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FRAMEWORK FOR CLASSROOM ASSESSMENT IN MATHEMATICS 

This document is not the framework for classroom assessment in mathematics. One might 

even argue that this is not a framework. There have been several efforts to design and describe 

frameworks in assessment or, more specifically, in mathematics assessment. We mention several 

“framework” publications: 

•  Third International Mathematics and Science Study’s (TIMSS) monograph, Curriculum 

Frameworks for Mathematics and Science (Robitaille et al., 1993). 

•  Measuring Student Knowledge and Skills: A New Framework for Assessment 

(Organization for Economic Cooperation and Development [OECD], 1999). 

•  “A Framework for Reflecting on Assessment and Evaluation” (Aikenhead, 1997). 

•  “A Framework for Developing Cognitively Diagnostic Assessments” (Nichols, 1994). 

•  “A Framework for Authentic Assessment in Mathematics” (Lajoie, 1991). 

•  “Toward an Assessment Framework for School Mathematics” (Goldin, 1992). 

Goldin’s title holds for all frameworks in the sense that we are continuously on the way toward a 

framework. In particular, it holds for the present one. This framework is the result of some 20 

years of developmental research on classroom assessment practices. These experiences made 

clear how important and neglected classroom assessment is—in the U.S. even more than in most 

other countries because of the emphasis in the U.S. on standardized tests. A most timely 

overview of the research literature in classroom assessment by Black and Wiliam (1998) made 

our task in some ways more complex but also easier. 

We have deliberately chosen to connect our framework with the OECD (1999) framework, 

designed for the Program of International Student Assessment (PISA)—not only because it 

reflects our philosophy reasonably well, but also because we need to connect internal and 

external assessment frameworks as much as we can. The framework presented here is under 

continuous development. As a product of the National Center for Improving Student Learning 

and Achievement in Mathematics and Science (NCISLA), it tries to incorporate examples and 

practices that relate to the theme chosen by the Center: Learning for Understanding. This theme 

certainly holds for the researchers at the Center: As we make progress, we will learn, our 

understanding of classroom assessment will improve over time, and so will this framework. 



The structure of the framework is clear: We first discuss our philosophy, resulting in 

principles. Then we discuss what we consider important in mathematics education: the 

mathematical literacy and the organization of the mathematical content. The mathematical 

competencies that are needed can be categorized into three “levels” and the mathematical 

concepts into strands or “big ideas.” We then discuss the whole array of formats and tools that 

are available for classroom assessment. Feedback and scoring are discussed before finally 

discussing more practical realizations of such a framework into the classroom. The  Great 

Assessment Picture Book for mathematics (Mathematics GAP Book; Dekker & Querelle, in 

press) supports this framework, illustrating many of its ideas and concepts. 

Aims 

The aim of classroom assessment is to produce information that contributes to the teaching 

and learning process and assists in educational decision making, where decision makers include 

students, teachers, parents, and administrators. 

The aim of mathematics education is to help students become mathematically literate. This 

means that the individual can deal with the mathematics involved in real world problems (i.e. 

nature, society, culture—including mathematics) as needed for that individual’s current and 

future private life (as an intelligent citizen) and occupational life (future study or work) and that 

the individual understands and appreciates mathematics as a scientific discipline. 

The aim of a framework for classroom assessment in mathematics is to bring the aim of 

classroom assessment together with the aim of mathematics education in a seamless and coherent 

way, with optimal results for the teaching and learning process, and with concrete suggestions 

about how to carry out classroom assessment in the classroom situation. 

Principles 

At the turn of the Century, an incredible number of changes were taking place in 

mathematics education, although not necessarily in the same direction. As Black and Wiliam 

(1998) correctly observe, the sum of all these reforms has not added up to an effective policy 

because something is missing: direct help with the teacher’s task of managing complicated and 

demanding situations and channeling the personal, emotional, and social pressures of a group of 

30 or more youngsters in order to help them learn and make them even better learners in the 

future. 



Teachers need to know about their students’ problems while learning, their progress, and the 

level of formality they are operating at so that they can adapt their teaching strategies to meet the 

pupils’ needs. A teacher can find this information out in a variety of ways that range from 

observations and discussions to multi-step tasks and projects, from self-assessment and 

homework to oral presentations. 

When the results of those activities are used in this way—to adapt the teaching and learning 

practice—we speak of formative classroom assessment. 

A fundamental component of this feedback process is imparting information to students, 

assessing and evaluating the students’ understanding of this information, and then matching the 

next teaching and learning action to the present understandings of the students (Hattie & Jaeger, 

1998). 

Some identify classroom assessment with formative assessment. We agree with Biggs (1998) 

that formative assessment and summative assessment are not mutually exclusive, as suggested by 

Black and Wiliam (1998). Their argument is that feedback concerning the gap between what is 

and what should be is regarded as formative only when comparison of actual and reference levels 

yields information that is then used to alter the gap. But if the information cannot lead to 

appropriate action, then it is not formative. . 

Summative assessment in the form of end-of-year tests gives teachers the proof of how well 

they handled the formative assessment, assuming that the underlying philosophy is coherent and 

consequent. The differences in formative and summative assessment within the classroom are 

more related to timing and the amount of cumulation than anything else. Needed for both, of 

course, is that the assessment is criterion-referenced, incorporating the curriculum and resulting 

in aligned assessment. 

The principle that the first and main purpose of testing is to improve learning (Gronlund, 

1968; de Lange 1987) is widely and easily underestimated in the teaching and learning process. 

The reasons are multiple (e.g., the design of fair, rich, open and creative tasks is very difficult; 

the way the feedback mechanism operates; the organization and logistics of an opportunity-rich 

classroom). But Black and Wiliam’s 1998 literature review on classrooms, Assessment and 

Classroom Learning, states very clearly that improvement in classroom assessment will make a 

strong contribution to the improvement of learning. So there is a strong need for a framework 

that takes this principle as its starting point. 



But other principles and standards need to be considered, too. Standards published by the 

National Council of Teachers of Mathematics (NCTM, 1989) had a great influence in the 

discussion on reform in the U.S., and the NCTM recognized that “assessment standards” were 

needed as well (NCTM, 1995). But Standards will not be enough: “A focus on Standards and 

accountability that ignores the processes of teaching and learning in classrooms will not provide 

the directions that teachers need in their quest to improve” (Schmidt, McKnight, & Raizen, 

1996). Nevertheless the NCTM Assessment Standards offer an excellent starting point for a 

discussion on principles and standards in classroom assessment. The Standards are about (a) the 

mathematics, (b) the learning of mathematics, (c) equity and opportunity, (d) openness, 

(e) inferences, and (f) coherence. The following sections discuss each of these standards in turn. 

Standard 1. Mathematics 

Few would argue with the assertion that useful mathematics assessments must focus on 

important mathematics. Yet the trend toward broader conceptions of mathematics and 

mathematical abilities raises serious questions about the appropriateness of the mathematics 

reflected in most traditional tests because that mathematics is generally far removed from the 

mathematics actually used in real-world problem solving. Nevertheless, there is still much debate 

over how to define important mathematics and who should be responsible for doing so. 

This, of course, is a key issue. School mathematics is defined by long traditions resulting in a 

set of separate and often disconnected sub-areas that have little relation with the phenomenology 

of mathematics. Not only is that subdivision in strands rather arbitrary, but the timing of each of 

them in the learning process is also without any reasonable argument. Furthermore, we do not 

attempt to give a full picture of mathematics by any standard, but there is no discussion about 

which subject in school mathematics should be covered: for example, take the long discussion 

and the slow progress on the introduction of discrete mathematics in school curricula. Traditional 

assessment practices have emphasized this compartmentalization of school mathematics. 

Common features of teachers’ formative assessment focuses on superficial and rote learning, 

concentrating on recall of isolated details, usually items of knowledge that students soon forget 

(Crooks, 1988, and Black, 1993, as summarized by Black and Wiliam, 1998). It is for this reason 

that we have chosen to focus on “big ideas” in mathematics (a cluster of related fundamental 

mathematical concepts ignoring the school curricula compartmentalization) and that we try to 

assess broader mathematical ideas and processes. 



Standard 2. Learning 

New views of assessment call for tasks that are embedded in the curriculum, the notion being 

that assessment should be an integral part of the learning process rather than an interruption of it. 

This raises the issue of who should be responsible for the development, implementation, and 

interpretation of student assessments. Traditionally both standardized and classroom tests were 

designed using a psychometric model to be as objective as possible. By contrast, the alternative 

assessment movement affords teachers much more responsibility and subjectivity in the 

assessment process. It assumes that teachers know their students best because teachers have 

multiple, diverse opportunities for examining student work performed under various conditions 

and presented in a variety of modes. When teachers have more responsibility for assessment, 

assessment can truly become almost seamless with instruction (Lesh & Lamon, 1992). 

It will be clear from our introduction that we see classroom assessment as an integral part of 

the teaching and learning process, there should be a mutual influence. It is actually so trivial that 

one is surprised to see that the actual practice is so different. The main cause for this situation is 

the standardized test system. The ironic and unfortunate result of this system is that teachers 

resist formal evaluation of all kinds, given the intellectual sterility and rigidity of most generic, 

indirect, and external testing systems. But because of that resistance, local assessment practices 

are increasingly unable to withstand technical scrutiny: Teacher tests are rarely valid and 

reliable, and “assessment” is reduced to averaging scores out (Wiggins, 1993). Biggs (1998) 

blames psychometricians who, although through no fault of their own, have done enough 

damage to educational assessment. The result is that in most classrooms assessment is no longer 

a part of the teaching and learning process. 

We should and will try, by means of this Framework, to offer teachers a wide array of 

instruments and opportunities for examining work performed under various conditions. Teachers 

need to be aware about the connections between the tests tools and the curricular goals and how 

to generate relevant feedback from the test results. 

Standard 3. Equity and Opportunity 

Ideally, assessments should give every student optimal opportunity to demonstrate 

mathematical power. In practice, however, traditional standardized tests have sometimes been 

biased against students of particular backgrounds, socioeconomic classes, ethnic groups, or 

gender (Pullin, 1993). Equity becomes even more of an issue when assessment results are used to 



label students or deny them access to courses, programs, or jobs. More teacher responsibility 

means more pressure on teachers to be evenhanded and unbiased in their judgment. Ironically, 

the trend toward more complex and realistic assessment tasks and more elaborated written 

responses can raise serious equity concerns because reading comprehension, writing ability, and 

familiarity with contexts may confound results for certain groups (Lane, 1993).  

Clearly, teachers have a very complex task here. As Cobb et al. (1991) argued, we do not 

assess a person objectively, but we assess how a person acts in a certain setting. Certain formats 

favor boys more than girls, others are more equal; boys do better under time pressure than girls 

(de Lange, 1987); girls seem to fare better when there is more language involved; certain 

contexts are more suited for boys, others for girls (van den Heuvel-Panhuizen & Vermeer, 1999); 

and cultural differences should be taken into account. For these reasons, we discuss the role of 

context in some detail, the effect of and the need to use different formats, and the need for a 

variety of representations. For similar reasons, we advocate the assignment of both individual 

and group work as well as the use of both time-restricted and unrestricted assessments. Only if 

we offer that wide variety do we have a chance at “fair” classroom assessment. 

Standard 4. Openness 

Testing has traditionally been quite a secretive process, in that test questions and answers 

were carefully guarded, and criteria for judging performance were generally set behind the 

scenes by unidentified authorities. By contrast, many today believe that students are best served 

by open and dynamic assessment—assessment where expectations and scoring procedures are 

openly discussed and jointly negotiated. 

