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Introduction 

One of the most enduring ideas concerning mathematics instruction is the following: 

mathematics consists of a set of indisputable rules and knowledge; this knowledge has a fixed 

structure and can be acquired by frequent repetition and memorization. In the past twenty-five 

years, far-reaching changes have taken place in mathematics instruction. More than in any other 

field, such changes were influenced by mathematicians who had come to view their discipline in 

a different light. Their observations went a long way towards stimulating a process of renewal in 

mathematics instruction. New consideration was given to such fundamental questions as: how 

might mathematics best be taught, how might children be encouraged to show more interest for 

mathematics, how do children actually learn mathematics, and what is the value of mathematics? 

 According to Goffree, Freudenthal, and Schoemaker (1981), the subject of mathematics is 

itself an essential element in ‘thinking’ through didactical considerations in mathematics 

instruction. Moreover, the notion is emphasized that knowledge is the result of a learner’s 

activity and efforts, rather than of the more or less passive reception of information. Mathematics 

is learned, so to say, on one’s own authority. From a teacher’s point of view there is a sharp 

distinction made between teaching and training. To know mathematics is to know why one 

operates in specific ways and not in others. This view on mathematics education is the basic 

philosophy in this chapter (Von Glazersfeld, 1991) In order to understand current trends in 

mathematics education, we must consider briefly the changing views on this subject. 

The philosophy of science distinguishes three theories of knowledge. Confrey (1981) calls 

these absolutism, progressive absolutism and conceptual change. In absolutism, the growth of 

knowledge is seen as an accumulation, a cumulation of objective and empirically determined 

factual material. According to progressive absolutism a new theory may correct, absorb, and 

even surpass an older one. Proponents of the idea of conceptual change have defended the point 



of view that the growth of knowledge is characterized by fundamental (paradigmatical) changes 

and not by the attempt to discover absolute truths. One theory may have greater force and present 

a more powerful argument than another, but there are no objective, ultimate criteria for deciding 

that one theory is incontrovertibly more valid than another (Lakatos, 1976). Mathematics has 

long been considered an absolutist science. According to Confrey (1981), it is seen as the 

epitome of certainty, immutable truths and irrefutable methods. Once gained, mathematical 

knowledge lasts unto eternity; it is discovered by bright scholars who never seem to disagree, 

and once discovered, becomes part of the existing knowledge base. 

Leading mathematicians however have now abandoned the static and absolutist theory of 

mathematics (Whitney, 1985). Russell (in Bishop, 1988) once explained that mathematics is the 

subject in which we never know what we are talking about, nor whether what we are saying is 

true. Today mathematics is more likely to be seen as a fluctuating product of human activity and 

not as a type of finished structure (Freudenthal, 1983). Mathematics instruction should reveal 

how historical discoveries were made. It was not (and indeed is still not) the case that the 

practice of mathematics consists of detecting an existing system, but rather of creating and 

discovering new ones. This evolving theory of mathematics also led to new ideas concerning 

mathematics instruction. If the essence of mathematics were irrefutable knowledge and ready-

made procedures, then the primary goal of education would naturally be that children mastered 

this knowledge and these procedures as thoroughly as possible. In this view, the practice of 

mathematics consists merely of carefully and correctly applying the acquired knowledge If, 

however, mathematicians are seen as investigators and detectives, who analyse their own and 

others’ work critically, who formulate hypotheses, and who are human and therefore fallible, 

then mathematics instruction is placed in an entirely different light. Mathematics instruction 

means more than acquainting children with mathematical content, but also teaching them how 

mathematicians work, which methods they use and how they think. For this reason, children are 

allowed to think for themselves and perform their own detective work, are allowed to make 

errors because they can learn by their mistakes, are allowed to develop their own approach, and 

learn how to defend it but also to improve it whenever necessary. This all means that students 

learn to think about their own mathematical thinking, their strategies, their mental operations and 

their solutions. 



Mathematics is often seen as a school subject concerned exclusively with abstract and formal 

knowledge. According to this view, mathematical abstractions must be taught by making them 

more concrete. This view has been opposed by Freudenthal (1983) among others. In his opinion, 

we discover mathematics by observing the concrete phenomena all around us. That is why we 

should base teaching on the concrete phenomena in a world familiar to children. These 

phenomena require the use of certain classification techniques, such as diagrams and models (for 

example, the number line or the abacus). We should therefore avoid confronting children with 

formal mathematical formulas which will only serve to discourage them, but rather base 

instruction on rich mathematical structures, as Freudenthal calls them, which the child will be 

able to recognize from its own environment. In this way mathematics becomes meaningful for 

children and also makes clear that children learn mathematics not by training formulas but by 

reflecting on their own experiences. 

In the 1970s, the new view of mathematics, often referred to as mathematics as human 

activity, led to the rise of a new theory of mathematics instruction, usually given the designation: 

realistic. As it now appears, this theory is promising, but it is not the only theoretical approach in 

mathematics instruction; three others can be distinguished: the mechanistic, the structuralist and 

the empirical (Treffers, 1991). In the following we just give a brief characteristic of each 

approach, because it is beyond the scope of this chapter to discuss the three schools in extension: 

− The mechanistic approach reflects many of the principles of the behaviouristic theory of 

learning; the use of repetition, exercises, mnemonics, and association comes to mind. The 

teacher plays a strong, central role and interaction is not seen as an essential element of the 

learning process. On the contrary, mathematics class focuses on conclusive standard 

procedure. 

− According to the second approach − the structuralist − thinking is not based on the children’s 

experiences or on contexts, but rather on given mathematical structures. The structuralist 

tends to emphasize strongly the teacher’s role in the process of learning. 

− The outstanding feature of the third trend − the empirical − is the idea that instruction should 

relate to a child’s experiences and interests. Instruction must be child-oriented. Empiricists 

believe that environmental factors form the most important impetus for cognitive 

development (Papert, 1980). Empiricists emphasize spontaneous actions. 



Realistic mathematics instruction as progressive mathematization 

In this section we present five features which characterize realistic mathematics. At first we are 

dealing with learning in a context and second with the use of models. The third point (the 

mathematical subjects are not atomized but interwoven) is not of so much relevance for this book, 

while the three characteristics of the process of mathematization (construction, reflection, and 

interaction) are analysed in the following sections. 

