to think about because the data involved men versus women
and salary versus years. He and his partner then organized both datasets using the
Four Equal Groups option (see Figure 22) and began to find the extreme values
of data stacks “to get the overall range.” At this point, the students appeared to
view a stack as a collection of data points that occupied a particular interval.
When the researcher asked the student who had spoken previously if he could
trace the shape of a stack, he did so immediately and explained that the hill was
where the majority was located. He then pointed to the high values in a stack and
added that there were only a few “up there,” implying that the data were spread
out in that part of the range. The crucial feature of this exchange from our point
of view was that what had initially appeared to the student as an almost over-
whelming mass of data points seemed to have structure once he traced the shape
of one stack.

During the whole-class discussion of the students’ analyses, reading the shape
of data stacks from displays of the Two Equal Groups, the Four Equal Groups, and
the Grids again became established as normative. In addition to speaking of hills
and the majority, one pair of students referred to the “humps” where most of the
data were and another spoke of the “cluster.” A third student who had used the Four
Equal Groups option referred to the data being “squished up” (see Figure 22):
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FIGURE 21 Years of education and salary data for (a) men and (b) women.
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FIGURE 22 Years of education and salary data for (a) men and (b) women organized using
the Four Equal Groups option.



Suzanne: (Speaks to the student who is operating the computer projec-
tion system) Six-by-four equal groups please. OK, what I did is
I looked at the median in each one, and what is this, is this the
men’s, yes, like the median of this one (points to the data stack
for men with 8 years of education) is like $20,000 and the me-
dian of the women’s is like $13,000 (points to the data stack for
women with 8 years of education), so it’s about 6 or 7 thousand
dollars difference. And like the hump or hill whatever is in like
the middle 50 percent. And for the men’s the median is 20,000
so the lower 10 data points are like below that and higher 10
data points are above that and you can tell that like the lower 10
are like all squished up together but the higher 10 are more
spaced out. And the same thing with the women’s only the
lower 10 is more squished up than the men’s. And like the ex-
tremes are even like lower there than it is there (points to the
data stacks for 8 years of education on the two graphs) and
lower there than it is there (points to the data stacks for 10 years
of education on the two graphs). So the men’s, the men make
more any way. 

Teacher: Questions for Suzanne about her way? Val…
Val: So you basically used the median. You basically did the same

thing they [a previous group] did by like comparing the medians
and the grouping and stuff?

Suzanne: Yeah.
Teacher: Val, do you know why they chose the medians? 

Val: ‘Cause they wanted to do the humps, I guess. It’s just easier to
get like one little area…

Brad: That’s where most of it is.
Val: It’s easier to get an area to compare when you have such, just one

set area to look at, I guess.

We take this exchange as relatively strong evidence that the reading of data dis-
plays in terms of shape or distribution was normative. Val seemed to view a
data stack as a collection of data points that occupied an interval rather than as
a distribution. For her, focusing on the two middle quartiles of a Four Equal
Groups display was focusing on a part or area of this interval. Importantly, the
reading of data stacks in terms of shape was constituted as legitimate despite
the differences between Suzanne’s and Brad’s interpretations on the one hand
and Val’s on the other hand. It would appear that Val interpreted Suzanne’s ex-
planation as a description of a method or a procedure for comparing collections
of data points rather than as a way of reasoning about the way the data were
distributed.
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Later in the discussion, one student also mentioned that he had not compared
the datasets in terms of high values because these were the exceptions.12 The fol-
lowing exchange occurred when the teacher asked whether it was reasonable to
compare the two datasets in terms of the high values of corresponding data stacks:

Teacher: What do you think about comparing, looking at these people up
here. This person, this person, this person, this person, this per-
son (points to the highest values on the display of data for men),
and comparing them to these people over here (points to the
highest values on data display for women). Would that give you
a pretty good indication of how the men and women’s salaries
compare, by looking at those?

Kim: No.
Teacher: Why not, Kim?

Kim: Those are more like space out there, like you know what’s that
man, that Apple man?

Teacher: Bill Gates?
Kim: Yeah, 

Suzanne: Ha, that rich dude!
Teacher: I’m afraid he’s not even on this. So you’re saying those…

Kim: They’re just off there like they’re just “smarter than the average
bear.”

Teacher: So you are saying, if he happened to be one of the people, then it
would change the whole thing, just one person? 

Kim: Yes, that’s why I said, don’t go by the people on the extremes. Go
by the people that are clumped together.

The lack of challenges to or questions about Kim’s argument served to legitimize
her view that the high values were atypical. Clearly, this exchange contrasts sharply
with prior discussions of the relative merits of discerning overall patterns in stacked
data by focusing on the medians or on high and low values. As we have noted, most
of the students had previously reasoned that a data stack was a collection of data
points that occupied a particular interval rather than a distribution that had shape.

Later in the discussion, the teacher asked the students to describe the overall
trends in the two datasets, and it eventually became established that although salary
increased with years of education for both men and women, the rate of increase was
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greater for men. It should also be noted that both here and throughout the discussion,
the students’ contributions were typically grounded in the situation from which the
data were generated. For example, they routinely referred to years of education and
salary levels when explaining their analyses. In addition, a number of students made
comments in which they attempted to account for the differing patterns in men’s and
women’s salaries. This grounding continued when the teacher raised the issue of
whether the conclusions that the students had drawn from the data held for the entire
country. A number of students raised concerns that related to the size and the repre-
sentativeness of the samples. For example, one student said that the size of the
datasets was too small compared with the number of people in America, and another
commented that one dot represented over 1 million people (he later clarified that this
was a ratio when challenged by another student). Several students also commented
on the need to choose people randomly “to make sure they were not all doctors.” Ear-
lier in the discussion, two other students had also made comments that related to the
soundness of the design. One had noted that years of work experience could have
made a difference, and another had said that although she was not questioning that
men were paid more than women, the difference could be because of years on the job.
We viewed this range of contributions as encouraging in that they indicate that most
of the students had some awareness that the legitimacy of the inferences drawn from
data depends crucially on the design of the data creation process. 

During the debriefing meeting held immediately after this classroom session,
we concluded that our modified conjecture about the reading of the Grids and the
Four Equal Groups displays in terms of shape was viable. In addition, we con-
cluded that the revised learning trajectory might also be viable. Ideally, we would
have continued to investigate the ways in which the students structured stacked
data before exploring the means of supporting a transition to scatter plots in which
the data were not stacked. However, this plan was not feasible because only two
classroom sessions remained in the time period that we had negotiated with the
school district for working with the students. We therefore decided to develop a
performance assessment activity that involved comparing two scatter plots. In this
activity, the students assessed the relative merits of two speed-reading programs
called G1 and G2 by comparing scatter plots of individual pre- and postprogram
reading speeds measured in words per minute (see Figure 23). 