Students need to know what the teachers expect from them, how their work will be scored 

and graded, what a ‘good explanation’ looks like, etcetera. Teachers should have examples of all 

the different tests that are possible or to be expected, with scoring rubrics and possible student 

work. They need to know why these tests are given, and what will be done with the results. 

Again tradition and existing practice have done much damage. Secrecy was a key issue when 

testing—secrecy as to the questions being asked, how the questions would be chosen, how the 

results would be scored, what the scores mean, and how the results would be used (Wiggins, 

1993). According to Schwarz (1992), standardized tests can be given on a wide scale only if 

secrecy can be maintained because this testing technology requires a very large number of 

questions that are expensive and difficult to generate. Yet according to Schwarz, this is an 



undesirable situation. He proposes new approaches to the filing, indexing, and retrieving of 

previously used problems. Publicly available, richly indexed databases of problems and projects 

provide opportunity for scrutiny, discussion, and debate about the quality and correctness of 

questions and answers. It seems that we have a long way to go, but openness and clarity are 

prerequisites for any proper classroom assessment system.  

Standard 5. Inferences 

Changes in assessment have resulted in new ways of thinking about reliability and validity as 

they apply to mathematics assessment. For example, when assessment is embedded within 

instruction, it becomes unreasonable to expect a standard notion of reliability to apply (that a 

student’s achievement on similar tasks at different points in time should be similar) because it is 

actually expected that students will learn throughout the assessment. Similarly, new forms of 

assessment prompt a re-examination of traditional notions of validity. Many argue that it is more 

appropriate to judge validity by examining the inferences made from an assessment than to view 

it as an inherent characteristic of the assessment itself. Nevertheless, it is difficult to know how 

new types of assessment (e.g., student projects or portfolios) can be used for decision making 

without either collapsing them into a single score (thereby losing all of their conceptual richness) 

or leaving them in their raw, unsimplified, and difficult-to-interpret form. 

Reliability and validity are concepts from an era when psychometricians made the rules.  

These terms have taken on a specific and narrow meaning, have caused much damage to the 

students and society, and more specifically have skewed the perception of what constitutes good 

school mathematics. More important, especially in classroom assessment, is authenticity of the 

tasks (i.e., performance faithful to criterion situations). “Authentic” means that the problems are 

“worthy” and relate to the real world, are non-routine, have “construction” possibilities for 

students, relate to clear criteria, ask for explanations of strategies, and offer possibilities to 

discuss grading. 

In order to do justice to the students (which entails freedom from distortion and letting the 

object speak [Smaling, 1992]) and add validity in the traditional sense, we need a sample of 

authentic tasks to get a valid picture. And, indeed, reliability in the traditional sense is something 

to be avoided at all times if we really want assessment as part of the teaching and learning 

process. If we offer the students the same tests at different moments, we should note differences 

in levels of formality, different strategies, even different answers in some cases. If the tests yield 



the same results (and thus are reliable), then our teaching has failed. It is exactly for this reason 

that a longitudinal study on the effects of a new middle school curriculum has four different 

operationalizations of the “same” problem to find out about students’ growth over time in Grades 

5, 6, 7, and 8 (Shafer & Romberg, 1999). 

Smaling (1992) defined “reliability” in a more ecological way: Reliability refers to the 

absence of accidental errors and is often defined as reproducibility. But here it means virtual 

replicability. The emphasis is on “virtual,” because it is important that the result be reported in 

such a way that others can reconstruct it. The meaning of this is aptly expressed by the term 

“trackability” which, according to Gravemeijer (1994), is highly compatible with Freudenthal’s 

conception of developmental research because “trackability” can be established by reporting on 

“failures and successes,” the procedures followed, the conceptual framework, and the reasons for 

the choices made. 

Standard 6. Coherence 

The coherence standard emphasizes the importance of ensuring that each assessment is 

appropriate for the purpose for which it is used. As noted earlier, assessment data can be used for 

monitoring student progress, making instructional decisions, evaluating achievement, or program 

evaluation. The types of data appropriate for each purpose, however, may be very different. 

Policymakers and assessment experts often disagree on this issue. Policymakers may have 

multiple agendas in mind and expect that they can all be accomplished by using a single 

assessment while assessment experts warn against using an assessment for purposes for which it 

was never intended. 

Coherence in classroom assessment can be accomplished quite simply if the teaching and 

learning process is coherent and the assessment is an integral part of it. Teachers have a wide 

variety of techniques and tools at their disposal to “design” their own classroom assessment 

system that fits with the didactical contract they have with the classroom. Depending on their 

teaching and learning practice and style, they will present the students with their “balance” 

within the classroom assessment system. Coherence with colleagues will be achieved by sharing 

the same criteria and possibly by designing and discussing common tasks and tests. Together 

with designing and using the same “end-of-year test” for students in the same grade,   “fairness” 

for all students in the same year and over the years is ensured because the end-of-year tests are 

not secret although  they change over the years. 



Coherence in relation to external assessment is also essential. For this reason this framework 

is  somewhat related to the recently published framework for mathematics (OECD, 1999)  which 

is being used in a comparative international Assessment Study. Several key components of this 

framework and OECD’s framework are aligned in order to ensure more coherence between 

classroom assessment and a very visible form of external assessment. 

Reflecting on these standards and the existing literature, we make the following list of 

principles for classroom assessment. 

Principles for Classroom Assessment 

1. The main purpose of classroom assessment is to improve learning (Gronlund, 1968; de 

Lange, 1987; Black & Wiliam, 1998; and many others). 

2. The mathematics is embedded in worthwhile (engaging, educative, authentic) problems 

that are part of the students’ real world. 

3. Methods of assessment should be such that they enable students to reveal what they 

know, rather than what they do not know (Cockroft, 1982). 

4. A balanced assessment plan should include multiple and varied opportunities (formats) 

for students to display and document their achievements (Wiggins, 1992). 

5. Tasks should operationalize all the goals of the curricula (not just the “lower” ones). 

Helpful tools to achieve this are performance standards, including indications of the 

different levels of mathematical thinking (de Lange, 1987). 

6. Grading criteria should be public and consistently applied; and should include examples 

of earlier grading showing exemplary work and work that is less than exemplary. 

7. The assessment process, including scoring and and grading, should be open to students. 

8. Students should have opportunities to receive genuine feedback on their work. 

9. The quality of a task is not defined by its accessibility to objective scoring, reliability, or 

validity in the traditional sense but by its authenticity, fairness, and the extent to which it 

meets the above principles (de Lange, 1987). 

These principles form a “checklist” for teachers who take their classroom assessment 

seriously. But the journey from principles to practice can be long. So we will now turn to a 

discussion about several key issues in designing and implementing a classroom assessment 

system. 



In the list of principles, the content was mentioned in different ways (relevant, real-world 

mathematics) and at several levels of mathematical thinking and reasoning because our goal for 

mathematics education is to enable individuals to deal with the mathematics involved in real-

world problems. This is needed for each individual’s current and future private life, occupational 

life (work or education), and understanding and appreciation of mathematics as a scientific 

discipline. In other words: We want our students to become mathematically literate. So first, we 

will elaborate on mathematical literacy. This definition is based on the one used in the OECD’s 

framework for mathematics (OECD, 1999), which draws heavily on the work of Niss and others 

from the mathematics functional expert group for the same  study.1 

Mathematical Literacy 

“Mathematical literacy” is an individual’s ability to identify, understand, exert well-founded 

judgment about, and act toward the roles that mathematics plays in dealing with the world (i.e. 

nature, society, and culture)—not only as needed for that individual’s current and future private 

life, occupational life, and social life with peers and relatives but also for that individual’s life as 

a constructive, concerned, and reflective citizen. 

Some explanatory remarks are in order for this definition to become transparent. 

1. In using the term “literacy,” we want to emphasize that mathematical knowledge and 

skills that have been defined and are definable within the context of a mathematics 

curriculum do not constitute our primary focus here. Instead, what we have in mind is 

mathematical knowledge put into functional use in a multitude of contexts in varied, 

reflective, and insight-based ways. Of course for such use to be possible and viable, a 

great deal of intra-curricular knowledge and skills are needed. Literacy in the linguistic 

sense cannot be reduced to—but certainly presupposes—a rich vocabulary and a 

substantial knowledge of grammatical rules, phonetics, orthography, and so forth. In the 

same way, mathematical literacy cannot be reduced to—but certainly presupposes—

knowledge of mathematical terminology, facts, and procedures as well as numerous skills 

in performing certain operations, carrying out certain methods, and so forth. Also, we 

want to emphasize that the term “literacy” is not confined to indicating a basic, minimum 

level of functionality only. On the contrary, we think of literacy as a continuous, 

multidimensional spectrum ranging from aspects of basic functionality to high-level 

mastery. In the same vein when we use the word “needed” we do not restrict ourselves to 



what might be thought of as a minimum requirement for coping with life in the spheres 

that are at issue. We also include what is “helpful,” “worthwhile,” or “desirable” for that 

endeavor. 

2. The term “act” is not meant to cover only physical or social acts in a narrow sense. Thus 

the term includes also “communicating,” “taking positions toward,” “relating to,” and 

even “appreciating” or “assessing.” 

3. A crucial capacity implied by our notion of mathematical literacy is the ability to pose, 

formulate and solve intra- and extra-mathematical problems within a variety of domains 

and settings. These range from purely mathematical ones to ones in which no 

mathematical structure is present from the outset but may be successfully introduced by 

the problem poser, problem solver, or both. 

4. Attitudes and emotions (e.g., self-confidence, curiosity, feelings of interest and relevance, 

desire to do or understand things) are not components of the definition of mathematical 

literacy. Nevertheless they are important prerequisites for it. In principle it is possible to 

possess mathematical literacy without possessing such attitudes and emotions at the same 

time. In practice, however, it is not likely that such literacy will be exerted and put into 

practice by someone who does not have some degree of self-confidence, curiosity, feeling 

of interest and relevance, and desire to do or understand things that contain mathematical 

components. 

Mathematical Competencies 

Again, in defining Mathematical Competencies we follow the Mathematics Literacy 

framework published by the OECD Program for International Student Assessment (PISA). Here 

is a nonhierarchical list of general mathematical competencies that are meant to be relevant and 

pertinent to all education levels. 

•  Mathematical thinking 

♦  Posing questions characteristic of mathematics—Does there exist...? If so, how 

many? How do we find...? 

♦  Knowing the kinds of answers that mathematics offers to such questions. 

♦  Distinguishing between different kinds of statements (e.g., definitions, theorems, 

conjectures, hypotheses, examples, conditioned assertions). 

♦  Understanding and handling the extent and limits of given mathematical concepts. 



•  Mathematical argumentation 

♦  Knowing what mathematical proof is and how it differs from other kinds of 

mathematical reasoning. 

♦  Following and assessing chains of mathematical arguments of different types. 

♦  Possessing a feel for heuristics (what can happen, what cannot happen, and why). 

♦  Creating mathematical arguments. 

•  Modelling 

♦  Structuring the field or situation to be modelled 

♦  Mathematizing (i.e., translating from “reality” to “mathematics”). 

♦  De-mathematizing (i.e., interpreting mathematical models in terms of “reality”). 

♦  Tackling the model (working within the mathematics domain). 

♦  Validating the model. 

♦  Reflecting, analyzing, offering critique of models and model results. 

♦  Communicating about the model and its results (including the limitations of such 

results). 

♦  Monitoring and control of the modelling process. 