The new realistic approach to learning and thought process in children has far-reaching 

consequences. Mathematization is viewed as a constructive, interactive and reflective activity. 

To begin, the point of departure for education is not learning rules and formulas, but rather 

working with contexts. A context is a situation which appeals to children and which they can 

recognize in theory. This situation might be either fictional or real, and forces children to call 

upon the knowledge they have gained by experience − for example in the form of their own 

informal working methods − thereby making learning a meaningful activity for them, A well-

chosen context can induce an active thought process in children, as the following example shows. 

Let us start to give children of, say, 11 years the following formal and bare problem, not 

presented in a context: 6 ÷ 43 . Many of them will have a great deal of trouble finding a solution 

(Streefland, 1991). Some will answer, for example: 42 , 243  or 4 21 . They manipulate at 

random with the given numbers, for instance 6 ÷ 3 = 2, so 6 ÷ 43  must be 42 . This child views 

fractions as whole numbers and so do other students (Lesh et al., 1987). But some students will 

calculate that 6 × 4 = 24 and that 24 divided by 3 equals 8. It is true that the latter answer is 

correct, but when these children are questioned more closely, it turns out that they understand 

almost nothing about the operation which they themselves have just performed. They just 

remembered a rule they learned by heart, they know that the given solution is correct however 

they don’t know why. 

Now, the same children are next given the following context problem which is accompanied 

by a picture: a patio is 6 metres long; you want to put down new bricks and the bricks you are 

going to use measure 75 centimetres in length ( 43  of a metre). How many bricks will you need 

for the length? This problem is the same as the previous one, but it has now been presented 

within a context, a picture of a patio and the bricks to put down. This presentation elicits a 

child’s own, informal approach: measuring out. This approach provides insight into the problem, 



something which the symbolic form (6 ÷ 43 ) did not do. Some students even manipulated and 

took the measure in reality, this means they measured out step by step 75 centimetres and after 8 

steps they counted 6 metres. So the answer must be ‘eight’, they concluded. This example 

demonstrates that working with contexts − which, if carefully constructed, can be considered 

paradigmatic examples − form the basis for subsequent abstractions and for conceptualization. 

That is because thinking must achieve a higher, abstract level and at that level these particular 

contexts no longer serve a purpose. That is not to say that a process of decontextualisation occurs, 

but rather recontextualisation. The children continue to work with contexts, but these contexts 

become increasingly formal in nature; they become mathematical contexts. Their connection 

with the original context, however, remains clear. The process by which mathematical thinking 

becomes increasingly formal is called the process of progressive mathematization. Contexts, thus, 

have various functions. They may refer to all kind of situations and to fantasy situations (Van 

den Heuvel-Panhuizen, 1996). It is important that the context offer support for motivation as well 

as reflection. A context should indicate certain relevant actions (to take measures in the example 

above), provide information which can be used to find a solution-strategy and/or a thinking-

model. 

Of course, leaving the construction to the students does not guarantee the development of 

successful strategies. However it guarantees that students get the opportunity to practice 

mathematician’s thinking and problem solving processes. Strategies are tried, tested and 

elaborated in various situations. 

 In the previous discussion we have not argued that a student presented with ‘bare’ numerical 

tasks (like 6 ÷ 43 ) will necessarily fail to solve the problem. Hence we were not suggesting 

either that students who are given context problems will necessarily produce the right solution. 

In recent research there is found a strong tendency of children to react to context problems 

(‘word problems’) with disregard for the reality of the situations of these problems. Let us give 

two examples of items used in research (Greer, 1997; Verschaffel et al., 1997): 

− ‘An athlete’s best time to run a mile is 4 minutes and 7 seconds. About how long would it 

take him to run 3 miles?’ 

− ‘Steve has bought 4 planks of 2.5 metre each. How many planks of 1 metre can he get out of 

these planks?’ 



In four studies, discussed by Greer (1997), the percentage of the number of students 

demonstrating any indication of taking account of realistic constraints is: 6%, 2%, 0% and 3%. 

The student’s predominating tendency to apply rules clearly formed an impediment to 

thoroughly understanding the situation. 

Verschaffel et al. (1997) confronted a group of 332 students (teachers in training) with word 

problems and found they produced ‘realistic’ responses in only 48% of cases. Moreover the pre-

service teachers considered these ‘complex and tricky word problems’ as inappropriate for (fifth 

grade) children. The goal of teaching word problem solving in elementary school, after their 

opinion, was “...learning to find the correct numerical answer to such a problem by perforn1ing 

the formal-arithmetic operation(s) ‘hidden’ in the problem” (Verschaffel et al., 1997, p. 357). 

When solving word problems students should go beyond rote learning and mechanical 

exercises to apply their knowledge (Wyndhamn & Säljö, 1997). Their research showed that 

students (10-12 years of age) gave in most cases logically inconsistent answers. The authors 

interprete these findings by claiming that the students focus on the syntax of the problem rather 

than on the meaning. That means that the well-known rule-based relationship between symbols 

results in less of attention being paid to the meaning. The students follow another ‘rationality’, 

that is, they consider word problems as mathematical exercises “… in which a algorithm is 

hidden and is supposed to be identified.” (Wyndhamm & Säljö, p. 366). Hence they do not know 

or realize that they are expected to solve a real life problem. 

Reusser and Stebler (1997) discuss another interesting research finding namely the fact that 

pupils ‘solved’ unsolvable problems without ‘realistic reactions’. For example: 

− ‘There are 125 sheep and 5 dogs in a flock. How old is the shephard?’ (Greer, 1997). 

A pupil questioned by the investigators gave as his opinion: ‘It would never have crossed my 

mind to ask whether this task can be solved at all’. And another pupil said: ‘Mathematical tasks 

can always be solved’. One of the author’s conclusions is that a change is needed from 

stereotyped and semantically poor, disguised equations to the design of intellectually more 

challenging ‘thinking stories’. What we need are better problems and better contexts. Finally, 

Reusser and Stebler (1997) − following Gravemeijer (1997) − give as their interpretation of the 

research findings that the children are acting in accordance with a typical school mathematics 

classroom culture. 