During the discussion in the next classroom session of the data creation
process, the teacher responded to a student’s question by clarifying that these were
measures of maximum reading speed “with comprehension” before and after en-
rollment in the programs. When the students then began to work at the computers,
all but one pair used the Cross option. In doing so, they left the Cross in the de-
fault position as shown in Figure 23 and interpreted the quadrants of each scatter
plot in terms of qualitative changes in reading speeds (e.g., improvement, the
same, worse). They then compared the reading programs in terms of the number
of data points in the corresponding quadrants of the two scatter plots while
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FIGURE 23 Speed reading data with Cross option; G1 (top), G2 (bottom).



adjusting for the unequal size of the datasets. In doing so, they developed descrip-
tions of the effectiveness of the reading programs that were cast in terms of a unidi-
mensional set of qualitative categories. We were initially surprised by these analyses
because few of the students had previously used the Cross option and data organized
in this way had not previously been the focus of a whole-class discussion. Their use
of this option rather than the Grids or the Equal Groups options suggests either that
they did not anticipate the possibility of structuring the scatter plots as distributions
of univariate distribution or that they did not consider this way of structuring the
data to be relevant when assessing the two reading programs. Our choice of data
was, in retrospect, unfortunate and indicates that we cannot rule out the latter possi-
bility. We therefore stress that the students were able to develop arguments that they
considered both adequate and relevant to the question at hand by using the Cross op-
tion. In this regard, their analyses involved a significant advance when compared
with those we had observed previously in which they used options such as Four
Equal Groups to reduce scatter plots to lines. In contrast to the prior analyses, they
treated the two scatter plots as texts about the reading programs.

The one pair of students who analyzed that data in an alternative way used the
Four Equal Groups option. When questioned by a researcher, they could explain
both why people were in a particular slice (i.e., their preprogram reading speeds
were in a particular interval) and what data in different locations within a slice in-
dicated (i.e., some had low reading speeds after the program and some had high
reading speeds). They also explained that they had used the Four Equal Groups op-
tion so that they could see where “most of the people were.” When the researcher
asked if they would call this a hill, one of the students said he would not because
the data “wasn’t on a line.” He instead spoke of the majority and explained that this
was where the data were bunched up. We interpret his response as indicating that
the image of a hill was, for him, specific to stacked data that was piled up “on a
line” in a similar manner to univariate data in the axis plot inscription of the second
minitool. He saw patterns in the scatter plots according to the “bunched-up-ness”
of data (i.e., the relative density of data points) rather than shape. 

The first pair of students who presented their analysis during the whole-class
discussion explained that they had used the Cross option. In this discussion, it
quickly became established that it was illegitimate to compare the total number
of data points in corresponding quadrants because the datasets were unequal. The
students first explained that the upper left quadrant was “a good quadrant”
because the initial reading speed was less than 400 words per min (wpm) and the
final reading speed was more than 400 wpm. When another student noted the dif-
fering numbers of people in the two programs, the presenting students explained
that the G1 program had more people in the good quadrant even though more
people had enrolled in G2. In response to a further question, they agreed that it
was insufficient to focus only on people who did well and compared the remain-
ing three quadrants in a similar qualitative manner. It was apparent from their ex-
planation that they had taken into account the location of data points within
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quadrants. For example, they classified the upper left-hand quadrant as “a good
quadrant” because the reading speeds of most people in that quadrant of G1 had
increased by an amount that they considered significant. However, there was no
indication that they viewed the Cross as organizing the scatter plots into two ver-
tical slices. They and the other students who used the Cross option appeared to be
comparing univariate datasets (i.e., change in reading speed) rather than bivariate
datasets (i.e., relations of covariation).

The next student who presented his solution explained that he had analyzed the
data in a similar manner, but had adjusted for the unequal size of the datasets by cal-
culating the percentage of the data in the four quadrants for each dataset. The teacher
then asked the students, on the basis of this analysis, how much improvement they
could guarantee someone who entered one of the programs with a particular reading
speed such as 700 wpm or 300 wpm. In doing so, she attempted to initiate a shift
from the interpretation of the Cross as partitioning a scatter plot into four categories
to the view that it organized data into two broad slices. She was successful in this
regard and, in the ensuing discussion, the student who had calculated percentages
acknowledged that he had no idea from his analysis whether the reading speeds of
the people whose initial speed was 700 wpm went up or down.

Against this background, the pair of students who had used the Four Equal
Groups option presented their analysis by focusing on people who entered the pro-
grams reading 300 wpm. In an exchange that involved several other students, they
established that 75% of these people’s reading speeds stayed the same or increased
for G1, whereas only 50% did so for G2. Importantly, given our instructional
agenda, it appeared to be established as normative in this conversation that a slice
in the Four Equal Groups display constituted a distribution of postprogram read-
ing speeds for people whose initial reading speeds were in a particular interval.

A final issue addressed in the discussion concerned the usefulness of the Cross,
Four Equal Groups, and Grids options. There appeared to be some agreement that the
Cross option was useful in giving an overall view, whereas the Four Equal Groups
and the Grids options were useful in showing where the data were relatively dense.
For example, one student made the following comments about the Grids option:

Teacher: Is this useful at all?
Shane: Yeah, kind of. You can see where the concentrations of people

are. And where you are more likely to end up. Depending on
where you’re reading. This is almost a combination of the two. 

Teacher: Yeah, that’s a nice way to look at it. So, Shane says he can see
where the concentrations are and how do you know where the
concentrations of people are?

Shane: Where there’s a larger number.

This student’s use of the term “concentrations” appears to be analogous to the
way that the students who had used the Four Equal Groups options had spoken
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of the majority in that both seemed to involve a sense of the relative density of
data.

Given the challenging nature of the analysis that we had asked the students to
conduct, we viewed this final discussion as again indicating that the revised learn-
ing trajectory might be viable. There were, for example, indications that the nor-
mative interpretation of data stacks as univariate distributions that have shape
might make it possible for students to come to view the slices of a scatter plot as
distributions.13 As we have argued, this is central to treating a scatter plot as a bi-
variate distribution rather than as merely a dispersed collection of data points. The
crucial role of the teacher in supporting and organizing the transition from stacked
to unstacked data is also apparent from the discussion. In addition, there was some
evidence that this transition might involve a shift from shape, which indicates how
the data are distributed, to notions of the majority and concentration, which
involve a more direct sense of relative density. However, we did not have an op-
portunity to investigate this issue fully due to time constraints. For example, it is
conceivable that, with appropriate support, some of the students might have inter-
preted the slices of a scatter plot in terms of shape. This, however, remains an
unresolved conjecture.