•  Problem posing and solving 

♦  Posing, formulating, and making precise different kinds of mathematical problems 

(e.g., pure, applied, open-ended, closed). 

♦  Solving different kinds of mathematical problems in a variety of ways. 

•  Representation 

♦  Decoding, interpreting, and distinguishing between different forms of presentations of 

mathematical objects and situations, and the interrelations between the various 

representations. 

♦  Choosing and switching between different forms of representation according to 

situation and purpose. 

•  Symbols and formal language 

♦  Decoding and interpreting symbolic and formal language and understanding its 

relations to natural language. 

♦  Translating from natural language to symbolic or formal language. 

♦  Handling statements and expressions that contain symbols and formulas. 



♦  Using variables, solving equations, and performing calculations. 

•  Communication 

♦  Expressing oneself in a variety of ways on matters with mathematical components, in 

oral as well as in written form. 

♦  Understanding others’ written or oral statements about such matters. 

•  Aids and tools 

♦  Knowing about and being able to make use of various aids and tools (including 

information technology tools) that may assist mathematical activity. 

♦  Knowing about the limitations of such aids and tools. 

Competence Levels 

We do not propose development of test items that assess the above skills individually. When 

doing real mathematics, it is necessary to draw simultaneously upon many of those skills. In 

order to operationalize these mathematical competencies, it is helpful to organize the skills into 

three levels. They were successfully operationalized in the National Dutch option of TIMSS 

(Boertien & de Lange, 1994; Kuiper, Bos, & Plomp, 1997) and the ongoing longitudinal study 

on the effects of a middle-school curriculum and have also been adapted for the OECD study. 

The three levels are— 

1. Reproduction, definitions, computations. 

2. Connections and integration for problem solving. 

3. Mathematization, mathematical thinking, generalization, and insight. 

We will elaborate on these levels next. 

Level 1. Reproduction, procedures, concepts, and definitions 

At this first level, we deal with the matter dealt with in many standardized tests, as well in 

comparative international studies, and operationalized mainly in multiple-choice format. In 

TIMSS, the performance expectation aspects of knowing and using routine procedures would fit 

this level. It deals with knowledge of facts, representing, recognizing equivalents, recalling 

mathematical objects and properties, performing routine procedures, applying standard 

algorithms, and developing technical skills. Dealing and operating with statements and 

expressions that contain symbols and formulas in “standard” form also relate to this level. 



Items at Level 1 are often in multiple-choice, fill-in-the-blank, matching, or (restricted) open-

ended questions format. 

Level 2. Connections and integration for problem solving 

At this level we start making connections between the different strands and domains in 

mathematics and integrate information in order to solve simple problems in which students have 

a choice of strategies and a choice in their use of mathematical tools. Although the problems are 

supposedly nonroutine, they require relatively minor mathematization. Students at this level are 

also expected to handle different forms of representation according to situation and purpose. The 

connections aspect requires students to be able to distinguish and relate different statements such 

as definitions, claims, examples, conditioned assertions, and proof. 

From the point of view of mathematical language, another aspect at this level is decoding and 

interpreting symbolic and formal language and understanding its relations to natural language. 

This level relates somewhat to the TIMSS investigating and problem-solving category, which 

included formulating and clarifying problems and situations, developing strategy, solving, 

predicting, and verifying. Judging by these items, however, one has to bear in mind that problem 

solving and using complex procedures in TIMSS are competencies that are actually very close to 

those in our proposed Level 1. Examples therefore play an important role in making our levels of 

competencies and skills clear and workable. 

Items at Level 2 are often placed within a context and engage students in mathematical 

decision making. 

Level 3. Mathematization, mathematical thinking, generalization, and insight 

At Level 3, students are asked to mathematize situations (recognize and extract the 

mathematics embedded in the situation and use mathematics to solve the problem). They must 

analyze, interpret, develop their own models and strategies, and make mathematical arguments 

including proofs and generalizations. These competencies include a critical component and 

analysis of the model and reflection on the process. Students should not only be able to solve 

problems but also to pose problems. 

These competencies function well only if the students are able to communicate properly in 

different ways (e.g., orally, in written form, using visualizations). Communication is meant to be 

a two-way process: students should also be able to understand communication with a 

mathematical component by others. Finally we would like to stress that students also need 



insight competencies—insight into the nature of mathematics as a science (including the cultural 

and historical aspect) and understanding of the use of mathematics in other subjects as brought 

about through mathematical modeling. 

As is evident, the competencies at Level 3 quite often incorporate skills and competencies 

usually associated with the other two levels. We note that the whole exercise of defining the 

three levels is a somewhat arbitrary activity: There is no clear distinction between different 

levels, and both higher- and lower-level skills and competencies often play out at different levels. 

In the TIMSS framework, Level 3 relates best to the mathematical reasoning performance 

expectation: developing notation and vocabulary, developing algorithms, generalizing, and 

conjecturing. 

Level 3, which goes to the heart of mathematics and mathematical literacy, is difficult to test. 

Multiple-choice is definitely not the format of choice at Level 3. Extended response questions 

with multiple answers (with [super-] items or without increasing level of complexity) are more 

likely to be promising formats. But both the design and the judgment of student answers are 

very, if not extremely, difficult. Because Level 3 is at the heart of our study, however, we should 

try, as much as practice permits, to operationalize these competencies in appropriate test items. 

The three levels can be visually represented in a pyramid (Figure 1; de Lange, 1995). This 

pyramid has three dimensions or aspects: (a) the content or domains of mathematics, (b) the three 

levels of mathematical thinking and understanding (along the lines just defined), and (c) the level 

of difficulty of the questions posed (ranging from simple to complex). The dimensions are not 

meant to be orthogonal, and the pyramid is meant to give a fair visual image of the relative 

number of items required to represent a student’s understanding of mathematics. Because we 

need only simple items for the lower levels, we can use more of them in a short amount of time. 

For the higher levels we need only a few items because it will take some time for the students to 

solve the problems at this level. 



 

Figure 1. Assessment pyramid 

 
The easy to difficult dimension can be interchanged with a dimension that ranges from 

informal to formal. 

All assessment questions can be located in the pyramid according to (a) the level of thinking 

called for, (b) mathematical content or big ideas domain, and (c) degree of difficulty. Because 

assessment needs to measure and describe a student’s growth in all domains of mathematics and 

at all three levels of thinking, questions in a complete assessment program should fill the 

pyramid. There should be questions at all levels of thinking, of varying degrees of difficulty, and 

in all content domains. 

Essential to  mathematical literacy  is the ability to mathematize a problem. This process of 

mathematization will therefore be described in a little more detail: 

Defining mathematization. Mathematization, as it is being dealt with here, is organizing 

reality using mathematical ideas and concepts. It is the organizing activity according to which 

students used acquired knowledge and skills to discover unknown regularities, relations and 

structures (Treffers & Goffree, 1985). This process is sometimes called horizontal 

mathematization (Treffers, 1987) and requires activities such as— 



•  Identifying the specific mathematics in a general context. 

•  Schematizing. 

•  Formulating and visualizing the problem. 

•  Discovering relations and regularities. 

•  Recognizing similarities in different problems (de Lange, 1987). 

As soon as the problem has been transformed to a more-or-less mathematical problem, it can 

be attacked and treated with mathematical tools. That is, mathematical tools can be applied to 

manipulate and refine the mathematically modeled real-world problem. This is the process of 

vertical mathematization and can be recognised in the following activities: 

•  Representing a relation in a formula. 

•  Proving regularities. 

•  Refining and adjusting models. 

•  Combining and integrating models. 

•  Generalizing. 

Thus the process of mathematization plays out in two different phases. The first is horizontal 

mathematization, the process of going from the real world to the mathematical world. The 

second, vertical mathematization is working on the problem within the mathematical world 

(developing mathematical tools in order to solve the problem). Reflecting on the solution with 

respect to the original problem is an essential step in the process of mathematization that quite 

often does not receive proper attention. 

One can argue that mathematization plays out in all competency classes because in any 

contextualized problem one has to identify the relevant mathematics. The varying complexity of 

mathematization is reflected in the two examples below. Both are meant for students of 13–15 

years of age and both draw upon similar mathematical concepts. The first requires simple 

mathematization whereas the second requires more complex mathematization.  

Example 1. (Level 2) A class has 28 students. The ratio of girls to boys is 4:3.  

How many girls are in the class?  

Source: TIMSS Mathematics Achievement in the Middle Years, p.98 

 

Example 2. (Level 3) In a certain country, the national defence budget is $30 million for 

1980. The total budget for that year is $500 million. The following year the defence budget is 



$35 million, while the total budget is $605 million. Inflation during the period covered by the 

two budgets amounted to 10 percent. 

a. You are invited to give a lecture for a pacifist society. You intend to explain that 

the defence budget decreased over this period. Explain how you could do this. 

b. You are invited to lecture to a military academy. You intend to explain that the 

defence budget increased over this period. Explain how you would do this. 

Source: de Lange (1987) 

The Mathematics: Strands and Big Ideas 

Mathematics school curricula are organized into strands that classify mathematics as a 

strictly compartmentalized discipline with an over-emphasis on computation and formulas. This 

organization makes it almost impossible for students to see mathematics as a continuously 

growing scientific field that continually spreads into new fields and applications. Students are not 

positioned to see overarching concepts and relations, so mathematics appears to be a collection 

of fragmented pieces of factual knowledge. 

Steen (1990) puts it somewhat differently: School mathematics picks very few strands (e.g., 

arithmetic, algebra, geometry) and arranges them horizontally to form a curriculum. First is 

arithmetic, then simple algebra, then geometry, then more algebra, and finally—as if it where the 

epitome of mathematical knowledge—calculus. This layer-cake approach to mathematics 

education effectively prevents informal development of intuition along the multiple roots of 

mathematics. Moreover, it reinforces the tendency to design each course primarily to meet the 

prerequisites of the next course, making the study of mathematics largely an exercise in delayed 

gratification. 

“What is mathematics?” is not a simple question to answer. A person asked at random will 

most likely answer, “Mathematics is the study of Number.” Or, if you’re lucky, “Mathematics is 

the science of number.” And, as Devlin (1994) states in his very successful book, “Mathematics: 

The Science of Patterns,” the former  is a huge misconception based on a description of 

mathematics that ceased to be accurate some 2,500 years ago. Present-day mathematics is a 

thriving, worldwide activity, it is an essential tool for many other domains like banking, 

engineering, manufacturing, medicine, social science, and physics. The explosion of 

mathematical activity that has taken place in the twentieth century has been dramatic. At the turn 

of the nineteenth century, mathematics could reasonably be regarded as consisting of about 12 



distinct subjects: arithmetic, geometry, algebra, calculus, topology and so on. The similarity 

between this list and the present-day school curricula list is amazing. 

A more reasonable figure for today, however, would be between 60 and 70 distinct subjects. 

Some subjects (e.g., algebra, topology) have split into various subfields; others (e.g., complexity 

theory, dynamical systems theory) are completely new areas of study. 

In our list of principles, we mentioned content: Mathematics should be relevant, meaning that 

mathematics should be seen as the language that describes patterns—both patterns in nature and 

patterns invented by the human mind. Those patterns can be either real or imagined, visual or 

mental, static or dynamic, qualitative or quantitative, purely utilitarian or of little more than 

recreational interest. They can arise from the world around us, from depth of space and time, or 

from the inner workings of the human mind (Devlin, 1994). For this reason, we have not chosen 

traditional content strands as the major dimensions for describing content. Instead we have 

chosen to organize the content of the relevant mathematics around “big ideas” or “themes.” 