Second, the process of mathematization is characterized by the use of models. Some 

examples are schemata, tables, diagrams, and visualizations. Searching for models − initially 

simple ones − and working with them produces the first abstractions. Children furthermore learn 

to apply reduction and schematization, leading to a higher level of formalization. We will 

demonstrate, once again this using the previous example. To begin, children are able to solve the 

brick problem by manipulating concrete materials. For instance, they might attempt to see how 

often a strip of paper measuring 43  of a metre fits in a 6-metre-long space. At the schematic 

level, they visualize the 6-metre-long patio and draw lines which mark out each 43  of a metre or 

75 centimetres. The child adds 75 + 75 + 75... until the 6 metres have been filled The 

visualization looks as follows: 

  

-----  / -----  / -----  / -----  / -----  / -----  / -----  / -----  /

43  43  43  43  43  43  43  43  

 

An example of reasoning on a formal-symbolic level is as follows: 75 centimetres fits into 3 

metres 4 times. We have 6 metres, so we need 2 × 4 = 8 bricks. The formula initially tested can 

also be applied, but this time with insight: 41  metre fits 4 times into 1 metre, so it fits 24 times 

into 6 metres. But I only have 43  of a metre, so I have to divide 24 by 3, and that makes 8. At 

this formal level, moreover, the teacher can also explore the advantages and disadvantages of the 

two methods with the children. 

Third, an important element of realistic mathematics instruction is that subjects and curricula 

(such as fractions, measurement and proportion) are interwoven and connected, whereas in the 

past, the subject matter was divided − and so atomized. 

Fourth, two other important characteristics of the process of mathematization are that it is 

brought about both by a child’s own constructive action and by the child’s reflections upon this 

action. 

Finally, learning mathematics is not an individual, solitary activity, but rather an interactive 

one. 



Construction 

Learning mathematics is a constructive activity, an aspect which has been emphasized by many 

authors (including Bruner, 1986, 1996; Cobb, 1994; Cobb et al., 1997; Resnick & Klopfer, 1989; 

Steffe, Cobb, & Von Glazersfield, 1988). Children construct internal, mental representations. 

These might be concrete images, schemata, procedures, working methods at the abstract-

symbolic level, intuitions, contexts, schemata of solutions, or thought experiments. To make 

clear how individuals construct different kinds of representations we present now a example (this 

example is above the cognitive level of school children). 

Suppose we were able to tighten a rope around the equator so that it is taught and lies flat on 

the surface. We cut the rope and insert a metre-long piece of rope between the two cut ends. 

Once again we tighten the rope so that it is taught all around. The question is: How far above the 

ground is the rope now? The mental representations of many adults will contain various elements. 

To start, they will ask themselves what the circumference of the earth is: 44,000 kilometres. The 

rope − they can picture it before their very eyes − must therefore measure the same in length. 

Another metre − they reason to themselves − scarcely matters in proportion to that enormous 

distance. Probably the rope barely lifts off the ground. These mental representations actually 

consist of concrete images which form a basis for solving the problem, conceived of as the 

relationship between that one metre and the entire circumference of the earth. A mathematically 

trained problem-solver will construct entirely different representations. He or she will 

immediately dismiss any concrete facts and reduce the earth to a circle, focusing in on the 

relationship between the radius and the circumference. This relationship is then converted into a 

formula, 2π R. The representation is created by converting a concrete problem into an adequate 

mathematical formula. The rope lies about 16 centimetres above the surface of the earth. 

Learning mathematics as a constructive activity means that a child’s own discoveries are 

taken seriously. This does not mean that their discoveries are always on the mark, but they do 

give the teacher a recognizable handle from which he or she can begin to teach. The teacher 

learns the general outlines of the representations of children and can adjust his approach 

accordingly. But what is the function of representations in mathematics instruction? The 

representational point of departure and the ‘representational view of mind’ seems to require 

some constructivist comment. What is criticized and rejected is the metaphor of the mind as a 

mirror that reflects a mathematically prestructured environment unaffected by individual and 



collective human activity (Von Glazersfeld, 1991). Correct, internal representations are 

constructed by confronting them with external representations. These are socially and culturally 

determined (Cobb, 199). Children do indeed actively construct their own mathematical 

knowledge, but their purpose is to participate increasingly in taken-as-shared mathematical 

practices. These practices are played out both in the classroom as in society and science. 

If rules and procedures are prescribed prematurely and one-sided, blocking a child’s own 

representations, problems will ensue. The following recorded fragment of conversation serves as 

a concrete illustration. Henry, a good pupil of 9 years of age, is busy working out subtraction 

problems in his mathematics workbook. The book gives the following formula to complete the 

problems: 

94 - 52 = ... - ... - ... = ... - ... = ... 

Researcher:  How do you do that? 

Henry:  First you subtract 50, that’s 44, and then you subtract 2, making 42. 

Researcher:  Do you always have to do it that way? 

Henry:  Yes. 

Researcher:  Can’t you subtract 2 first? 

Henry:  That’s not allowed. 

Researcher:  But why not? 

Henry:  Because the book says. (He points out the following example: 54 -  

31 = ., 54 - 30 - 1=., 24 – 1 = 23) 

Researcher:  What if I subtract 2 first anyway? 

Henry:  But that’s against the rules. 

Researcher:  Will the answer be different if you subtract 2 first? 

Henry:  Maybe. 

Let us now look at an example in which children are given a change to develop their own 

constructions. A group of 10 to 11-year old students was asked how they would go about solving 

the following problem. There are a number of bottles on a table, and each bottle has a different 

shape. None of them has labels, so no one scan tell just how much each bottle can hold. How 

would you figure out which bottle can hold the most water? The children were asked to present 

their ideas and talk about one another’s ideas. One child suggests weighing the bottles. No, 

another says, hold them under water and see how much the water rises. A third suggests dumping 



the contents on the floor and seeing which puddle is the biggest. This is good example of a 

practical situation in which children are constructing knowledge, taken-as-shared (Cobb, 1994). 

Note that here is qualified the word ‘shared’. The children’s solutions do not match precisely, but 

they are considered ‘compatible’ and are therefore worth discussing. And this is what happened. 