WHAT WE LEARNED FROM THE DESIGN EXPERIMENTS

In stepping back from the local pedagogical decisions we made to synthesize
what we learned, we first return to the discussion of the design experiment
methodology. In that discussion, we distinguished between daily minicycles and
longer term macrocycles that span an entire design experiment. The account we
have given of the actual learning trajectory that was realized in the classroom
focuses on the minicycles and the daily testing and revising of conjectures. In the
remainder of this article, we take this analysis of the actual learning trajectory as
data to complete a macrocycle of design and analysis that spans the entire exper-
iment. Our intent in doing so is to formulate key aspects of a new learning
trajectory that could serve as the basis for both a future design experiment and in-
struction in other classrooms.

In clarifying what we learned from the design experiment, we distinguish between
two general aspects of statistical analysis, exploratory data analysis (EDA) and
statistical inference.14 As G. W. Cobb and Moore (1997) noted, EDA puts aside the
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question of whether a dataset represents any larger universe and has as its purpose the
search for interesting trends and patterns in particular datasets. It should be clear that
the search for patterns in bivariate data that were significant or relevant with respect
to a question or issue at hand was a major focus of the design experiment. Our intent
in designing the third minitool was to make it possible for bivariate datasets to
become distributions in which trends and patterns could be discerned.

In contrast to EDA, statistical inference involves drawing conclusions from
data that apply to a population. These inferences are probabilistic and ultimately
involve the notion of a sampling distribution. We took an initial, tentative step on
a trajectory that could eventually lead to this relatively sophisticated notion when
we investigated which aspects of datasets the students thought were relatively sta-
ble. The issues we addressed with the students were probabilistic in that we asked
them to predict how aspects of a dataset might vary if the data creation process
were repeated. For ease of explication, we first discuss what we learned about
EDA before turning to statistical inference.

Structuring and Organizing Bivariate Data

The insights gleaned from the eighth-grade design experiment have implications
for the revision of the prior instructional sequence, which focuses on univariate
data, as well as for a learning trajectory that aims at bivariate data, as distributions.
We discuss the prior instructional sequence first by considering the starting points
for the new learning trajectory and then by outlining three subsequent phases in
the potential mathematical development of a classroom community that culminate
with bivariate datasets as distributions.

Starting points: univariate datasets as distributions. In preparing for the
eighth-grade design experiment, we conjectured that the normative basis for com-
munication that would constitute the starting points might include:

• Using the hill metaphor to describe the types of datasets inscribed as line
plots.

• Comparing univariate datasets by structuring them in terms of perceptu-
ally based patterns.

• Reasoning multiplicatively about datasets structured in this way in terms
of qualitative proportions.

Observations that we made during the first few days of the design experiment
when the students used the second minitool indicated that these conjectures were
well founded. In addition, the use of Equal Interval Widths and Four Equal Groups
displays to compare univariate distributions became normative within the first few
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classroom sessions. Displays of this type became texts from which the distribution
of the data could be read. This advance proved crucial later in the design experi-
ment because it made it possible for stacked data displayed in the third minitool to
be constituted as a series of univariate distributions rather than as collections of
data points that occupied particular intervals. As we saw, data stacks first came to
be treated as distributions in public classroom discourse when the teacher and the
students read their shape from the Four Equal Groups and the Grids displays. 

The crucial role of shape, which we did not anticipate when preparing for the
design experiment, reveals a limitation of our prior work with the students. As we
noted, discussions of data organized into Four Equal Groups in the second mini-
tool typically focused on the percentage of the data in particular intervals rather
than on shape. Arguments framed in this way can clearly be appropriate when de-
scribing differences among univariate datasets. However, discourse of this type
provides an inadequate basis for the subsequent emergence of bivariate data as
distributions in that it can support a calculational orientation to univariate data
rather than a conceptual orientation that is grounded in imagery of how the data
are actually distributed.15 Given our failure to systematically support this concep-
tual orientation, we were initially surprised when we discovered relatively late in
the design experiment that most of the students could easily read the shape of
stacks of data from the Grids and the Four Equal Groups displays. The students
might have developed this competence when they used the second minitool de-
spite the absence of explicit support. Alternatively, they may have done so as they
participated in discussions of the reaction time data. Although some of these data
stacks were skewed, they almost invariably had a hill-like shape. The students’ fa-
miliarity with these datasets might have been such that they developed a feel for
how the data were typically distributed and thus the sort of shape the datasets
would have if they were inscribed in the second minitool.

These considerations indicate the importance of orienting discussions toward
shape for the entire period of time that students analyze univariate data using the
second minitool. This proposal in turn requires that thought be given to the charac-
teristics of the datasets that students analyze. We say this because our use of
“irregularly shaped” datasets in the latter part of the seventh-grade design experi-
ment may have encouraged talk of percentages of data points in various intervals
rather than shape. On reflection, it might have been more productive if we had used
datasets whose shapes were smoother in order to support the emergence of sym-
metric, hill-like datasets (i.e., normally distributed data) as an initial benchmark or
point of reference. Other data shapes (e.g., skewed and bimodal data distributions)
could then have been contrasted with this reference shape to gradually develop an
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interrelated network of paradigmatic data distributions. In such an approach, talk-
ing and reasoning about data in terms of quantitative proportions and percentages
(i.e., relative frequency) would still be important. However, discourse of this type
would emerge as a way of mathematizing shape rather than as an alternative to fo-
cusing on shape.

Our second observation that has implications for the starting points of the new
learning trajectory concerns the notion of the relative density of univariate data. In
addressing this issue, we should clarify that when we speak of shape, we are not
referring to a mere figural image of data inscribed as a line plot. Instead, when talk
of shape first emerged in the seventh-grade design experiment, it signified a data
distribution that was structured multiplicatively and could be reasoned about in
terms of qualitative proportions (P. Cobb, 1999; McClain & Cobb, 2001b; McClain
et al., 2000). As we have noted, the students typically used the term majority to in-
dicate the proportion of the data in a hill. The teacher and students also used this
term frequently in the latter part of the eighth-grade experiment when they dis-
cussed both stacked data and scatter plots. However, the normative meaning of the
term appeared to have shifted subtly. Whereas majority initially meant an appre-
ciable proportion of a dataset, it was later used in the eighth-grade experiment to
indicate the location of a hill where the data were bunched up.