The concept of big ideas is not new. In 1990, the Mathematical Sciences Education Board 

published On the Shoulders of Giants: New Approaches to Numeracy (Steen, 1990), a book that 

made a strong plea for educators to help students delve deeper to find the concepts that underlie 

all mathematics and thereby better understand the significance of these concepts in the world. To 

accomplish this, we need to explore ideas with deep roots in the mathematical sciences without 

concern for the limitations of present schools of curricula. 

Many big ideas can be identified and described. In fact the domain of mathematics is so rich 

and varied that it would not be possible to identify an exhaustive list of big ideas. It is important 

for purposes of classroom assessment, however, for any selection of big ideas that is offered to 

represent a sufficient variety and depth to reveal the essentials of mathematics and their relations 

to the traditional strands. 

The following list of mathematical big ideas meets this requirement: 

•  Change and growth. 

•  Space and shape. 

•  Quantitative reasoning. 

•  Uncertainty. 



Change and Growth 

Every natural phenomenon is a manifestation of change. Some examples are organisms 

changing as they grow, the cycle of seasons, the ebb and flow of tides, cycles for unemployment, 

weather changes, and the Dow-Jones index. Some of these growth processes can be described or 

modeled by some rather straightforward mathematical functions (e.g., linear, exponential, 

periodic, logistic, either discrete or continuous). But many processes fall into different 

categories, and data analysis is quite often essential. The use of computer technology has resulted 

in more powerful approximation techniques, and more sophisticated visualization of data. The 

patterns of change in nature and in mathematics do not in any sense follow the traditional content 

strands. 

To be sensitive to the patterns of change, we follow Stewart (1990), who states that we need 

to— 

•  Represent changes in a comprehensible form. 

•  Understand the fundamental types of change. 

•  Recognise particular types of changes when they occur. 

•  Apply these techniques to the outside world. 

•  Control a changing universe to our best advantage. 

These competencies relate nicely to both our definition of mathematical literacy and the 

competencies as defined earlier in this framework. 

Many different sub-strands of traditional content strands emerge in this main mathematical 

domain of change and growth. The obvious ones are relations, functions and their graphical 

representations. Series and gradients are also heavily intertwined with functions. Considering 

rates of growth for different growth phenomena leads to linear, exponential, logarithmic, 

periodic, logistic growth curves, and their properties and relations. These, in turn, lead to aspects 

of number theory, such as Fibonacci-numbers and the Golden-ratio. The connections between 

these ideas and geometrical representations can also play a role here. 

In geometry, one can also explore patterns in nature, art or architecture. Similarity and 

congruence might play a role here, as would the growth of an area in relation to the growth of the 

perimeter or circumference. 

Growth patterns can be expressed in algebraic forms, which in turn can be represented by 

graphs. Growth can also be measured empirically, and such questions arise as which inferences 



can be made from the growth data and how the growth data might be represented. Aspects from 

the data analysis and statistics content strands also naturally emerge here. 

Space and Shape 

Patterns are encountered not only in growth and change processes, but also they occur 

everywhere around us: in spoken words, music, video, traffic, constructions, and art. Shapes are 

patterns: houses, churches, bridges, starfish, snowflakes, city plans, cloverleaves, crystals, and 

shadows. Geometric patterns can serve as relatively simple models of many kinds of phenomena, 

and their study is possible and desirable at all levels (Grünbaum, 1985). Shape is a vital, 

growing, and fascinating theme in mathematics that has deep ties to traditional geometry 

(although relatively little in school geometry) but goes far beyond it in content, meaning, and 

method (Senechal, 1990). 

In the study of shape and constructions, we are looking for similarities and differences as we 

analyse the components of form and recognize shapes in different representations and different 

dimensions. The study of shapes is closely knitted to “grasping space” (Freudenthal, 1973). That 

is learning to know, explore, and conquer in order to improve how we live, breathe, and move 

through the space in which we live. 

This means that we must be able to understand relative positions of objects. We must be 

aware of how we see things and why we see them this way. We must learn to navigate through 

space and through constructions and shapes. It means that students should be able to understand 

the relation between shapes and images or visual representations (e.g., the relation between the 

real city and photographs or maps of the same city). They must also understand how three-

dimensional objects can be represented in two dimensions, how shadows are formed and must be 

interpreted, and what “perspective” is and how it functions. 

Described in this way, the study of Space and Shape is open-ended and dynamic, and it fits 

well into both mathematical literacy and mathematical competencies as defined for this 

framework.. 

Quantitative Reasoning 

Karl Friedrich Gauss’ (1777–1855) teacher had asked the class to add together all the 

numbers from 1 to 100. Presumably the teacher’s aim was to keep the students occupied for a 

time. But Gauss was an excellent quantitative reasoner and identified a shortcut to the solution. 

His reasoning went like this: 



You write down the sum twice—once in ascending order, then in descending order, like this: 

1+ 2 + 3 +…+ 98 + 99 +100 

100 + 99 + 98 +…+ 3 + 2 +1 

Now you add the two sums, column by column, to give: 

101+101+101+…+101+101+101 

As there are exactly 100 copies of the number 101 in this sum, its value is 

11×101=10,100 

This product is twice the answer to the original sum, so you can halve it to obtain the answer: 

5,050. 

Talking about patterns: we might elaborate a little further as the formula that gives the 

general situation for Gauss’ problem looks like this: 

1+ 2 + 3+…+ n =
n n +1( )

2
 

This formula also captures a geometric pattern that is well known: Numbers of the form 
n n +1( )

2
 

are called triangular numbers because they are exactly the numbers you can obtain by arranging 

balls in an equilateral triangle. The first five triangular numbers—1, 3, 6, 10, and 15—are shown 

in Figure 2. 

 

Figure 2. The first five triangular numbers (1, 3, 6, 10, and 15) 

 
Quantitative reasoning is more than being excellent at reasoning in mathematical situations. 

It includes number sense: meaning of operations, feel for magnitude of numbers, smart 

computations, mental arithmetic, estimations. And it comes close to being mathematically 

literate if we accept a broader definition (Howden, 1989). 

Given the fundamental role of quantitative reasoning in applications of mathematics, as well 

as the innate human attraction to numbers, it is not surprising that number concepts and skills 

form the core of school mathematics. In the earliest grade, we start children on a mathematical 

path designed to develop computational procedures of arithmetic together with the corresponding 



conceptual understanding that is required to solve quantitative problems and make informed 

decisions. 

Quantitative literacy requires an ability to interpret numbers used to describe random as well 

as deterministic phenomena, to reason with complex sets of interrelated variables, and to devise 

and critically interpret methods for quantifying phenomena where no standard model exists. 

Quantitatively literate students need a flexible ability to (a) identify critical relations in novel 

situations, (b) express those relations in effective symbolic form, (c) use computing tools to 

process information, and (d) interpret the results of these calculations (Fey, 1990). Here we 

border on the next big idea: uncertainty. 

We also like to stress that in the seeming order of elementary school arithmetic, there is a 

place for quantitative reasoning similar to that of Gauss, as described earlier. Creativity, coupled 

with conceptual understanding, is often ignored at the elementary level of schooling. Students 

know how to execute a multiplication but have no idea how to answer when asked, “What is 

multiplication?” Students are very poorly educated in recognizing isomorphic problems, or 

problems that can be solved using the same mathematical tools. For example, they often fail to 

recognize that the following three problems can all be solved using the ratio table. 

1) Tonight you’re giving a party. You want about a hundred cans of Coke. How many six-

packs are you going to buy? 

2) A hang glider with glide ratio of 1 to 23 starts from a sheer cliff at 123 meters. The pilot 

is aiming for a spot at a distance of 1,234 meters. Will she reach that spot? 

3) A school wants to rent minivans (with 8 seats each) to transport 78 students to a school 

camp. How many vans will the school need? 

Uncertainty 

Uncertainty is intended to suggest two related topics: data and chance. Neither is a topic in 

mathematics but both are phenomena that are the subject of mathematical study. Rather recent 

recommendations concerning school curricula are unanimous in suggesting that statistics and 

probability should occupy a much more prominent place than has been the case in the past 

(Mathematical Sciences Education Board, 1990; NCTM, 1989). Because these recommendations 

emphasize data analysis, however, it is particularly easy to view statistics as a collection of 

specific skills. David S. Moore, the well-known statistics educator, pointed out for us what the 



big idea “uncertainty” is really all about. We follow his ideas as presented in On the Shoulders of 

Giants (Steen, 1990). 

The ability to deal intelligently with variation and uncertainty is the goal of instruction about 

data and chance. Variation is a concept that is hard to deal with: Children who begin their 

education with spelling and multiplication expect the world to be deterministic. They learn 

quickly to expect one answer to be right and others to be wrong, at least when the answers take 

numerical form. Variation is unexpected and uncomfortable, as Arthur Nielsen (1987) from the 

famous marketing research firm noted: 

[Business people] accept numbers as representing Truth…. They do not see a number as a 

kind of shorthand for a range that describes our actual knowledge of the underlying 

condition. 

…I once decided that we would draw all charts to show a probable range around the 

number reported; for example, sales are either up 3 percent, or down 3 percent or somewhere 

in between. This turned out to be one of my dumber ideas. Our clients just couldn’t work 

with this type of uncertainty. (p. 8) 

Statistical thinking involves reasoning from uncertain empirical data and should therefore be 

part of the mental equipment of every intelligent citizen. Its core elements are the— 

•  Omnipresence of variation in processes. 

•  Need for data about processes. 

•  Design of data production with variation in mind. 

•  Quantification of variation. 

•  Explanation of variation. 

Data analysis might help the learning of basic mathematics: The essence of data analysis is to 

“let the data speak” by looking for patterns in data without first considering whether the data are 

representative of some larger universe. 

Phenomena that have uncertain individual outcomes but a regular pattern of outcomes in 

many repetitions are called random. Psychologists have shown that our intuition of chance 

profoundly contradicts the laws of probability. In part, this is due to students’ limited contact 

with randomness. The study of data offers a natural setting for such an experience. This explains 

the priority of data analysis over formal probability. Inference should be an important principle 

in the learning and teaching of uncertainty. 



Relationship With Traditional Strands 

It will be clear from our introduction about the “big ideas” that (a) we will never be able to 

fully grab “mathematics” in such themes and (b) not only do other themes exist but these themes 

may be better, depending on one’s perspective. It also requires little imagination to relate the big 

ideas with the traditional strands. We also realize that relatively few school text materials depart 

from the big-ideas approach. The visualization of competency levels in the Pyramid reflects that 

dilemma. But we only do justice to the discipline of mathematics and to our students if we give a 

more honest picture of mathematics. That means that in our classroom assessment we need to 

strive for broader assessment items that do not necessarily fit with the traditional strands. That 

has repercussions for the classroom teaching and learning process because assessment should be 

aligned seamlessly. But if we accept the principle that the mathematics should be important and 

relevant, we need at least to embed the traditional strand in the big ideas. Once more, we stress 

the hypothesis of Black and Wiliam that classroom assessment might be the most powerful tool 

to change and improve mathematics education. It might even help us paint a much more vivid 

and dynamic picture of mathematics. 

Methods for Classroom Assessment 

When engaging in classroom assessment, the teacher is confronted with many tasks, choices, 

and dilemmas. How can we provoke Socratic dialogues that spur learning, and how can we 

assess these dialogues? (Note that even during such dialogues, Hans Freudenthal warned against 

students’ roles being too passive [Freudenthal, 1973].) How can we organize effectual 

interaction, and how can we assess the resulting effects? What kind of tasks lead to fruitful 

arguments and how can we value these arguments? How can we observe in a proper way and 

keep track of what is observed? 