The children were criticizing and commenting each other solutions until one child proposed to 

use a glass as a measure. All the children insisted with this idea but now rose the question of how 

big the glass should be. At the end of the discussion they decided to choose a small glass but not 

too small. The idea that children’s own constructions form the point of departure for the 

teaching-learning process in mathematics instruction is one of the fundaments of the realistic 

school. Confrey (1985) argues that a person’s knowledge is necessarily the product of his/her 

own constructions or mental acts. Thus s/he can have no direct or unmediated knowledge of any 

objective reality. Knowledge is created by means of images or representations and these are 

products of our mental actions (Gardner, 1987). But if their own constructions are so very 

important, children should be allowed to nurture their own constructions (whatever their quality 

may be). It is not necessarily that this would lead to anarchy and blocked communication during 

mathematics class, because constructions arise through interaction with other children and with 

the teacher. Bruner (1986) too asserts that constructivism is not a sort of cultural relativism or an 

homage to the proposition that ‘anything goes’. Neither should constructions be understood in 

Piagetian terms. Piaget (1976) was concerned with individual constructions which arise from the 

subject’s own position and which are the result of intrinsic and autonomous processes; 

‘mathematical practices’ have relatively little influence on them. 

Lo, Grayson, Wheatly, and Smith (1990) discuss the close relationship between construction 

and interaction in the following fashion: “From a constructivist’s perspective learning occurs 

when a child tries to adapt her functioning schemes to neutralize perturbations that arise through 

interactions with our worlds” (p. 116). Two important aspects, constructions and interactions, are 

important in the above statement. Although construction of knowledge is a personal act, it is by 

no means an isolated activity as many people’s interpretations of constructivism imply. 

Constructivists recognize the importance of social actions as ‘the most frequent source of 

perturbations’ (Salomon, 1989). Interactions, thus, lead to construction, because the process of 

interacting often causes perturbations in the normal pattern of behaviour − particularly when 

unexpected problems arise − which the person involved will try to resolve by seeking his or her 



own solutions (constructions). A study conducted by Saxe (1988) investigated how young 

Brazilian candy sellers, who generally had little or no schooling, had learned mathematics. These 

children had learned to fix cost prices, to calculate skilfully in cash amounts, and to think in 

ratios (3 pieces of candy is 500 cruzeiros, 1 piece is 200), but when confronted with classroom 

problems − for example, reading and comparing double-digit numbers − they were at a complete 

loss. They had created their own constructions in the process of solving problems encountered in 

daily social interaction. Constructions, in turn, may once again lead to interactions, in the sense 

that constructions are ‘tested’ in interactions: do my ideas make sense, are they valid? 

The construction of internal mental representations is one of the features of the process of 

learning mathematics. We conceive the development of internal representations as a process of 

signification (Kirshner & Whitson, 1997; Walkerdine, 1997). So we do not make a distinction 

between an externally represented world and an internally representing world. Representation is 

looked upon as a process in which new signs in a cyclic process of signification constantly 

emerge. An internal representation (signifier) transforms and is the basis (signified) for the 

construction of a new internal representation (signifier). Hence a person constructs internal 

representations on the basis of internal representations. 

The process of learning mathematics distinguishes itself from the process of learning other 

school subjects to the extent that in mathematics, constructions – in the sense of internal 

representations which children formulate based on knowledge gained through experience – 

consistently show a closer correspondence with external representations than in other school 

subjects (Cobb et al., 1987; Freudenthal, 1983). Children gain experience in the use of 

measurements, numbers, ratios, and fractions and construct (intuitive) representations. In theory 

these representations form a basis upon which the teacher can build, although this is not always 

the case. Particularly this is not the case when children learn to operate with mathematical 

symbols. Many errors are based on the default nature of natural language encoding processes, as 

Kaput (1987) bas stated. Kaput discusses the well-known Student-Professors problem (Clement, 

1982). At a certain university, for every 6 students there is one professor. Write an algebraic 

equation that expresses the relation between the number of students and professors. Consistently 

the natural language overrides the algebraic rules as is shown by the high error rates (40-80%) 

across age and the predominance of the ‘6s = p’ error, typified by Kaput as the ‘reversal error’. 



The representations which the children construct concerning physical phenomena – also 

known as preconceptions, misconceptions or intuitive ideas – generally deviate so far from actual 

physical reality that they are useless as a basis for conceptualization. For example, children 

associate energy with eating a Mars bar; in their minds, evaporation is the same as disappearing, 

heat means feeling nice and warm, and light is a ray which goes from the eye to an object, rather 

than the other way around (Van der Valk, 1989). These representations are useless in instruction, 

but the teacher must be familiar with them in order to understand the problems that arise in 

conceptualization. This applies as well to representation in other school subjects. For example, 

when studying history, children have a great deal of trouble forming representations based on 

their own experience. One child, for instance, regularly confused ‘Enlightenment’ with ‘more 

light’. 

Interaction 

Realistic instruction in mathematics is not only constructive but also interactive. Several authors 

have pointed out the importance of this interactive, or social, dimension of learning. Bishop 

(1988) has argued to replace ‘impersonal learning’ and ‘text teaching’ with ‘mathematical 

enculturation’, thereby emphasizing the relationship between education and culture. Pimm (1990) 

uses the term ‘mathematical discourse’, while Salomon (1989) speaks of ‘cognitive partnership’. 

Granott and Gardner (1994) constructed a theoretical framework of interaction, based on the 

view of multiple intelligence approach. After their opinion the effect of interaction depends on 

two dimensions. The first dimension is the relative expertise: non symmetric (‘parallel activity’ 

for instance) till asymmetric (‘apprenticeship’). The second dimension is the degree of 

collaboration. ‘Scaffolding’ is for instance an example of collaboration of a high degree, while 

‘imitation’ is in fact an independent activity (no collaboration). 