The distinction between these meanings might, at first glance, seem minor in
that the observation that a hill that occupies a relatively small part of the range but
comprises a relatively large proportion of the data implies that the data are bunched
up in that part of the range. However, this implication did not come to the fore in
public discourse when students initially spoke of the majority. We therefore con-
jecture that we might be able to improve the approach we took in the seventh-grade
experiment by explicitly attempting to support this shift in normative meaning.
This proposal would involve building on discussions of shape to make the relative
density of data in various parts of the range an explicit topic of conversation. There
is some indication from the eighth-grade experiment that it might be productive to
base these discussions on types of data with which the students have become fa-
miliar on the basis of first-hand experience, as was the case with reaction time data.
The intent in taking such an approach would be to guide the emergence of relative
bunched-up-ness or relative density as a characteristic of univariate data distribu-
tions that would complement and enrich a focus on shape.

Developing ways of inscribing bivariate data. In building on the starting
points we have outlined, there is little indication that we need to modify the first
part of the learning trajectory that we formulated at the outset. As we saw, our con-
jectures about the role of instructional activities in which the students developed
and refined inscriptions of bivariate data proved to be viable. For example, the in-
terpretation of bivariate data as consisting of the measures of two attributes of
each of a number of cases did become normative. Further, the convention of
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inscribing such data as dots in a scatter plot emerged relatively easily and enabled
us to introduce the third minitool.

Stacked data as bivariate distributions. It is apparent from the analysis we
have presented of the design experiment that it was counterproductive to ask the
students to analyze scatter plots when the third minitool was first introduced. We did
not begin to realize our instructional agenda until we asked the students to analyze
stacked data and oriented discussions to the shape of data stacks that were organized
using the Grids and the Four Equal Groups options. In the course of these discus-
sions, the stacks were constituted as univariate distributions rather than as collec-
tions of data points. The second phase of the new learning trajectory in which
students first use the third minitool capitalizes on these observations. Our analysis
suggests that the initial instructional activities should involve stacked data with
which students have a first-hand familiarity, as was the case with reaction time data
in the design experiment. In addition, because the immediate goal is to guide the
constitution of stacks as distributions, it might be worthwhile to limit the number of
stacks to three or four (e.g., reaction time data for ages 20, 40, and 60 years), and to
frame the instructional activity so that the purpose is to use the third minitool to
compare stacks rather than to search for trends and patterns across the stacks. We
conjecture that this might facilitate a focus on shape and relative density. Follow-up
analyses might then be concerned with the covariation of the two sets of measures
(i.e., trends and patterns in the distribution of the univariate data distributions). This,
we conjecture, might support the constitution of the entire dataset as a bivariate dis-
tribution. To the extent that this occurs, later instructional activities might involve a
greater number of data stacks and might focus on patterns across stacks from the
outset (e.g., data, measured monthly, on the resting heart rates of a group of indi-
viduals who have been enrolled in an exercise program that is to last 8 months).

It should be clear that shape and relative density are central to this phase of the
new learning trajectory. In this regard, it is worth noting that because statistical co-
variation involves coordinating the variation of two sets of measures, it is often
viewed as being two-dimensional and thus as being relatively transparent in scatter
plots. However, the analysis we have presented leads us to argue that proficient sta-
tistical analysts’ imagery of covariation is, metaphorically speaking, no more two-
dimensional than their imagery of univariate distributions is one-dimensional. This
is clearer in the case of univariate data in that inscriptions such as stem plots and
line plots involve, for the proficient user, a second dimension, which indicates rel-
ative frequency. In the case of bivariate data, however, scatter plots do not provide
such direct perceptual support for a third dimension corresponding to relative fre-
quency.16 Instead, it appears that proficient analysts read this third dimension from
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the relative density of the data points. The difficulties we encountered in the design
experiment indicate that it is unreasonable to expect students to read scatter plots in
this sophisticated manner from the outset. We saw, for example, that when they first
used the third minitool, they typically reduced scatter plots to lines that signified
fixed relationships of covariation rather than conjectured relationships about which
the data were distributed. In contrast, they and the teacher literally introduced a third
dimension when they later discussed the shape of data stacks in two-dimensional
data displays. It was apparent that the shape of stacks read from the Grids and the
Four Equal Groups displays was relatively concrete for most of the students.
Further, it quickly became normative that the shape of a stack could itself be read in
terms of the relative density or frequency of the data. The intent of the second phase
of the new trajectory is to support the emergence of this way of reasoning about
stacked data.

Scatter plots as bivariate distributions. The final phase of the new trajec-
tory is concerned with the structuring of scatter plots (i.e., unstacked data). Our
analysis of the last few sessions of the design experiment indicates that a contin-
ued focus on the relative density and perhaps the shape of data might be crucial
in supporting the transition from stacked to unstacked data. This in turn suggests
that it could be important to orient initial discussions in this phase of the trajec-
tory toward the distribution of data within slices of a scatter plot organized in
terms of the Grids or the Four Equal Groups option. An initial analysis might in-
volve data on, say, the length of time that a group of people spend brushing their
teeth each day and the amount of plaque on their teeth.17 We saw from the design
experiment that, in such a case, it might be productive to raise issues that lead to
a focus on the people who brush their teeth for a certain length of time (i.e., a
data slice). Further, it appears important to discuss both who is in a particular
slice (e.g., the people who brush for about 2 min) and what their location within
a slice indicates (i.e., the amount of plaque on their teeth). Against this back-
ground, questions that involve the comparison of slices might lead to discussions
in which the focus is on the distribution of data within slices. This final phase of
the new trajectory rests on the conjecture that a concern for the relative density
of data within slices might emerge and become normative in the course of these
discussions.

In this regard, it is worth recalling that, in the design experiment, we did not
have an opportunity to explore whether some of the students might have found it
reasonable to talk of the data within a slice as having shape. It might be produc-
tive to explore this possibility because shape appeared to have become a relatively
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concrete notion for most of the students, indicating that it might support a focus
on the relative density of data.

As a further conjecture, we infer from the design experiment analysis that this
initial emphasis on the distribution of data within slices might provide a basis for
a subsequent focus on trends and patterns in an entire dataset. We can clarify the
normative ways of talking and reasoning about data that we hope will emerge by
employing the metaphor of shape. Suppose, in particular, that the data within
slices in the plaque example have hill-like shapes. In terms of the metaphor, a
ridge might be seen running across the dataset where the data within slices are rel-
atively dense. Further, the ridge might be viewed as indicating a conjectured rela-
tionship of covariation between brushing time and amount of plaque about which
the data are distributed. Imagery of this sort, whether involving shape or a more
direct sense of relative density, would appear to support discussions of the
strength as well as the direction of the relationship. In addition, this imagery could
also support an investigation of cases that do not fit the overall pattern. Further,
because data would be viewed as distributed about the ridge vertically rather than
diagonally, such imagery would appear to provide a basis for later, more advanced,
analyses of statistical covariation that are concerned with finding the line of best
fit by minimizing the squares of the deviations of the y measures.