For many reasons, none of these questions have simple, easy-to-implement answers. The 

most obvious reason, however, seems to be that assessment is so interwoven with the learning 

and teaching. It is impossible to say where the learning ends and assessment begins. Another 

reason is that the sociocultural context plays a major role. There are no “general” rules. We can 

only give the teacher some information about classroom experiments and the results of the 

observation, quite often resulting in “local” theories. 

We can offer somewhat more practical suggestions on the field of self- and peer assessment 

and even more when we address the more common assessment formats; their possibilities, 



qualities, and drawbacks; how to choose the appropriate format; and how to score the tasks. We 

have chosen as our principle that mathematics needs to be relevant, which quite often means that 

there needs to be a link to the real world; therefore, special attention should be given to the 

choice, role, and function of contexts in assessment. This aspect plays an important role in any 

form of assessment, so we will begin with a discussion on contexts. 

Contexts 

It will be clear from our domain description that contexts have to play a major role as a 

vehicle for assessing insight, understanding, and concepts. 

A variety of contexts is needed, as well as a range of roles for the contexts. The variety is 

needed to minimize the chance of featuring issues and phenomena that are not culturally 

relevant. The range of roles for the contexts needs further elaboration because of the effects on 

what we are measuring relates to this role. Meyer (2001) distinguishes five different roles of the 

context: (a) to motivate, (b) for application, (c) as a source of mathematics, (d) as a source of 

solution strategies and (e) as an anchor for student understanding. 

Distance to students 

One can think of context as being certain “distances” from the students: the context that is 

closest is the private life (daily life); the next closest is school life, work, and sports; next is local 

community and society as encountered in daily life; and beyond that are scientific contexts. In 

this way, one can define a more or less continuous scale that can be regarded as another aspect of 

the framework. It is unclear how these distances affect students’ performance on tasks. This 

aspect needs further study, as results so far are inconclusive in the sense that we cannot say that 

“closer” contexts are more attractive for students or better suited for tasks than more scientific 

ones. Common belief suggests that less brilliant students “prefer” contexts closer to their 

immediate environment because they can engage more easily through the context. This can lead 

to items such as— 

•  The ice cream seller has computed that if he sells 10 ice creams, they will be the 

following kinds: 2 cups, 3 cones and 5 sticks. He orders 500 ice creams for the football 

game. What distribution of the different kinds will he use? 

•  Marge is lighter than Alice. Anny is lighter than Alice. Who is lighter: Anny or Marge? 

•  A pack of papers containing 500 sheets is 5 cm thick. How thick is one sheet of paper? 



At the primary level we often see this kind of context that is “close to the student” and taken 

from his or her “daily” life. According to Gravemeijer (1994) and Dekker (1993), however, 

familiarity with the context can be a hindrance: There should be a “certain distance.” 

Fantasy worlds offer another popular context in which students’ fantasy and creativity can 

lead to relevant, but not authentic, mathematical activities. Of course we cannot measure the 

distance to each student individually, so we have to make certain assumptions. One assumption, 

important because it relates directly to one of our guiding principles, is that the distance for a 

particular context might be different for girls and boys. We need to be aware of typical boys’ and 

girls’ contexts. Research by van den Heuvel-Panhuizen and Vermeer (1999) suggests that boys 

do better on experimental knowledge on numbers and measures from the daily real world, 

whereas girls seem to perform better on items where a standard algorithm or procedure is 

needed. 

At the secondary level, an assumption that the context needs to be very close to the student 

does not hold. We notice at least two relevant issues. First, we notice more and more new real-

worlds for the students—including the scientific and political worlds. But there also seems to be 

a tendency for this development to be postponed somewhat for lower-ability students. The 

reasons for this seem to be based more on practical classroom teacher intuition than on research. 

Another aspect of context use that we need to be aware of is its role in assessment items. Of 

course we know that many items have no context at all, and looking at our domain definition, it 

seems highly unlikely that we will encounter this kind of problem often, but mathematics itself is 

part of our real world, so we are bound to encounter this aspect. 

Relevance and Role of Context 

Contexts can be present just to make the problem look like a real-world problem (fake 

context, camouflage context, “zero-order” context). We should stay away from such uses if 

possible.  

The real “first-order” use of context is when the context is relevant and needed for solving 

the problem and judging the answer. 

Second order use of context appears when one really needs to “mathematize” the problem in 

order to solve it, and one needs to reflect on the answer within the context to judge the 

correctness of the answer. So the distinction between first- and second-order use of context lies 

in the role of the mathematization process. In the first order, we have already premathematized 



the problem, whereas in the second order much emphasis is placed on this process (de Lange, 

1979, 1987). 

For this reason, we expect first order context use in most of the shorter items (e.g., multiple-

choice; open-ended, short answer), whereas second-order context use is most often restricted to 

formats that allow for more process-oriented activities that quite often represent second- and 

third-level competencies and skills. 

Special mention should be made of third-order context use, in which the context serves the 

construction or reinvention of new mathematical concepts. A very simple example is the use of a 

bus ride as a model for addition and subtraction (van den Brink, 1989). 

Real Versus Artificial Versus Virtual Contexts 

It seems clear that when we emphasize mathematics education that will prepare our citizens 

to be intelligent and informed citizens, we have to deal with all kinds of real contexts. We have 

to deal with pollution problems, with traffic safety, with population growth. But does this mean 

that we have to exclude artificial and virtual contexts? The answer is no, but we need to be aware 

of the differences for students. 

A virtual context contains elements that are not drawn form any existing physical, social, 

practical, or scientific reality. They are of an idealized, stylized or generalized nature. For 

instance, if a stylized street layout of a city C is considered for an idealized traffic problem, it is 

only the labels “street,” “city,” and “traffic” that are real—the city, streets, and traffic are not real 

or authentic. 

An artificial context deals for instance with fairy tales—nonexistent objects or constructs. 

This class of context is easier to separate from the real context and should be used with care. 

Students will not always be able to co-fantasize within this artificial setting or engage in a world 

that is clearly not real. But sometimes the use of these situations can be justified. 

For all uses of context, the conditions are that they feature mathematics and that they enable 

us to analyze systems and situations, sometimes even before they are established or put into 

practice and hence before resources are spent or dangers encountered. 

Let us now turn our attention from this general feature that plays a role in all methods of 

assessment and in some large part can be decisive whether or not we get good assessment in the 

sense that students are willing and eager to engage in the problem we pose to them. We will first 



discuss aspects of the daily classroom practice that are not always considered as having valuable 

assessment aspects: discourse, observations, and homework. 

Discourse 

Discussing, explaining, justifying, illustrating, and analogizing are all features of reasoning 

in a mathematics classroom. Having an argument to find the appropriate mathematical solutions 

and definitions is generally considered as contributing both to the whole classroom’s learning as 

well to each individual’s progress (Wood, 1998; Cobb, Yackel, & Wood, 1993). Under the 

specific conditions of a classroom, argumentation can have a strong impact on learning. 

Classroom interaction is based on the assumption that the students are at different “levels of 

mathematical and social competencies and skills” or that there are “framing differences” 

(Krummheuer, 1995). So there will only be an agreement about the core of the argument. 

Furthermore, the core of the argument means something different for each student, depending on 

the framing. This in turn leads to different levels of confidence.  

Important in argumentation is the ability to construct a structural similarity among several 

argumentation experiences in different situations. Such a “pattern” of similarly structured 

arguments is called a topos. The argumentation in classroom can contribute to the formation of a 

topos for an individual student, which leads to conceptual mathematical development. 

Krummheuer gives an example of two students who know the argumentation for solving 

simple balancing scales problems but cannot make use of it, which means that no individual 

topos is available. Of course, this is important information for the teacher, and as such, formative 

assessment. 

In summary, Krummheuer uses the notions of data, conclusions, warrants, and backing as a 

means to analyze argumentation. According to Yackel (1995), Krummheuer’s approach is useful 

for two reasons: It clarifies the relation between the individual and the collective, and—

especially relevant here—it provides a way to demonstrate the changes that take place over time. 

Another example is given by van Reeuwijk (1993), showing how students’ knowledge of the 

concept of ‘average’ was assessed during a classroom discussion. The question posed was 

whether it is possible to compute the average size of families using the following data: 



 

# children 

 per family 

# families 

(in thousands) 

0 1,176 

1 810 

2 1,016 

3 417 

4 149 

5 59 

6 23 

7 or more 16 

Student A: How do we have to do this? 

Student B: Just sum up and divide. 

Student C: Yes, but what? 

Student B: I don’t know. OK, there are 3,650 families. 

Student C: OK, divide by 7. 

Student A: That doesn’t make sense. 

Teacher:  What is a family? 

Student :  Mum, Dad and the kids. 

Student:  So, we have to find out how many kids in a family. 

Teacher:  How many children are there? 

Student:  28 or more. Oh no, that doesn’t make sense. 

Teacher:  How many families are there with no kids? 

Student:  1,176 

Teacher:  How many kids is that? 

Student:  (Surprised) None! 

Student:  That means 810 kids in the families with no kids. 

 

An article by Cobb (1999) provides another example of an interesting classroom discourse 

that gives important information about where students are in the teaching and learning process, 

and as such is part of the assessment process. It is about reasoning with data from the outset. The 

activity focused on the question of whether the introduction of a police speed trap in a zone with 

a speed limit of 50 miles per hour had slowed down traffic and thus reduced accidents. The data 



are shown in Figure 3. The bottom graph shows the speeds of 60 cars before the speed trap was 

introduced, and the top one shows the speeds of 60 cars after the speed trap has been in use for 

some time. To begin the discussion, one of the teachers asked Janice to read the report of her 

analysis: 

If you look at the graphs and look at them like hills, then for the before group, the speeds are 

spread out and more than 55, and if you look at the after graph, then more people are 

bunched up close to the speed limit, which means that the majority of the people slowed 

down close to the speed limit. 

 

Figure 3. Graph of data from Cobb’s (1999) speed trap activity 

 
As Cobb noticed, this was the first occasion in public classroom discourse in which a student 

described a data set in global, qualitative terms by referring to its shape. Both teachers then 

capitalized on Janice’s contribution in the remainder of the discussion, treating other students’ 

analysis as attempts to describe qualitative differences in the data sets in quantitative terms. For 

example, Karen explained that she had organized the data sets by using a fixed interval width of 

five: “Like, on the first one, most people are from 50 to 60—that’s where most people were in 

the graph.” One of the teachers checked whether other students agreed with her interpretation. 

Karen then continued: “And then on the top one, most people were between 50 and 55 because, 

um, lots of people slowed down… So, like, more people were between 50 and 55.” 

It goes without saying that the subject of discourse lends itself for much more attention than 

we can give within this framework. The only point we want to make here is that, assuming we 

offer the students worthwhile tasks and organize the interaction and discourse in some organized 

way (there are infinitely many), we will not only contribute to the conceptual development of the 

students but also gain more insight in the failures and successes of that development and will be 



able to adjust our teaching and learning practice. As such, it is one of the most important aspects 

of classroom assessment. 

Johnson & Johnson (1990) present a meta-analysis to show that collaborative discourse can 

produce significant gains in learning. In the science area, Rodrigues & Bell (1995), Cosgrove & 

Schaverien (1996), and Duschl & Gitomer (1997) report more support for learning gains by 

means of discourse. 