Interactive teaching has also been called ‘cooperative learning’ (Slavin, 1986), ‘classroom 

discourse’ (Cazden, 1988), ‘mutual instruction’ (Glaser, 1991) ‘guided construction of 

knowledge’ (Mercer, 1995) and ‘interactive instruction’ (Treffers & Goffree, 1985). Bruner 

(1986) a proponent of ‘discovery learning’ − learning on one’s own − in the 1960s, revised his 

ideas several years ago: “My model of the child in those days was very much in the tradition of 

the solo child mastering the world by presenting it to himself in his own terms. In the intervening 

years I have come increasingly to recognize that most learning in most settings is a communal 



activity, a sharing of the culture. It is this that leads me to emphasize not only discovery and 

invention but the importance of negotiation and sharing.” (Bruner, 1986, p. 127). There is no 

contradiction however between invention and sharing, the contrary is true: both activities 

influence each other. If a person makes his own invention, it is worthwhile and even in many 

cases necessary to discuss this invention. And this discussion is the basis for new inventions. 

Nowadays, this view of (cognitive) development and learning is classified as social-

constructivism, a classification which meshes with the realistic approach to mathematics 

instruction. In some studies (Driver, Asoko, Leach, Mortimer, & Scott, 1994; Roazzi & Bryant, 

1994) is defended the point of view that learning and thinking always take place in a social 

situation. Learning, they say, is situated learning (Kirshuer & Whitson, 1997), cognition is social 

cognition. Bruner’s (1986) designation for the acquisition of knowledge is ‘negotiation of 

meaning’. Not only words, concepts, gestures, and rituals, but also numbers, symbols, images, 

visual and graphic representations, etc. have a whole range of meanings. In the case of children, 

these meanings are frequently highly subjective. In response to the question “How old are you?”, 

one child was heard to answer “I’m four, but when I ride in the bus I’m three” (in the 

Nether1ands children under the age of four can ride public transportation free of charge). 

Another child believes that when teachers roll the dice, they get double sixes more often than 

children do. Teaching, says Bruner, means negotiating meaning. You say that zero is “nothing”, 

but what then does zero degrees mean on the thermometer? A child does not believe that her face 

has a surface. “Why not?” asks the teacher. “Because it isn’t length times width,” the child 

responds. By applying the Socratic method, the teacher was gradually able to convince the child 

that the ‘surface’ was not exclusively linked to the algorithm l × w. Bruner’s tribute to Vygotsky 

(1977) is not at all surprising. According to the latter, a child’s higher psychic functions (such as 

language and thought) first take shape as a social (interactive) activity and only later as an 

individual activity. Language first functions as a means of communication; afterwards it 

becomes internalized and serves an individual, self-regulatory function. One of the key concepts 

in Vygotsky’s theory is that education should anticipate actual development. He refers in this 

connection to the ‘zone of proximal development’, and it is this idea which inspired Bruner’s 

‘negotiation of learning’. Both are concerned with interactive instruction, which Freudenthal 

(1984) typifies as ‘anticipatory learning’ and Van Parreren (1988) as ‘developing education’. 



Realistic mathematics instruction is interactive, even though children must naturally be given 

the chance to work independently. As demonstrated in studies carried out by Doise and Mugny 

(1984), however, the point is that allowing children to experience various perspectives − in other 

words, showing them that there are other children with other ideas about how to solve a 

mathematics problem − will stimulate their thinking. Mechanistic (and individualistic) 

mathematics instruction can exclude such experiences because children are required to comply 

with the procedures given in their textbook. Discussion is restricted because the essence of 

instruction lies in teaching irrefutable procedures. Realistic instruction, on the other hand, is 

based on the exchange of ideas, not only, as in the past, between teacher and pupils, but also 

between the pupils themselves. Interaction stimulates reasoning, using and analysing arguments, 

thinking about own solutions and the solutions of others, so interaction reinforces the thinking 

ability. Currently, social interaction in the classroom is receiving much attention where an 

important line of research focuses on effects of small group work (Hiebert, 1992). It goes 

without saying that there should be a ‘genuine’ occasion for discussion. That is why the point of 

departure for realistic instruction is frequently a problem in context; again, this emphasizes how 

tightly interwoven context and interaction are. 

A simple example is the following: a teacher asks his class (6 and 7-year-olds) to think up as 

many ways as they can of doing the sum 5 + 6. The children are allowed to discuss this among 

themselves and together they came up with several methods: counting from 6 on up; adding 5 + 

5 to reach 10 and then adding 1; counting the fingers on both hands and then adding 1; adding 6 

+ 6 and subtracting1, etc. Teacher and pupils then discuss which method is the handiest and why. 

This process leads the children to reflect spontaneously on their own actions: they are forced to 

compare their methods with those of the other children and consider which is the best (this 

example makes clear that in realistic mathematics instruction the students not only are 

confronted with context problems, but with bare problem as well). 

Reflection 

According to Hiebert (1992), reflection or metacognition can be defined as the conscious 

consideration of one’s experiences, often in the interests of establishing relationships between 

ideas or actions. It involves thinking back on one’s experiences and taking the experiences as 

objects of thought. With respect to terminology, reflection is seen most frequently in Russian 



research reports (Davydov, Lompscher, & Markova, 1982; Nelissen & Tomic, 1996; Stepanov & 

Semenov, 1985; Zak, 1984). The terms self-monitoring or self-regulation are also applied 

(Glaser, 1991). It would be most tempting to spend a great deal of time discussing the many 

questions, controversies and dilemmas which have arisen in the literature concerning the concept 

of reflection − consider, for example, the discussion concerning the extent to which reflective 

skills are general or contingent on context (Perkins & Salomon, 1989). 

We generally do not reflect while performing a routine task, for the simple reason that there 

is no cause to do so then. There is, however, reason for reflection whenever we are confronted 

with a problem for which there is no immediate solution at hand. Reflection begins when we ask 

ourselves how best to approach the problem: ‘Should I do it this way or that way?’ (planning). 

Once we have set to work, other questions arise: “Is this working?” (self-monitoring), perhaps 

even “Can I do it?” (self-evaluation). Other obvious questions are “Will this succeed?” 