As a final observation, we argued when discussing the starting points for the
new learning trajectory that it might be important to support the emergence of an
interrelated network of paradigmatic univariate data shapes. We speculate that a
similar emphasis might also be appropriate for bivariate data. The hypothetical
data shape that we described when elaborating the plaque example could consti-
tute an initial point of reference against which other bivariate data distributions
could be contrasted. This suggestion indicates both the potential value of instruc-
tional activities that involve comparing two scatter plots and the level of planning
required when selecting datasets that students might analyze.

In concluding this discussion of the newly formulated learning trajectory, it is
worth highlighting our use of the relatively concrete, physical metaphor of shape
to talk about bivariate data distributions. We used this metaphor in an attempt to
characterize the ways of talking and reasoning about data that we hope might be-
come normative. The metaphor is useful even if actual classroom discourse is
more directly concerned with relative density than with shape, in that it empha-
sizes that we want trends and patterns in bivariate data to become almost tangible
for students. Greeno (1991) used the metaphor of a mathematical environment in
which tools and resources are readily available for characterizing number sense in
particular and mathematical knowing more generally. Sfard (2000b) described
mathematical discourse as a virtual reality discourse, to highlight the parallels
between this discourse and the ways in which we talk about physical reality. In
Greeno’s (1991) and Sfard’s (2000b) terms, we want students to come to act in a
statistical environment or reality in which bivariate data have substance and
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structure that can be investigated and talked about. The new learning trajectory we
have outlined indicates our current conjectures about the means of supporting the
gradual emergence of such an environment.

Initial Steps Toward Statistical Inference

The new learning trajectory that we have outlined is concerned with EDA in that
it leaves aside the question of whether a dataset is representative of a larger uni-
verse and focuses on the search for trends and patterns in particular datasets. Is-
sues relating to statistical inference came to the fore in the design experiment
when the teacher and the students discussed the relative stability of the median
and the extreme values of univariate data stacks. Our intent in asking the students
to predict how these aspects of a dataset might vary if the data creation process
were repeated was to support a focus on the center rather than on the extremes of
data slices when tracing relationships of covariation in bivariate data. In retro-
spect, it is clear that this approach was flawed in that it confounded the structuring
of particular datasets with relative stability across samples, and thus EDA with
statistical inference. Despite this significant limitation, this phase of the design ex-
periment did give rise to insights that can inform further revisions of the learning
trajectory. 

During the analysis of the design experiment, we differentiated between two
distinct orientations to the relationship between data and the median. One of these
orientations derived from school-taught methods for finding the median, whereas
the other involved the notion of shape and was grounded in the students’ prior par-
ticipation in the seventh-grade design experiment. As we have seen, the questions
we posed about the relative stability of the median and the extreme values ap-
peared to support the first of these orientations. It was evident that the students all
knew how to find the median of a dataset. In addition, they viewed the computer
as carrying out this calculational process for them when they used the Two Equal
Groups and the Four Equal Groups options. However, there was every indication
that the result of this process was, for all but one of the students, a value in the in-
terval occupied by a dataset that was at the same level as individual data points. In
contrast, the one remaining student developed arguments in which he reasoned
about the relation between changes in individual data points and changes in the
median. From this we inferred that the median was, for him, a structural feature of
a dataset that depended on all the data values.

We documented that all but this student continued to view the median as point
in the interval occupied by a dataset when the students participated in a series of
discussions that focused on the relation between data and the median. We mention
that in addition to the instructional activities we described when reporting these
discussions, the students also engaged in a simulated sampling activity. In this
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activity, they each generated samples by randomly selecting 9 reaction time meas-
ures from a set of 100 such measures. The students were surprised that the medi-
ans of their samples were relatively close. However, for most of the students, the
activity appeared to be little more than an empirical demonstration that the me-
dian was more stable than the extreme values. In contrast, the student who had
previously viewed the median in structural terms went on to find, on his own ini-
tiative, the highest and lowest possible values of the median of samples of 9 meas-
ures (i.e., the range of the sampling distribution for the median). In doing so, he
again reasoned about the relation between changes in an entire sample of data val-
ues and changes in the median. The continued epistemological gulf between this
student and the others indicates the inadequacy of the instructional approach that
we took.

With hindsight, we have come to view the general orientation to data and the
median that we unwittingly encouraged as the primary source of the impasse that
the students and we arrived at midway through the design experiment. Thus, al-
though the instructional activities used in this phase of the experiment were
clearly not exemplary, we contend that a preoccupation with the limitations of
specific activities misses the larger issue. This claim is supported by observations
that we made once the teacher had guided the emergence of a normative orienta-
tion to shape so that data stacks became constituted as distributions rather than
collections of data points. As we saw, the expectation that the shape of a data stack
would be relatively stable if the process of generating the data were repeated
quickly became established as normative. An exchange that we observed earlier
goes some way toward explaining this development. This exchange occurred
shortly after the students had each generated 10 measures of their individual reac-
tion times and the teacher had drawn plots of 10 of the students’ measures (see
Figure 16). As we reported, the teacher asked the students if they could use these
data to predict the reaction time of another eighth grader. The students all ap-
peared to reject this possibility, arguing that their reaction times were different and
that it would depend on the particular eighth grader. In contrast, when the teacher
next asked the students if they could predict the reaction times of another group of
10 eighth graders, most indicated almost immediately that this was feasible. As
one student noted by way of justification, “Some will be slow, some will be ex-
tremely fast like, you know, like some of us.” This argument, which was consti-
tuted as legitimate in the classroom, appeared to involve a concern for variability
if not for the way that the data were distributed. We speculate that it was this
expectation of similar variability across samples that underpinned the later
prediction that the shape of a data stack was relatively stable.

These were indications that this expectation about the stability of shape can
support the realization that the median is also relatively stable. In the case of the
reaction time data, for example, the interpretation of the median in a Four Equal
Groups display as indicating the location of a hill in the data became established as
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normative with little difficulty. The median could therefore be viewed as relatively
stable because it was located in a particular position within a stable data shape. It
is important to stress that this insight does not necessitate a structural interpreta-
tion of the relation between changes in the data and the changes in the median. In-
stead, it appeared that, for most of the students, the median was a location within
a data shape rather than a structural characteristic of an entire dataset.