Observations 

The discussion about discourse blends naturally with one on observations, especially if we 

see observations in an interactive classroom environment. But observations include more than 

that discourse alone. Observations show which students perform better alone, and which perform 

better in groups. They give insight into how well students organize the result of a discussion on 

paper, how organized they are. They help teachers estimate confidence levels that are so 

important in order to engage in mathematical argument.  

Many teachers have relegated the important information gained from observation to second-

class status behind information that can be gained from a “test.” Part of the problem is that 

observations are hard to organize in a systematic way and the information is too informal to 

make hard educational decisions. The introduction of new information technology such as PDIs 

and spreadsheets, however, makes it somewhat easier to make this format a more serious 

contender, especially for classroom assessment. 

And some help is available for those teachers who want to make effective use of 

observations. Beyer (1993) gives some suggestions that are ecologically valid: Use your 

reflections as teacher in order to develop your own performance indicators. Next: Try to record 

student performance against your indicators on a regular basis. This might sound more 

complicated than necessary. Performance indicators could indicate, for example, three simple 

levels—do not understand, on the way to understanding, and really understanding the concept—

and aim only at very important mathematical concepts, limiting the scope but still getting very 

relevant information. These indicators can be developed in more detail using this framework or 

other external sources. Most teachers know very well what Webb (1995) notes: Systematic 

observations of students doing mathematics as they work on a project supported by their 

responses to probing questions are more authentic indicators of their ability to do mathematics 

than a test score compiled by totaling the number of correct item responses. 



Homework 

Homework is not very often used as or perceived to be assessment, and certainly not if we 

are thinking about assessment as we see it. Quite often, little thought is given to the selection of 

homework problems (“just do the next sums”), nor is there an elaborate discussion about the 

results. This is not too surprising, given that many of the homework problems generally 

encourage only superficial and rote learning. But the exceptions show the possibilities and 

strengths, as became clear within the observations of the NCISLA-RAP project. All students got 

the same homework. The problems were carefully selected to guarantee possibilities for different 

strategies in the students’ solutions. The teacher first checked whether the students had 

successfully accomplished the homework and made notes (grades) in special cases (better than, 

worse than). Next, the teacher invited several students to write their homework on the 

blackboard, making sure those students represented different strategies and solutions. Then all 

solutions were discussed in a plenary classroom session that involved all students. Students could 

make up their minds and make revisions to their own work. During this discussion, and based 

upon input by individual students, the teacher could make more notes on students’ understanding 

of the mathematics involved. 

Operationalizing homework in this way brings together the best aspects of discourse and 

observations and also gives the students an excellent introduction into self-assessment.  

Self-assessment 

It is tempting to quote here a postulate by Wiggins (1993): “An authentic education makes 

self-assessment central.” The means for dispelling secrecy are the same means for ensuring a 

higher across-the-board quality of work from even our most worrisome students: teaching 

students how to self-assess and self-adjust, based on the performance standards and criteria to be 

used. A practical implication of this postulate is that we should require students to submit a self-

assessment with  major pieces of work. Feed back from the teacher will help make clear to the 

students how the teacher assesses in relation to their own perception of “quality.” This in turn 

will most likely improve the student’s learning through a better understanding of the criteria and 

especially the different levels of mathematical competencies as they play out on tests and 

tasks.Wiggins’s postulate is not trivial, as confirmed by a literature review conducted by Black 

and Wiliam (1998), in which they conclude that a focus on self-assessment by students is not 

common practice, even among teachers who take assessment seriously. Also remarkable is the 



fact that in the general literature on classroom assessment, the topic is frequently overlooked, just 

as it is in the otherwise comprehensive collection by Phye (1997). 

Arguments to introduce self-assessment vary. We have already noted Wiggins’s point of 

view. Norway introduced self- and peer-assessment as an intrinsic part of any program that aims 

to help students take more responsibility for their own learning. A further argument is that 

students need to reflect on their own understanding and how to change their understanding, and 

self-assessment is an excellent tool to achieve this. Sadler (1989) argues that students cannot 

change their understanding unless they can first understand the goals that they are failing to 

attain, develop at the same time an overview in which they can locate their own position in 

relation to these goals, and then proceed to pursue and internalize learning that changes their 

understanding. In this view, self-assessment is a sine qua non for effective learning. The research 

data are in general very positive: several qualitative studies report on innovations to foster self-

reflection. We just mention the results that show that students can be helped by using self-

assessment to realize, through feedback on their self-assessment, the lack of correspondence 

between their own perception of their work and the judgments of others. This leads to quality 

improvement in the students’ work (Merrett & Merrett, 1992; Griffiths & Davies, 1993; Powell 

& Makin, 1994; Meyer & Woodruff, 1997). 

We have already indicated that homework can play a role in self-assessment, but it can also 

function within the concept of peer-assessment—students judging the work of students. And 

both self-assessment and peer assessment can find a very effective form when the “own 

production” format is used. Peer assessment will be discussed next, followed by students’ “own 

productions.” 

Peer Assessment 

Peer assessment, like self-assessment, can take many forms. Students may be asked to grade 

an otherwise “traditional” test, to comment on an oral presentation by another student, or to 

construct test items or even whole tasks (Koch & Shulamith, 1991; de Lange et al., 1993; 

Streefland, 1990; van den Brink, 1987). The rate of success has not been well established 

because peer assessment is often introduced at the same time as other innovations such as group 

work (Webb, 1995).  Peer assessment provokes a discussion among students about different 

strategies and solutions and helps them to clarify their views in a setting where they can feel 

safe.As a more concrete example of both self-assessment and peer assessment that relates in a 



positive way to our principles—more particularly, positive testing—we will next turn to “own 

productions” as assessment. 

Own Productions 

If one of our principles is that testing should be positive—which means that we should offer 

students an opportunity to show their abilities—and that tests are part of the teaching and 

learning process, then own productions offer nice possibilities. The idea of own productions is 

not really new. Reports about experiences go back a long time. Treffers (1987) has introduced 

the distinction between construction and production, which according to him is no matter of 

principle. Rather, free production is the most pregnant way for constructions to express 

themselves. 

By constructions, we mean— 

•  Solving relatively open problems that elicit divergent production due to the great variety 

of solutions they admit, often at various levels of mathematization. 

And— 

•  Solving incomplete problems that require self-supplying data and references before they 

can be solved. 

The construction space for free productions might be even wider: 

•  Contriving own problems (easy, moderate, difficult) as a test paper or as a problem book 

about a theme or a course, authored to serve the next cohort of pupils (Streefland, 1990). 

The third suggestion—have students produce test items or a test—was implemented in a 

study on the subject of data visualization in an American high school. The authors (de Lange & 

van Reeuwijk, 1993) describe in detail how a teaching and learning sequence of about five weeks 

was assessed. Apart from two more-or-less-traditional formats with some unusual problems, the 

end-of-the-period test was different. The tasks were presented to the students in the following 

way: 

Data Visualization Task 

This task is a very simple one. At this moment, you have worked yourself through the 

first two chapters of the book and taken relatively ordinary tests. This task is different: 

Design a test for your fellow students that covers the whole booklet. 

You can start your preparation now: Look at magazines, books, and newspapers for data, 

charts, and graphs that you want to use. Write down ideas that come up during school time. 



After finishing the last lesson, you will have another three weeks to design the test. Keep in 

mind: 

The test should be taken in one hour. 

You should know all the answers. 

Good luck! 

The results of this test were very helpful indeed for the teacher involved. Some students 

showed very disappointing work: They simply copied items from the booklet, avoiding any risk-

taking or creativity. Others showed that even that was too much for them: Answers to questions 

that were discussed in the classroom showed that the students’ learning was minimal at best. 

Although many of the questions designed by the students were much better, they were quite 

often at Competency Level 1 (see Figure 4). 

 

The graph shown here is a bar graph involving information about how much money is being spent on military 
supplies compared to the country’s GNP. 

 

Is this information easy to read and understandable? 
Why or why not? 

No, this information is not easy to read because 
the numbers on the left have no meaning. One 
cannot tell if it means millions, billions, etc. 

Could this information be represented better? 
Explain. 

No, because a line graph (box-plot, pie graph, 
stem leaf, etc.) would not work. 

Is this graph accurate? Explain your answer. 

No, because this graph is based on an average 
between 1960 and 1979. 

Figure 4. Math item written by student 

 
The researchers concluded that if the designed tests were to reflect the perceived curriculum, 

that this did not meet the intended goals. Most of the exercises were rather traditional and mainly 

addressed issues as representing numbers in a graph or reading and interpreting graphs. Some of 

the items that were designed, however, operationalized the higher levels in a very naive way. 

These were used to provoke classroom discourse about the teaching and learning process of the 

previous five weeks. 



It was evident that this way of collecting information about the teaching and learning process 

was very effective and was also well  suited for giving feedback to the students. 

Van den Brink (1987) suggested a slightly different “own production,” carrying out 

experiments with first graders. The idea was that they would act as authors of a math textbook. 

This idea immediately raises many questions. Van den Brink mentions: 

•  Are children motivated by the idea of writing down their knowledge for others? 

•  Should the books be written at the end of the year or developed by bits over the year? 

•  Should arithmetic lessons given by the teacher have a place in the books? 

•  Will children who come from different ethnic backgrounds create different books? 

•  Will writing books force children to reflect? 

•  Will the book give a reliable picture of the state of knowledge of the students? 

From an assessment perspective, the last question and the one about reflection are the most 

intriguing. The experiments, which took place at two different schools, seem to point in the 

direction that indeed the activity forces the student to reflect on his or her own learning and 

represents their mathematical knowledge in a fair way. 

Some other research results strongly support this “method” for formative assessment: King 

(1990, 1992a, 1992b, 1994) found that training that prompted students to generate their own 

specific, thought-provoking questions and then attempt to answer them is very effective. Koch 

and Shulamith (1991) reported similar results, showing that students’ own questions produced 

better results than did adjunct questions from the teacher. 

Next we will turn our attention to other tools or formats for assessment organized in a 

somewhat logical order from simple multiple-choice to very complex project tasks. 

Multiple-Choice 

In constructing an achievement test to fit to a desired goal, the test maker has a variety of 

item types from which to choose. It will come as no surprise that the multiple-choice format 

seems to be the “best” format if we simply judge by its popularity. 

Multiple-choice, true-false, and matching items all belong to the same category: the 

selection-type items. Officially, they are so popular because they are objective items—they can 

be scored objectively. That means that equally competent scorers can score them independently 

and obtain the same results. These equally competent scorers are usually computers. And therein 



lies the real popularity of selection-type items: They can be scored by a computer and are 

therefore very cheap to administer. 

The rules for constructing a multiple-choice item are simple: A multiple-choice item will 

present students with a task that is both important and clearly understood and one that can be 

answered correctly only by those who have achieved the desired learning (Gronlund, 1968). This 

is not as simple as it seems, as we all know, especially if we include that the item should 

operationalize a specific goal. 

Another frequently mentioned problem with multiple-choice items is the necessity that only 

those who have achieved the desired learning are able to answer the question correctly. But some 

who answer correctly may have just guessed or coincidentally wrote down the right letter. When 

using the multiple-choice format there will always remain a doubt regarding the validity of the 

knowledge assessed.  

The task of constructing a multiple-choice item that is important for the students, can be 

clearly understood, can be answered correctly only by those who have achieved the desired 

learning, and operationalizes a specific goal or learning outcome is not simple. 

Many items have flaws, and all have very limited value if we are really heading for authentic 

assessment. At this moment, the only area of application seems to be to operationalize the lower 

goals.  In our opinion, open questions offer more possibilities than are usually exploited. 