(anticipation) and, finally, “Am I happy with this?” (evaluation). If the solution turns out to be a 

dead end, then we are forced to ask ourselves “Shouldn’t I try something else?” (consider 

switching methods). These are, in brief, the most important elements of reflection during the 

process of problem-solving. Reflection plays a significant role in learning to solve mathematical 

problems, and indeed in human action in general. Through reflection students learn to analyse 

their own actions critically and also become less dependent on their teacher. Their thinking 

becomes more systematic, however this is not the case with all students. Some students must be 

stimulated frequently. Reflection also allows them to investigate problem-solving methods and 

procedures for general applicability, and increases the flexibility of their thinking. The most 

important aspect, however, is that reflection builds self-confidence by allowing pupils to 

discover what they really think and why they think it. Without this knowledge, every result 

might seem – and in fact might very well be − serendipitous, an awareness that does little to 

build up confidence: the pupil might not be so lucky the next time around. 

That reflection is closely tied to the mathematical learning process and to mathematical 

thinking can be deduced from the proposition, discussed above, that mathematization is a 

constructive activity. This activity, in turn, is permanently linked to interaction, as we have seen. 

We can imagine the connection between construction, interaction and reflection in the following 

manner: constructive thinking implies that interaction takes place concerning our own 

constructions (representations). We must naturally be able to test our own constructions and find 



out how valuable they are. By exploring − and anticipating − the ideas and criticisms expressed 

by others, we gain greater insight into our own ideas. Knowing what these ideas are and how we 

ultimately came up with them is called reflection. We internalize the dialogue which we 

originally conducted with others, turning it into a dialogue ‘with ourselves’. Reflection, thus, is 

nothing less than ‘internalized dialogue’: from primarily inter-individual to intra-individual 

activity. Through reflection, we continue to create new constructions, each time at a higher level. 

In short, reflection is development. 

There is a relationship between reflection and the process by which pupils solve 

mathematical problems. In one study, the reflective thinking and mathematical problem-solving 

skills of two groups of students were compared (Nelissen, 1987). One group had been taught 

mathematics according to the realistic method (84 students) and the other according to the 

mechanistic method (60 students). One striking result was that the students in the first group 

were more flexible in their thinking than those in the second group, specifically because they 

were better able to switch strategies whenever necessary. They were less likely to concentrate 

purely on algorithmic solutions, and were able to develop strategies on the basis of their own 

experience. They tended to check their own approach without prompting and were aware of their 

own thought processes. In general, the children who were better able to solve problems were also 

better at reflection, in the ‘realistic’ group this was 43% of the students, while in the control-

group this was 10% of the students. 

A number of factors might serve to explain this close, positive relationship: (a) the school 

curriculum followed by children in the experimental group was based on problem-solving within 

a rich context. Instead of being given fixed, standard procedures to learn, pupils in these schools 

were allowed to think up their own constructions. Through interaction they were encouraged to 

reflect on their own approach. In this way, problem-solving and reflection were stimulated in 

relation to each other. Note that the children were not given direct, separate training in reflection. 

Research has shown that the training of functions in a separate programme has only a limited 

effect (Derry & Murphy, 1986); (b) by commenting regularly on each other’s actions, the 

‘realistic’ children were able to generate a reflective attitude which may have had a positive 

impact on their problem-solving skills; (c) the children in the experimental group were taught the 

concepts, models and procedures they needed to solve problems and engage in reflection. To be 

able to reflect on a specific subject, they needed to acquire domain-specific knowledge; (d) 



reflection will only prove beneficial after children have come to view the actions they are 

reflecting on as meaningful. The children in the ‘realistic’ group found mathematics and 

problem-solving a meaningful activity. They were therefore more inclined to reflect on problem-

solving than the children in the ‘mechanistic’ group. Children in the latter group saw little reason 

to apply their own reality to learning mathematics, because this reality was continually 

supplanted by prescribed standard algorithms. A study conducted by Stepanov and Semenov 

(1985) revealed that in order to be able to reflect on the process of problem solving, children 

must first see their own actions during this same process as meaningful. Meaning must therefore 

be given due attention during instruction, if children are to find reflection a meaningful activity. 

Reflection, in turn, is vital if the mathematization process is to run smoothly. 

Solving mathematical problems 

One important objective in mathematics instruction is that children be able to apply the concepts 

and skills they have acquired with reasonable success. Problem-solving is considered by many to 

be one of the most important areas of application. That is why so many researchers are interested 

in whether, and if so, how children solve mathematics problems. Where upon are processes of 

problem solving based, on declarative knowledge or on knowledge of procedures? 

The respective opponents and proponents of ‘declarative representations’ and ‘procedural 

representations’ have been engaged in a vehement debate since the early 1970s (Gardner, 1987). 

Adherents of the first believe that the knowledge base is the most important factor in problem-

solving, while adherents of the second relate success largely to the use of procedures and 

strategies. In the 1980s the dispute concerned whether such knowledge or such (reflective) 

procedures were general or domain-specific. This controversy led to yet another split in both 

camps. Although the debate rages on, its resolution seems to be in sight, specifically because 

human thought is increasingly being characterized as modular. Learning is therefore by no means 

a ‘content blind’ process; neither, according to Gardner (1987) are there such things as ‘general 

cognitive architectures’, as Piaget (1976) suggested. Several leading authors appear to share this 

opinion: Bonner (1990), Resnick and Klopfer (1989), and Schoenfeld (1989). All of these above 

mentioned researchers tend, albeit from different backgrounds, to maintain that problem-solving 

(in mathematics) will be most successful when based on a well-organized selection of domain-



specific knowledge, but that the use of procedures which are (once again) domain-specific is also 

indispensable. Experts tend to use domain specific procedures and principles while novices are 

more likely to choose general strategies. For this reason novices often fail to solve the problems 

(Caillot, 1991). 

Problem-solving in mathematics, then, is also characterized by a specific mathematical 

approach, involving the use of domain specific concepts, tools (procedures) and ways of thinking. 

A child who has not mastered this approach will have difficulty when solving mathematical 

problems. A few examples follow. A classroom of six- and seven-year-olds were given the 

following problem: 2 friends live next door to each other, one at number 3 and one at number 5. 