The reflections we have presented lead us to question the value of initially ap-
proaching statistical inference by attempting to build on school-taught methods
for finding the median (or the mean for that matter). Instead, it appears that the
shape of univariate data distributions might constitute a more promising starting
point. The support it provides in terms of concrete imagery can be contrasted with
the calculational orientation fostered by school-taught methods. This observation
has implications for the revision of our prior work with the students as well as for
the new learning trajectory. We have already argued that shape should feature
prominently in students’ analyses of univariate data. Once an orientation to the
shape of data has become normative, it might be worthwhile to investigate with
students the stability of shape if the data creation process is repeated. This in turn
could lead to discussions of the relation between the shape of a data sample and
that of data for the population. In the course of these discussions, it might also be
possible to consider the relation between the median of a sample (i.e., a sample
statistic) and that of the population (i.e., a population parameter), provided that
shape serves to anchor the conversation. Once established, discussions of this type
could be continued as a matter of course when students later analyze bivariate
data. We stress that we envision these conversations as being conducted in rela-
tively informal terms. We speculated that the orientation to sample–population
relations engendered by such exchanges might provide a starting point for a
subsequent learning trajectory that aims squarely at the challenging notion of
sampling distribution.

CONCLUSIONS

The potential pedagogical significance of the issues we have discussed in this article
is not restricted to the teaching of statistics at the middle-school level, given the rel-
atively sophisticated ways in which the students reasoned about data in the latter ses-
sions of the design experiment. The National Council of Teachers of Mathematics
(2000) recommended, for example, that analyses of bivariate data that focus on sta-
tistical covariation should be delayed until the high school level. As a further contri-
bution, this article also goes some way to addressing Shaughnessey, Garfield, and
Greer’s (1997) call for longitudinal case studies of statistics learning and teaching,
thereby complementing previous investigations of this type (Biehler & Steinbring,
1991; de Lange et al., 1993; Hancock, Kaput, & Goldsmith, 1992; Lehrer &
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Romberg, 1996). As Shaughnessey et al. (1997) noted, such studies can make im-
portant contributions to the development of a theoretical framework for statistics
instruction. It should be clear that, in the analysis we presented, theoretical consid-
erations came to the fore when we developed the rationales of successive revisions
of the learning trajectories. Convergence with a second of Shaughnessey et al.’s rec-
ommendations becomes apparent when we focus on the revised learning trajectory
that we have outlined. In concert with their arguments, we suggested that probabil-
ity should be included in what they termed data handling (i.e., EDA). As they noted,
questions that involve resampling give rise to issues that are probabilistic in nature.

The revised, yet still hypothetical, learning trajectory that we outlined is also
consistent with G. W. Cobb and Moore’s (1997) discussion of the order in which
the three major aspects of statistical analysis should be addressed. They recom-
mended beginning with methods for exploring and describing data (i.e., EDA)
before focusing on data creation and then finally moving to statistical inference.
Although we found it essential for the teacher to talk through the data creation
process with students from the outset, we also clarified that the initial instructional
focus in the revised trajectory is on ways of structuring and organizing univariate
data. We found that issues relating to the data creation process, such as methods of
sampling and controlling extraneous variables, gradually emerged as topics of con-
versation in a relatively natural way (Tzou, 2000). These conversations about data
creation indicate that it became normative that conclusions could not be drawn
from data unless their generation was sound. Lehrer and Romberg (1996) spoke of
the reflexivity of data creation and data analysis to highlight this interdependence.

Consistent with G. W. Cobb and Moore’s (1997) recommendations, issues
such as sample–population relations that underpin statistical inference are de-
layed in the final trajectory until univariate datasets have been constituted as dis-
tributions that have shape. It is important to acknowledge that G. W. Cobb and
Moore’s proposals dealt with the teaching and learning of statistics at the college
level. As a consequence, they were concerned with more formal aspects of
statistical inference such as sampling distributions, confidence intervals, and
significance tests. We, in contrast, discussed a far more informal approach to sta-
tistical inference. Despite this difference, we find it encouraging that the broad
outline of G. W. Cobb and Moore’s proposal appears to be relevant to statistical
analysis at the middle-school level.

Turning now to consider methodological issues, the account we gave of the
eighth-grade design experiment serves to illustrate a way of developing and
improving instructional designs when the research base is relatively limited.18

The initial learning trajectory that we formulated when preparing for the design
experiment was highly provisional and a number of our initial conjectures proved
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to be unviable. However, the ongoing process of testing and revising conjectures
enabled us eventually to formulate a new trajectory that was empirically
grounded in our work in the classroom (Gravemeijer, 1998). The key point to
note is that, in this bootstrapping approach, we did not wait for the development
of an adequate research base, but instead outlined and began testing an initial in-
structional design. We contend that what we learned about the learning and
teaching of statistics while doing so contributes to a nascent, but gradually
emerging local instructional theory that can inform both future investigations
and instructional practice in other classrooms. This approach, in which theoreti-
cal analyses and instructional designs coemerge, is captured by the adage that if
you want to understand something (e.g., students’ statistical reasoning), try to
change it, and if you want to change something, try to understand it (De Corte,
Greer, & Verschaffel, 1996).

As a related observation, it is worth clarifying that the account we gave of the
students’ reasoning is cast in situated terms. By this, we do not mean that the
meanings the students developed in the course of the design experiment had no
currency beyond the classroom. Instead, we contend that the students’ mathe-
matical learning was situated with respect to the classroom microculture that
they and the teacher constituted in the course of their ongoing interactions. We
document this evolving microculture by first reporting the social and sociomath-
ematical norms that were established in the classroom and then tracing the nor-
mative mathematical meanings that emerged over the course of the experiment.
The students’ participation in both the regeneration and the evolution of these
norms and meanings constituted the immediate social situation of their learning.
It should be clear that in adopting this interpretive stance, we did not view par-
ticular students’ reasoning as inherent characteristics or properties of them as in-
dividuals. As a consequence, we did not interpret instances of students failing to
learn as expected as indicators of their conceptual inadequacies. Instead, we in-
terpreted these instances as indicating inadequacies in our current instructional
design. Thus, we did not interpret most of the students’ failure to develop a struc-
tural view of the relation between data and the median as indicating that their un-
derstandings of data were too immature for them to benefit from the instructional
activities we had developed. Instead, we concluded that the instructional
approach we had taken was deeply flawed in that it attempted to build on school-
taught methods.

We argue that this perspective on students’ learning is a strength rather than a
weakness in that we viewed their reasoning as situated with respect to the type of
discourse, tools, and resources that served as means of supporting its develop-
ment. This made it possible for us to develop new design conjectures by drawing
on our ongoing analysis of classroom events. As a consequence, a difficulty that
typically arises when students’ reasoning is analyzed exclusively in individualistic
psychological terms failed to materialize: the difficulty of figuring out what the
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analysis might mean for design and instruction. Given our interest in formulating
and improving instructional designs, we find this characteristic of a situated
perspective extremely attractive. 