Properly constructed open questions, with a variety of short, long and extended responses do 

offer some possibilities for assessment at a level higher than the lowest—whatever name we give 

to the lower levels. They may be called knowledge outcomes and a variety of intellectual skills 

and abilities, or computation and comprehension, or basic skills and facts. Whatever the words, it 

is generally agreed that we need other instruments (such as essay tests) that provide a freedom of 

response that is needed for measuring complex or higher order learning outcomes. 

(Closed) Open Questions 

Multiple-choice items are often characterized as closed questions. This suggests that there are 

open questions as well. However, we have to be careful. Sometimes the question is open by 

format but closed by nature. The respondent has to answer by a number, a yes or no, a definition, 

and maybe a simple graph or a formula. There is hardly any thinking or reflection involved. This 

category is mostly in close competition with the multiple-choice format. The following question 



provides an example: “A car takes 15 minutes to travel 20 kilometers. What is the speed of the 

car in kilometers per hour?”   

The same question can be posed easily in the multiple-choice format. 

The distinction between closed-open questions and open-open questions is rather arbitrary; 

however, we should still pay attention to this aspect when designing tests. 

(Open) Open Questions 

In our perception, an open-open question differs from the closed-open question in respect to 

the activities involved in getting a proper answer. This proper answer can still be just a number 

or formula but the process to get there is slightly more complicated or involves higher order 

activities (see Figure 5). 

 

Figure 5. Example of an open-open question 

 

Extended Response–Open Questions 

Extended response–open questions give students the opportunity to get involved in a context 

with one or more open questions of relatively complex nature, where the student’s choice of 

which strategy to follow is not clear in advance. Super items fit into this category. This category 

differs from open-open questions in that we expect the students to explain their reasoning 

process as part of their answer. An example of this type of question is “Martin is living three 

miles from school and Alice five miles. How far apart are Martin and Alice living from each 

other?” 

Of course the answer “they live two miles apart” is just part of the correct answer. Students may 

make a drawing to explain their reasoning:  



Martin and Alice could live 8 miles from each other, or 2 miles or any 

number in between. 

Super Items 

Extended response “super items” (Collis, Romberg, & Jurdak, 1986) are tasks that give 

students the opportunity to get involved with a context or problem situation by asking a series of 

open questions of increasing complexity. The first few questions might be closed-open questions 

or open-open questions. These are followed by more difficult questions that may not have a 

predefinable set of possible answers. For such questions, multiple scoring and some adjudication 

of responses is likely. 

Multiple-Question Items 

This format resembles the Collis, Romberg and Jurdak super items in the sense that one 

context or problem situation forms the setting for the questions. Unlike the super items, however, 

there is no strict order necessary in the structure of the range of questions. It is likely that the first 

question will be simple in order to engage the students; it is also more than likely that the last 

question will be at Level 2 or Level 3. But in between there is quite a bit of freedom in the 

structure. 

Essays 

The construction and selection of items is not difficult for the lower levels of cognitive 

behavior—computation and comprehension. The difficulties were presented at the higher 

levels. …….Construction of a proof is generally an analysis level behavior and is certainly 

something that should be tested. However, the IMC, in consultation with many 

mathematicians and mathematics educators, tried a variety of multiple-choice items to test 

the ability to construct proofs. None was satisfactory. Hence, only a few items testing the 

ability to analyze a proof were included. 



This statement from the International Association for the Evaluation of Educational 

Achievement’s (IEA) Second International Mathematics Study (SIMS; Travers & Westbury, 

1988) clarifies many of the problems we face in mathematics education. First, as we indicated 

before, it is not at all easy to produce good items for the lower levels, and certainly not with the 

multiple-choice format. However there seems to be a general feeling, also prevalent in the 

TIMSS study, that it is not at all difficult. So the first problem is to show and convince 

specialists—and in math education there seem to be a lot of specialists—that we have a serious 

problem here. 

Secondly, there is the problem that we have often seen a presentation of test items that are 

intended to measure higher order goals but fail to realize that objective. 

Thirdly, everyone agrees that the higher levels should be tested. Some even state that the 

higher levels are the most important. It is astonishing, then, to see that because of the “lack of 

satisfactory” multiple-choice items, only a few items are used at the higher levels. The third 

problem: Why don’t we explore at least some of the tools that are available to us to 

operationalize the higher levels? 

An old-fashioned but rarely used tool in mathematics education is the essay test. As 

Gronlund (1968) stated: Essay tests are inefficient for measuring knowledge outcomes, but they 

provide a freedom of response that is needed for measuring complex outcomes. These include 

the ability to create, to organize, to integrate, to express, and similar behaviors that call for the 

production and synthesis of ideas. 

The most notable characteristic of the essay test is the freedom of response it provides. The 

student is asked a question that requires him to produce his own answer. The essay question 

places a premium on the ability to produce, integrate, and express ideas. 

Its shortcomings are well known: The essay task offers only a limited sampling of 

achievement, writing ability tends to influence the quality of the answers, and the essays are hard 

to score objectively. 

Essays can come very close to extended response–open questions, especially in mathematics 

education. Another often-mentioned aspect of the essay is whether it should be written at school 

or at home. Although the essay task is usually seen as a take-home task, this is not necessary. 

One can easily think of smaller essay problems that could be completed at school. It is generally 

accepted that the more precise or “closed” the questions are, the more objective the scoring is. 



From this perspective, one is tempted to conclude that this task can be scored with reasonable 

objectivity, or better, in a good, intersubjective way. 

Oral Tasks and Interviews 

In some countries oral assessment was usual practice, even as part of the formal national 

examination system. There are different forms, of which we cite three: 

•  An oral discussion on certain mathematical subjects that are known to the students. 

•  An oral discussion on a subject—covering a take-home task—that is given to the students 

for 20 minutes prior to the discussion. 

•  An oral discussion on a take-home task after the task has been completed by the students. 

Quite often the oral assessment format is used to operationalize the higher process goals.  

Two-Stage Tasks 

Any task that combines test formats can rightfully be called a two-stage task. An oral task on 

the same subject as an earlier written task is a typical example. Two-stage tasks characteristically 

combine the advantages of the traditional, restricted-time written tests with the possibilities 

offered by tasks that are more open. 

The characteristics of restricted-time written tests as considered here are— 

•  All students are administered the same test at the same time. 

•  All students must complete it within a fixed time limit. 

•  The test— 

– Is oriented more toward finding out what students do not know than what they do 

know. 

– Usually operationalizes the “lower” goals (i.e., computation, comprehension). 

– Consists of open questions. 

•  Scores are as objective as they can be given the fact that we exclude multiple-choice 

format. 

These, then, are the characteristics of the first stage of the task. 

The second stage should complement what we miss in the first stage as well as what we 

really want to operationalize. The characteristics of the second stage are— 

•  There is no time limit. 

•  The test emphasizes what you know (rather than what you don’t). 



•  Much attention is given to the operationalization of higher goals (e.g., interpretation, 

reflection, communication). 

•  The structure of the test is more open: long-answer questions and essay-type questions. 

•  Scoring can be difficult and less than objective; intersubjectivity in grading should be 

stressed. 

Journals 

Journal writing is one of the least used forms of assessment. This seems to be because it is 

time-consuming, hard to score the mathematics separate from the reading and writing skills, and 

unclear how to score students’ work. But, like drawing schemata and graphs, writing 

mathematically—shaping, clarifying, and discovering ideas (Bagley & Gallenberger, 1992)—is a 

very important mathematical ability. 

Concept Maps 

White (1992) has suggested that concept mapping can be used with students to show how 

they see relationships between key concepts or terms within a body of knowledge. This activity, 

like own productions, forces students to reflect on such relationships and to develop a more 

integrated understanding, as opposed to learning isolated facts. Following this line of thought, it 

will be clear that this idea fits nicely with the introduction of big ideas instead of curriculum 

strands. Studies suggest that— 

•  Concept maps can assist students in effectively organizing their knowledge of a topic. 

•  Students come to understand how they learn through the use of concept maps. 

•  Teachers can gain valuable information about the relationship among concepts that 

students have already constructed. 

•  Concepts maps can help teachers identify misconceptions that do not come to the surface 

with other assessment techniques. 

(Santos, Driscoll, & Briars, 1993). 

According to Roth and Roychoudhury (1993), who also recommend the use of concept maps 

as an aid in discourse, such maps drawn by the students serve to provide useful points of 

reference in clarifying the points under discussion and enable the teacher to engage in “dynamic 

assessment.” 



Progress-Over-Time Tests 

Progress over time has always been an implicit aspect of assessing. The next task was 

supposed to be more difficult than the previous one, and the curricular organization takes care of 

that aspect as well: everything that comes later is more complex or at a higher level. But we may 

need a more explicit way to measure mathematical growth. One way to do this is by using almost 

similar problems in tests given at different times. As an example, we refer to the Mathematics in 

Context Longitudinal Study, in which end-of-the-year tests were developed that contain one item 

(actually a super item). This item was revisited in all four end-of-the-year tests, albeit in a more 

complex form as the years progressed. 

Reporting: Feedback and Scoring 

Feedback 

Designing and selecting tasks is one thing, but how to establish quality feedback is quite 

another, and a very important one. Without proper feedback the whole concept of assessment 

contributing to the learning process is endangered. 

Feedback possibilities depend clearly on the “format” that is chosen. In discourse the 

feedback can be immediate and very differentiated in the sense that the feedback can be direct 

(giving the student information about what is wrong and why and giving a suggestion for 

correction) but also and probably quite often, indirect (just asking whether the student is “sure” 

and can explain his answer and comparing it with other answers given by fellow students). 

Feedback possibilities with the multiple-choice format are not abundant: Usually, the only 

feedbacks students get is whether something was correct or incorrect; in a best-case scenario, the 

teacher might spend some time in the classroom highlighting some of the most common 

incorrect answers. 

Within the common restricted-time written test, there are ample opportunities to give 

dedicated, individual feedback to the student. This is time-consuming and the quality of the 

feedback depends to a large extent on how the student’s answers are formulated. If the student 

fails to write down anything relevant, the question of quality feedback becomes an extremely 

difficult one. In such cases, oral feedback after additional questioning seems to be the only 

option. 

Feedback can also have a very stimulating effect. Consider, for example, the homework 

method. Compare the experience of a student who is assigned homework but nothing is done 



beyond “checking” whether he or she “did” it, versus the student who gets quality feedback (as 

described in the Homework section). This was also pointed out in a study in Venezuela on 

mathematics homework (Elawar & Corno, 1985). One group of students was given specific 

feedback on specific errors and strategies used. Another group followed the “normal” practice of 

homework without comments. Analysis of the results showed a large effect of the feedback 

treatment on future student achievement. 

A definition for feedback can be found in Ramaprasad (1983): “Feedback is information 

about the gap between the actual level and the reference level of a system parameter, which is 

used to alter the gap in some way. In order for feedback to exist, the information about the gap 

must be used in altering the gap.” 

This definition is a little too restricted for our purposes because the “gap” need not 

necessarily be a gap in the strict sense. Students might be able to solve a problem at very 

different levels of mathematization and formalization. But they are all successful. So 

theoretically speaking there is no gap. But we might still use the feedback mechanism to bridge 

the level-of-formality “gap”: to show the students on a less formal level what is possible with 

some more formal mathematics. It can also be used the other way around: to show the more 

formal students how elegant—maybe even superior—“common sense” solutions can be. 

Kluger and DeNisi (1996) identified four different ways to close the gap. The first one will 

come as no surprise: try to reach the standard or reference level—this needs clear goals and high 

commitment on the part of the learner. On the other end of the scale, one can abandon the 

standard completely. In between we have the option of lowering the standard. And finally, one 

can deny the gap exists. 