How many houses do they live in? The children answered: 8 houses. Numbers mean little to 

these children, except that they can be added up. Assigning a meaning to numbers is an 

important component of a mathematical approach. Many children (eleven or twelve years old) 

have difficulty solving the following type of problem: a walkman costs $150 after the price has 

gone up by 20%. What was the original price? The answer most frequently given is: 20% of 

$150 is $30; the original price was therefore $120. This answer is, of course, incorrect. Insight 

into this problem can, however, be provided by means of a diagram showing that $150 does not 

equal 100% but 120%: 

 

51  51  51  51  51  to be added: 51  

20% 20% 20% 20% 20%  20% 

 

55  is 100%; 56  then is 120%. So 56  × $150 = $125. 

 

 Schematization − or visualization − is an important mathematical strategy, a tool for solving 

problems. Other such tools are: estimating, simplifying problems, testing, changing perspectives 

and conducting a thought experiment. Gravemeijer (1988) has classified mathematization tools 

according to characteristics derived from mathematics itself. For example, structuring and 

generalizing are related to the category ‘generality’. Proofs and predictions are connected to 

‘certainty’ because this is for a mathematician very important, symbolization and formalization 

belong to ‘precision’ and reduction and constructing algorithms to ‘conciseness’. 



Resnick and Klopfer (1989) identify knowledge that plays an important role in problem-

solving as ‘organizing schemata’, concepts which are ‘powerful’ and must be actively acquired. 

In other words, it is rich, flexible, ‘generative knowledge’. This knowledge, or specialist 

knowledge, forms the basis upon which we can construct the first representation of a problem 

which we must solve. This representation is the starting point for a successful problem-solving 

process. Bransford, Sherwood, Vye, and Rieser (1989) warn against the danger of rote 

knowledge or, as they put it, ‘inert knowledge’. Because children do not consider such formal 

knowledge ‘real’ or meaningful, they will not be able to apply it or only do so blindly, 

particularly in mathematics. Children acquire inert knowledge in mathematics when they are 

forced to learn formulas such as ‘To divide by a fraction, multiply by its opposite’ or to do plain 

problems involving meaningless numbers (leading to the type of problem discussed in the 

example above). In this connection, realistic mathematics instruction makes use of the models, 

schemata and concepts − called ‘conceptual models’ by Lesh (1985) − which form the core of 

the mathematical approach.  

This approach is similar to Davydov’s (1977) idea of teaching children to work with 

theoretical concepts − which can be seen as concepts essential to a specific discipline − instead 

of concepts based on observation or empiricism. In this connection, Davydov has argued for the 

formation of theoretical thinking, similar in certain respects to Freudenthal’s (1984) development 

of mathematical thinking or attitude. In fact, the two are so similar that both have pointed out the 

same flaws in the empirical, inductive teaching approach. In this approach, knowledge comes 

into being through observation or empiricism. Here we can recognize the influence of the 

empiricist school, which, as we have seen, places very little emphasis on vertical 

mathematization − which is precisely what Freudenthal and Davydov do wish to emphasize. 

Mathematical or theoretical insights are required in order to be able to understand reality 

correctly (including learning tools such as the number line or abacus). Here, however, the 

similarity between Freudenthal and Davydov ends. According to Freudenthal, Davydov 

introduces theoretical concepts too early on in education; moreover, Freudenthal rejects the 

distinction made by Davydov between theoretical and empirical concepts. In Freudenthal’s view, 

theory is always inherent in empiricism; all action is implicitly theory bound. 

Research into solving mathematics problems often focuses on initial mathematics problems 

and word problems. See for example De Corte, Verschaffel, and Greer (1996), Span, De Corte, 



and Van Hout-Wolters (1989) and Verschaffel and De Corte (1990) for a report on studies 

carried out on learning and problem-solving in mathematics. Following in the footsteps of Riley, 

Greeno and Heller (1983), Verschaffel and De Corte (1990) explored which internal 

representations children formed as a result of problems which they were given to solve, and 

which role the semantic features of these problems played in this. They also wished to discover 

how these representations formed the basis for actions, in particular problem-solving procedures. 

Their research revealed that semantic factors played a role in forming problem representations 

Many children did indeed tend to take their lead from the meaning of words (some of which 

were printed by chance) in the text (‘together’ or ‘with each other’) and to base their solution 

procedures on these words. It was also shown that many verbal, nonpropositional, grammatical 

characteristics influenced the choice of procedure and not only cognitive schemata, as authors 

such as Resnick (1983) and Riley et al (1983) have suggested. Finding the correct solution, these 

researchers believe, depends on the formation of adequate representations constructed from part-

whole schemata. 

There are, however, several objections which might be raised (Van Luit, 1994) to this 

emphasis upon the part-whole schema. To begin, there is no relationship with a child’s previous 

experiences, such as counting (Van Mulken, 1992). Second, this schema is based exclusively on 

the cardinal interpretation of numbers, whereas in truth numbers may appear in other forms: 9 is 

6 + 3, but 9 is also 3 × 3 or the root of 81. Third, a child gets into trouble if he or she comes 

across a problem which does not contain a part-whole relationship; for example, John is 5 years 

old and his friend is 6. 

A more general comment on research into solving word problems is that the influence 

exerted by semantic structural features has been given too much emphasis, at the expense of 

studying the influence which the nature and the size of numbers have on the choice of solution 

procedure (Van Mulken, 1992; Verschaffel & De Corte, 1990). This is known as ‘number 

sensitivity’ An example is: 62 - 18 = ? If we take account of the nature of the numbers in this 

problem, the obvious strategy is to subtract 20 first and then add 2 The problem 62 - 33 =?, 

however, requires a different approach, for example: 63 - 33 = 30, 30 - 1 = 29. For a lot of 

children this is not an easy problem, because it supposes much flexibility in thinking. In teaching 

children to solve word problems, one should emphasize neither mastery of procedures (such as 

the use of the part-whole schema) nor semantic features, but rather the structure of the problem, 



specifically the structure of the numbers. Proponents of realistic mathematics instruction argue 

for flexibility in choosing problem-solving methods or learning to choose them. 

Some of the above mentioned researchers maintain that training in meta-cognitive skills – 

such as planning the course of a solution, setting up schemata, guessing the solution in advance – 

can simplify the approach taken to problems. However, in none of the studies was training 

conclusively shown to be successful, although progress was noted. Some researchers point out, 

no doubt correctly, that the weaker children lacked a certain knowledge background It was 

remarkable that the children were able to master a heuristic (for example, making an estimate), 

but that this did not automatically lead to their choosing the required, formal operation. 