As a final observation, we conjecture that in addition to informing the revi-
sion of instructional designs and providing guidance for instructional practice in
other classrooms, analyses of the type that we illustrated can also serve as
important means of supporting the development of professional teaching com-
munities (Ball & Cohen, 1996; Hiebert & Wearne, 1992).19 As we saw, the
analyses serve to justify the instructional sequences that are developed in the
course of design experiments in terms of (a) the trajectory of the classroom
community’s mathematical learning and (b) the means of supporting that learn-
ing. If the sequences were justified solely with traditional experimental data,
teachers would know only that the sequences had proved effective elsewhere,
but they would not have an understanding of the underlying rationale that would
enable them to adapt the sequences to their own instructional settings. In con-
trast, the type of justification that we favor offers the possibility that teachers
will be able to adapt, test, and modify the sequences in their classrooms. In do-
ing so, they can then contribute to both the improvement of the sequences and
the development of local instructional theories rather than merely being the con-
sumers of instructional innovations developed by others. As part of our current
work, we are investigating the feasibility of supporting the development of pro-
fessional teaching communities by collaborating with two groups of teachers
who work in urban school districts. In doing so, one of our primary goals is to
ensure that the teachers view implementation as a process of conjecture-driven
adaptation in which they test and refine pedagogical approaches that have
proven effective elsewhere. 

In conclusion, we extend this view of implementation as conjecture-driven
adaptation to our fellow researchers by stressing that both the design experiment
methodology we illustrated and the specific learning trajectory we have described
are conceptual tools that were developed while addressing specific problems and
issues. We therefore assume that others will adapt these tools as they apply them
to their own problems of interest, and in the process, contribute to the ongoing
refinement and improvement of the tools.

74 COBB, MCCLAIN, GRAVEMEIJER

19It could be argued that the forms of instruction developed in the course of a design experiment are
unfeasible for any teacher working alone. We acknowledge, for example, that the entire research team
in effect constitutes a collective teacher with some members of the team actually teaching while others
observe and analyze classroom events. The demands of this collective activity are, however, balanced
by the possibility that the collaborating teachers will be able to capitalize on our learning as repre-
sented by instructional sequences and learning trajectories. This conjecture about the proposed role of
instructional sequences as a means of supporting the development of professional teaching communi-
ties is discussed in some detail by P. Cobb and McClain (2001).



ACKNOWLEDGMENTS

The analysis reported in this article was supported by the National Science
Foundation under Grant No. REC 9814898 and by the Office of Educational
Research and Improvement (OERI) under grant number R305A60007. The
opinions expressed do not necessarily reflect the views of either the Foundation
or OERI.

REFERENCES

Atkinson, P., Delamont, S., & Hammersley, M. (1988). Qualitative research traditions: A British
response to Jacob. Review of Educational Research, 58, 231–250.

Ball, D. L., & Cohen, D. K. (1996). Reform by the book: What is—or might be—the role of curriculum
materials in teacher learning and instructional reform? Educational Researcher, 25(9), 6–8, 14.

Biehler, R. (1993). Software tools and mathematics education: The case of statistics. In C. Keitel &
K. Ruthven (Eds.), Learning from computers: Mathematics education and technology (pp.
68–100). Berlin: Springer.

Biehler, R., & Steinbring, H. (1991). Entdeckende Statistik, Stenget-und-Blatter, Boxplots: Konzepte,
Begrundungen and Enfahrungen eines Unterrichtsversuches [Explorations in statistics, stem-and-leaf,
boxplots: Concepts, justifications, and experience in a teaching experiment].Mathematikunterricht,
37(6), 5–32.

Bowers, J., Cobb, P., & McClain, K. (1999). The evolution of mathematical practices: A case study.
Cognition and Instruction, 17, 25–64.

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating
complex interventions in classrooms. Journal of the Learning Sciences, 2, 141–178

Cobb, G. W., & Moore, D. S. (1997). Mathematics, statistics, and teaching. American Mathematical
Monthly, 104, 801–823.

Cobb, P. (1995). Mathematics learning and small group interactions: Four case studies. In P. Cobb &
H. Bauersfeld (Eds.), Emergence of mathematical meaning: Interaction in classroom cultures
(pp. 25–129). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Cobb, P. (1999). Individual and collective mathematical learning: The case of statistical data analysis.
Mathematical Thinking and Learning, 1999, 5–44.

Cobb, P. (2000). Conducting classroom teaching experiments in collaboration with teachers. In A.
Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education
(pp. 307–334). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Cobb, P. (2001). Supporting the improvement of learning and teaching in social and institutional con-
text. In S. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress
(pp. 455–478). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Cobb, P., & McClain, K. (2001). An approach for supporting teachers’ learning in social context. 
In F.-L. Lin & T. Cooney (Eds.), Making sense of mathematics teacher education (pp. 207–232).
Dordrecht, the Netherlands: Kluwer.

Cobb, P., & Whitenack, J. W. (1996) A method for conducting longitudinal analyses of classroom vide-
orecordings and transcripts. Educational Studies in Mathematics, 30, 458–477.

Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in classroom mathemat-
ical practices. Journal of the Learning Sciences, 10(1&2), 113–164.

Collins, A. (1999). The changing infrastructure of educational research. In E. C. Langemann & L. S.
Shulman (Eds.), Issues in education research. San Francisco: Jossey Bass.

LEARNING ABOUT STATISTICAL COVARIATION 75



Confrey, J., & Lachance, A. (2000). A research design model for conjecture-driven teaching experi-
ments. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science
education (pp. 231–266). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

De Corte, E., Greer, B., & Verschaffel, L. (1996). Mathematics learning and teaching. In D. Berliner &
R. Calfee (Eds.), Handbook of educational psychology (pp. 491–540). New York: Macmillan.

de Lange, J., van Reeuwijk, M., Burrill, G., & Romberg, T. (1993). Learning and testing mathematics
in context. The case: Data visualization. Madison: University of Wisconsin, National Center for
Research in Mathematical Sciences Education.

Dörfler, W. (1993). Computer use and views of the mind. In C. Keitel & K. Ruthven (Eds.), Learning
from computers: Mathematics education and technology (pp. 159–186). Berlin: Springer-Verlag.

Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.), The hand-
book of research on teaching (3rd ed., pp. 119–161). New York: Macmillan.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative re-
search. New York: Aldine.

Gravemeijer, K. E. P. (1994). Developing realistic mathematics education. Utrecht, The Netherlands:
CD-B Press.

Gravemeijer, K. (1998, April). Developmental research: Fostering a dialectic relation between theory
and practice. Paper presented at the research presession of the annual meeting of the National
Council of Teachers of Mathematics, Washington, DC.

Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. Journal for Research
in Mathematics Education, 22, 170–218.

Hancock, C., Kaput, J. J., & Goldsmith, L. T. (1992). Authentic inquiry with data: Critical barriers to
classroom implementation. Educational Psychologist, 27, 337–364.