In problem solving the context can be important. The function of contexts is to elicit 

knowledge which children have gained through experience and which they can use once again in 

forming internal problem representations. This is not, however, a hard and fast rule. Sometimes 

meanings which have been acquired through experience are directly contrary to the mathematical 

meaning of concepts (and, as we remarked earlier, in physics this is the rule rather than the 

exception (Keil, 1989). Walkerdine (1988) drew attention to this in her series of carefully 

conducted observations. An association with the child’s experience, she claims, means an 

association with contexts, and these are highly domain-specific. We cannot simply assume, 

therefore, that ‘transfer’ is affected simply by the insertion of mathematical relations into a 

‘meaningful context’. The author illustrates this by giving the following example. Children first 

learn the concept ‘more’ in a pedagogical situation: ‘Just two mouthfuls more, mmm!’ In 

mathematics, however, ‘more’ is the opposite of ‘less’, and that is an entirely different concept. 

There are, then, two entirely different ‘discursive practices’; in other words, it is not always the 

case that children solve problems better by using knowledge based on their own experience. 

Discussion and conclusions 

There have been radical changes in the approach to mathematics instruction in the past few years. 

These changes came about because mathematicians began to view their own discipline 

differently, leading to new research on teaching methodology. This research was supported by 

new developments in educational psychology. Glaser (1991) analyses these developments. He 

points out the tendency to relate learning and thinking to specific domains. This approach has 

been defended by various authors. For example, in a series of studies (Keil, 1989) it is shown 



that indeed it is plausible that concepts develop largely in specific domains. Research has also 

demonstrated the importance of reflection. 

 Experts − adults or children − develop skills in order to plan and monitor their actions and 

predict what the results of their efforts will be. In an experiment, Glancey (1986) introduced the 

knowledge representation (including heuristic rules) of experts to a group of pupils. On the basis 

of these representations, the pupils learned to formulate hypotheses, recognize errors and, in 

particular, to better organize their knowledge base. Glancey’s most original idea was to have the 

pupils observe experts and question them concerning their methods. The observation strategies 

and the questions were analyzed in advance, and an analysis was also done of how knowledge 

might be restructured during the learning process. Here interaction and reflection go hand in 

hand. The idea of learning as a process of continual restructuring, of increasing architectonics 

and deeper insight, has also been expounded by White and Frederiksen (1986). They furthermore 

emphasize establishing a link with the pupils’ naive, intuitive models, as in mathematics 

instruction. 

 Constructivism is another tendency which Glaser (1991) has frequently come across in 

analyzing research reports. Although the emphasis in the past was on monitoring the pupils’ 

learning processes, nowadays the pupils has more control over his own learning environment, 

and many studies have attempted to gain insight into how pupils construct their learning 

environment in order to be able to learn something, A new image of the pupil is coming into 

being; they are no longer ‘good boys and girls’ who learn everything by rote, but children 

motivated to explore and seek explanations. 

It was not only among Anglo-Saxon cognitive psychology that is undergoing significant 

changes; the Russian Cultural Historical School has long been concentrating on research themes 

related to the new developments in mathematics instruction. The main focus is on reflective 

thinking (Stepanov & Semenov, 1985; Zak, 1984), interaction (Davydov et al., 1982), and the 

development of domain-specific concepts (Davydov, 1977), while education and instruction are 

in essence seen as the active interrelation of symbolic systems and meanings which a culture has 

brought forth (Leont’ev, 1980; Van Oers, 1987). For a more thorough comparison between the 

concepts presented by the Russian Cultural Historic School and realistic teaching methodology, 

readers are referred to Nelissen and Tomic (1995, 1996). 



So, in the past few years a number of interesting new themes relevant to mathematics 

instruction have received a great deal of attention. We have argued that learning is a process 

which rests upon children’s own constructive activity. Learning takes place in a social context 

(Bruner, 1996; Slavin, 1986). Mathematical ideas are not merely abstract; they are contained 

within language and concepts. Learning is a process in which the child masters its cultural 

heritage, by learning particular sets of symbols. If children are able to put their ideas into words, 

they will have a better grasp of their own way of thinking. We have also stated that when 

children are able to put their ideas into words, their teacher will gain greater insight into their 

thought processes. If their constructions prove to be unusable, the teacher can confront the 

children with alternative approaches, for example through problem-oriented questioning. When 

children discuss their ideas with one another (Mercer, 1995), they not only have to state their 

opinions more concisely, they also have to listen, think along with others and try to understand 

what the other children actually mean to say. Learning − and cognitive development − is 

increasingly viewed as a process in which metacognition (or reflection) fulfills a regulatory 

function. 

Solving mathematics problems requires learning domain-specific rather than general 

knowledge. This knowledge is well-structured and flexible, and encompasses a knowledge of 

both content and procedures and reflective knowledge. In mathematics, tools and modes of 

thinking that typify mathematics should be maintained, and used to solve problems. The 

overriding concern is to maintain a flexible choice of tools, and that choice requires domain-

specific reflection. To be able to reflect, however, knowledge of content is once again necessary; 

one can only reflect on the use of tools, strategies and concepts if one knows them. By now many 

of these new ideas have filtered through to the practice of teaching mathematics, in part because 

new programmes are being developed, implemented and supervised which are based on the 

realistic approach, and in part because teacher training now focuses on the new realistic didactic. 

It is, ultimately, the teachers themselves who must put these new ideas into practice. 

Although there is a high degree of consensus among researchers in mathematics instruction, 

particularly on initial mathematics problems and word problems, up to the present theory has 

preceded carefully collected empirical data. If we also agree, on the basis of research findings, 

that construction, interaction and reflection are essential for learning mathematics, then the 

practice of mathematics instruction should be altered radically. Teachers are being asked to 



master a new approach to instruction and to their pupils. Among other things, this means a new 

approach to testing, to explaining, to cooperating and discussing, to working independently, to 

thinking intuitively, to understanding and developing concepts. 
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