Hiebert, J., & Wearne, D. (1992). Instructional tasks, classroom discourse, and students’ learning in
second grade arithmetic. American Educational Research Journal, 30, 393–425.

Hershkowitz, R., & Schwartz, B. (1999). The emergent perspective in rich learning environments:
Some roles of tools and activities in the construction of sociomathematical norms. Educational
Studies in Mathematics, 39, 149–166.

Hodge, L. L. (2001). Students’ emerging identities as doers of mathematics in two contrasting classroom
microcultures. Unpublished manuscript.

Kaput, J. J. (1994). The representational roles of technology in connecting mathematics with authentic
experience. In R. Biehler, R. W. Scholz, R. Strasser, & B. Winkelmann (Eds.), Didactics of mathe-
matics as a scientific discipline (pp. 379–397). Dordrecht, The Netherlands: Kluwer.

Konold, C. (1989). Informal conceptions of probability. Cognition and Instruction, 6, 59–98.
Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathe-

matical knowing and teaching. American Educational Research Journal, 27(1), 29–63.
Latour, B. (1987). Science in action. Cambridge, MA: Harvard University Press.
Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. New York:

Cambridge University Press.
Lehrer, R., & Romberg, T. (1996). Exploring children’s data modeling. Cognition and Instruction, 14,

69–108.
McClain, K. & Cobb, P. (2001a). The development of sociomathematical norms in one first-grade

classroom. Journal for Research in Mathematics Education, 32, 234–266.
McClain, K., & Cobb, P. (2001b). Supporting students’ ability to reason about data. Educational

Studies in Mathematics, 45(1–3), 103–129.
McClain, K., Cobb, P., & Gravemeijer, K. (2000). Supporting students’ ways of reasoning about data.

In M. Burke (Ed.), Learning mathematics for a new century (pp. 174–187). Reston, VA: National
Council of Teachers of Mathematics.

McGatha, M. (2000). Instructional design in the context of classroom-based research: Documenting
the learning of a research team as it engaged in a mathematics design experiment. Unpublished
dissertation, Vanderbilt University, Nashville, TN. 

76 COBB, MCCLAIN, GRAVEMEIJER



McGatha, M., Cobb, P., & McClain K. (1999, April). An analysis of student’s initial statistical under-
standings. Paper presented at the annual meeting of the American Educational Research Associa-
tion, Montreal.

Meira, L. (1998). Making sense of instructional devices: The emergence of transparency in mathe-
matical activity. Journal for Research in Mathematics Education, 29, 121–142.

Much, N. C., & Shweder, R. A. (1978). Speaking of rules: The analysis of culture in breach. New
Directions for Child Development, 2, 19–39.

National Council of Teachers of Mathematics (2000). Principles and standards for school mathemat-
ics. Reston, VA: National Council of Teachers of Mathematics.

Nemirovsky, R., & Monk, S. (2000). “If you look at it the other way…” An exploration into the nature of
symbolizing. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in math-
ematics classrooms: Perspectives on discourse, tools, and instructional design (pp. 177–221).
Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Noss, R., Pozzi, S., & Hoyles, C. (1999). Touching epistemologies: Statistics in practice. Educational
Studies in Mathematics, 40, 25–51.

Pea, R. D. (1993). Practices of distributed intelligence and designs for education. In G. Solomon (Ed.),
Distributed cognitions (pp. 47–87). New York: Cambridge University Press.

Roth, W.-M. (1997.) Where is the context in contextual word problems? Mathematical practices and
products in grade 8 students’ answers to story problems. Cognition and Instruction, 14,
487–527.

Roth, W.-M., & McGinn, M. K. (1998). Inscriptions: Towards a theory of representing as social prac-
tice. Review of Educational Research, 68, 35–59.

Schutz, A. (1962). The problem of social reality. The Hague, Holland: Martinus Nijhoff.
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and

objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.
Sfard, A. (2000a). On reform movement and the limits of mathematical discourse. Mathematical

Thinking and Learning, 2, 157–189.
Sfard, A. (2000b). Symbolizing mathematical reality into being. In P. Cobb, E. Yackel, & K. McClain

(Eds.), Symbolizing, communicating, and mathematizing: Perspectives on discourse, tools, and
instructional design (pp. 37–98). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Shaughnessey, J. N., Garfield, J., & Greer, B. (1997). Data handling. In A. J. Bishop, K. Clements, 
C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education
(Part 1, pp. 205–237). Dordrecht, The Netherlands: Kluwer.

Simon, M. A. (1995.) Reconstructing mathematics pedagogy from a constructivist perspective. Jour-
nal for Research in Mathematics Education, 26, 114–145.

Simon, M. A. (2000). Research on mathematics teacher development: The teacher development ex-
periment. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science
education (pp. 335–359). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Simon, M. A., & Blume, G. W. (1996). Justification in the mathematics classroom: A study of prospec-
tive elementary teachers. Journal of Mathematical Behavior, 15, 3–31.

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and
essential elements. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and
science education (pp. 267–306). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Stigler, J. W., & Hiebert, J. (1999). The teaching gap. New York: Free Press.
Suchman, L. A., & Trigg, R. H. (1993.) Artificial intelligence as craftwork. In S. Chaiklin & J. Lave

(Eds.), Understanding practice: Perspectives on activity and context (pp. 144–178). New York:
Cambridge University Press.

Suter, L. E., & Frechtling, J. (2000). Guiding principles for mathematics and science education
research methods: Report of a workshop. Washington, DC: National Science Foundation.

Taylor, S. J., & Bogdan, R. (1984). Introduction to qualitative research methods (2nd ed.). New York:
Wiley.

LEARNING ABOUT STATISTICAL COVARIATION 77



Thompson, A. G., Philipp, R. A., Thompson, P. W., & Boyd, B. A. (1994). Calculational and concep-
tual orientations in teaching mathematics. In A. Coxford (Ed.), 1994 Yearbook of the National
Council of Teachers of Mathematics (pp. 79–92). Reston, VA: National Council of Teachers of
Mathematics.

Tzou, C. (2000). Learning about data creation. Paper presented at the annual meeting of the American
Educational Research Association, New Orleans.

Voigt, J. (1985). Patterns and routines in classroom interaction. Recherches en Didactique des Mathe-
matiques, 6, 69–118.

Voigt, J. (1995). Thematic patterns of interaction and sociomathematical norms. In P. Cobb &
H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures
(pp. 163–202). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Wenger, E. (1998). Communities of practice. New York: Cambridge University Press.
Wilensky, U. (1997.) What is normal anyway? Therapy for epistemological anxiety. Educational Stud-

ies on Mathematics, 33, 171–202
Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentations and autonomy in mathe-

matics. Journal for Research in Mathematics Education, 27, 458–477.

78 COBB, MCCLAIN, GRAVEMEIJER