Kluger and DeNisi also identified three levels of linked processes involved in the regulation 

of task performance: meta-task processes involving the self, task motivation processes involving 

the focal task, and finally the task-learning processes involving details of the task. 

About the meta-task processes, it might be interesting to note that feedback that directs 

attention to the self rather than the task appears likely to have negative effects on performance 

(Siero & Van Oudenhoven, 1995; Good & Grouws, 1975; Butler 1987). In contrast to those 

interventions that cue attention to meta-task processes, feedback interventions that direct 

attention toward the task itself are generally more successful. 



In 1998, Black and Wiliam were surprised to see how little attention in the research literature 

had been given to task characteristics and the effectiveness of feedback. They concluded that 

feedback appears to be less successful in “heavily-cued” situations (e.g., those found in 

computer-based instruction and programmed learning sequences) and relatively more successful 

in situations that involve “higher-order” thinking (e.g., unstructured test comprehension 

exercises). 

From our own research (de Lange, 1987), it became clear that the “two-stage task” format 

affords excellent opportunities for high-quality feedback, especially between the first and second 

stages of the task. This is in part due to the nature of the task format: After completion of the first 

stage, the students are given feedback that they can use immediately to complete the second 

stage. In other words, the students can “apply” the feedback immediately in a new but analogous 

situation, something they were able to do very successfully. 

Scoring 

Wiggins (1992) points out, quite correctly, that feedback is often confused with test scores. 

This perception is one of many indications that feedback is not properly understood. A score on a 

test is encoded information, whereas feedback is information that provides the performer with 

direct, usable insights into current performance and is based on tangible differences between 

current performance and hoped-for performance. 

So what we need is quality feedback on one side and “scores” to keep track of growth in a 

more quantitative way on the other side. And quite often we need to accept that we are unable to 

quantify in the traditional sense (e.g., on a scale from one to ten), but just make short notes when, 

during a discourse or during homework, a student does something special, whether good or bad. 

Many of the formats described before have in common that they are in a free-response 

format. Analysis of students’ responses to free-response items can provide valuable insights into 

the nature of student knowledge and understanding and in that sense help us formulate quality 

feedback. With such formats we get information on the method the student uses in approaching 

the problem and information about the misconceptions or error types that they may demonstrate. 

But as the TIMSS designers observed (Martin & Kelly, 1996), student responses to free-

response items scored only for correctness would yield no information on how the students 

approached problems. So TIMSS developed a special coding system that can also be used in 

classroom assessment to provide diagnostic information in addition to information about the 



correctness of the student responses. It was proposed that a two-digit coding system be employed 

for all free-response question items. The first digit, ranging between 1 and 3, would be used for a 

correctness score, and the second digit would relate to the approach or strategy used by the 

student. Numbers between 70 and 79 would be assigned to categories of incorrect response 

attempts, while 99 would be used to indicate that the student did not even try. This TIMSS 

coding system, which was later adapted successfully for the Longitudinal Study on Middle 

School Mathematics (Shafer & Romberg, 1999), is demonstrated in Table 1 using a generic 

example of the coding scheme worth one point. 

 



Table 1. Example coding scheme using the TIMSS coding system 

Write down the reason why we get thirsty on a hot day and have to drink a lot. 

Code Response Example 

Correct responses 

10 Refers to perspiration and its cooling effect and the need to replace 
lost water. 

 

11 Refers to perspiration and only replacement of lost water. • Because when we are hot, our body opens 
the pores on our skin and we lose a lot of 
salt and liquid. 

12 Refers to perspiration and only its cooling effect.  

13 Refers to perspiration only. • We are sweating. 
• Your body gives away much water. 
• We are sweating and get drier. 

19 Other acceptable explanation.  

Incorrect responses 

70 Refers to body temperature (being too hot) but does not answer why 
we get thirsty. 

• You cool down by drinking something cold. 

71 Refers only to drying of the body. • Your throat (or mouth) gets dry. 
• You get drier. 
• The heat dries everything. 

72 Refers to getting more energy by drinking more water. • You get exhausted. 

76 Merely repeats the information in the stem. • Because it is hot. 
• You need water. 

79 Other incorrect responses. • You loose salt. 

Nonresponses 

90 Crossed out or erased, illegible, or impossible to interpret.  

99 BLANK  

 

Student responses coded as 10, 11, 12, 13, or 19 are correct and earn one point. The second 

digit denotes the type of response in terms of the approach used or explanation provided. A 

response coded as 10 demonstrates a correct response that uses Strategy 1. For items worth more 

than one point, rubrics were developed to allow partial credit to describe the approach used or 

the explanation provided. 



Student responses coded as 70, 71, 76, or 79 are incorrect and earn zero points. The second 

digit gives us a representation for the misconception displayed, incorrect strategy used, or 

incomplete explanation given. This gives the teacher a good overview of where the classroom as 

a whole stands, as well as individual differences, which can lead to adequate and effective 

feedback. 

Student responses with 90 or 99 also earn zero points. A score of 90 means the student 

attempted but failed completely, and 99 represents no attempt at all. 

Another addition to the scoring system that can be very helpful is a code for the level of 

mathematical competency. Of course, when a teacher designs her classroom assessment system 

she will balance it in relation to the levels of mathematical competencies. But this will not 

necessarily lead to information on the levels of individual students.  

A crucial and potential weak point arises when we are dealing with partial credit, as will 

quite often be the case. This is a difficult point for students and teachers alike. Without 

preparation, guidelines, exemplary student responses, or a proper “assessment” contract between 

teacher and students, partial-credit scoring can be a frustrating experience even though its 

necessity is obvious. We therefore discuss the issue of partial credits in a little more detail 

through the following examples.  

First, we will present an example of a very simple and straightforward method for partial 

scoring credits in the form of an (external) examination item about a cotton cloth for a round 

table (National Examination, The Netherlands, 1992). 

Nowadays you quite often see small round tables with an overhanging cloth [Figure 6]. You 

can make such a cover yourself using— 

• Cotton, 90 cm wide; 14.95 guilders per meter 

• Cotton, 180 cm wide; 27.95 guilders per meter 

• Ornamental strip, 2 cm wide; 1.65 guilders per meter 

When buying the cotton or strip, the length is rounded to the nearest 10 cm. For instance, if 

you want 45 cm, you need to buy 50 cm. 

1. Marja has a small, round table: height 60 cm; diameter 50 cm. On top of the table, she 

puts a round cloth with a diameter of 106 cm. 

3 points—How high above the ground will the cloth reach? 



2. Marja is going to buy cloth to make her own cover. She wants it to reach precisely to the 

ground. It will be made from one piece of cotton fabric and will be as economical as 

possible. There will be a hem of 1 cm. 

6 points—Compute the amount of cotton Marja will have to buy and how much that will 

cost. 

3. Marja wants an ornamental strip around the edge of the cloth. 

4 points—Compute how much ornamental strip she will need and how much it will cost. 

 

Figure 6. Round table with overhanging cloth 

 
This example shows what some will recognize as a typical female context with questions at 

Levels 1 and 2. Beforehand, it shows the students clearly how many points they can earn for 

answering each of the questions. Next, we provide guidelines for the teachers’ scoring (Table 2). 

Table 2. Example of Scoring Guidelines for Teachers 

No. 
Max. 
score Response Points 

1 3 Answer: 32 cm 1 

  Proper explanation 2 

2 6 Diameter: 172 cm 1 

  Proper explanation 2 

  Answer: 180 cm of cotton cloth 1 

  Width: 180 cm 1 

  Price: 1.80 × 27.95 = 50.31  
(or 50.30*) 

1 

3 4 Diameter: 170 cm 1 

  Circumference: 534 cm (π × 170) 1 

  Answer: She has to buy 540 cm 1 

  Answer: The cost will be 5.40 × 1.65 = 8.91 guilders 
(or 8.90*) 

1 

*Note: The Netherlands did not use single-unit coins at the time. 

 



This might seem clear but of course it is not. There are still many answers possible for which 

the subjective judgment of one teacher might differ from another. That is why it is advisable to 

use intersubjective scoring with external examinations. With intersubjective scoring, at least two 

teachers score the test independently, and they have to come to an agreement. This is a must for 

high-stakes testing but can also be done on a somewhat regular basis in the classroom if teachers 

coordinate their classroom assessment practices. 

Scores are usually on a 100-point scale and are deceptive in the sense that a score of 66 

actually means a score from something like 62 to 69 and thus seems more precise than it actually 

is. But the advantage is that students can check the judgment of the teacher and start a discussion 

about a score based on clear points of departure. 

If so-called “holistic” scoring is used, the clarity is less obvious because there is more room 

for subjective judgment. Under holistic scoring, we group the scoring systems that are quite often 

very meaningful for such formats as essays, journals, and projects but are nowadays also used for 

formats that can be scored more easily. As an example we present two higher-grade descriptors 

of journals by Clarke, Stephens, and Waywood (1992): 

A: Makes excellent use of her journal to explore and review the mathematics she is 

learning. She uses mathematical language appropriately and asks questions to focus and 

extend her learning. She can think through the difficulties she encounters. 

B: Maintains regular entries and is able to record a sequence of ideas. She uses examples 

to illustrate and further her understanding and is able to use formal language to express 

ideas but is yet to develop mathematical explorations. 

And two descriptors by Stephens and Money (1993) for extended tasks (not complete): 

A:  Demonstrated high-level skills of organization, analysis, and evaluation in the conduct 

of the investigation. Used high levels of mathematics appropriate to the task with 

accuracy. 

B:  Demonstrated skills of organization, analysis, and evaluation in the conduct of the 

investigation. Used mathematics appropriate to the task with accuracy. 

It is clear that in this latter set of descriptors, subjective judgments are a greater risk than in 

the previous example. But for some formats we almost have to use this kind of scoring system. 

One can still use numbers of course, even on a 100-point scale for very complex tasks. 

Exemplary student work and how the teacher judged it can be very helpful. This of course is also 



part of the assessment contract between teacher and students. Students need to know clearly what 

the teacher values—maybe not so much the correct answers but the reasoning or the solution’s 

presentation and organization. But even without exemplary work, experienced teachers are very 

capable of sensible scoring on more complex tasks if we are willing to accept the uncertainty 

behind every scoring grade. 

Our own research (de Lange, 1987) on how well teachers are able to score very open-ended 

tasks without any further help in the form of scoring rubrics showed that the disagreement 

among teachers grading the same task was acceptable for most teachers; if we assume that the 

average of a series of grades is the “correct” one, we noticed that 90% of the grades were within 

5 points of the correct grade on a 100-point scale. Other research shows that especially the 

ordering of such complex tasks can be done with very high reliability (Kitchen, 1993). One 

example is the scoring system of the mathematics A-lympiad, a modeling contest for high school 

students that uses both some kind of holistic scoring (gold, silver, bronze, honorable mention) 

and an ordering system. Even though the commission that carried out the difficult task of scoring 

had many personal changes over time, agreement on the rank order was consistently high (De 

Haan & Wijers, 2000). 

From Principles to Practice: The Process 

Putting everything we have discussed so far together in an actual classroom environment is, 

to say the very least, a challenge. It is the aim of this part of the framework to propose a possible 

scenario. 

Let us start with the Professional Standards for School Mathematics (NCTM, 1991). These 

standards envision teachers’ responsibilities in four key areas: 

•  Setting goals and selecting or creating mathematical tasks to help students achieve these 

goals. 

•  Stimulating and managing classroom discourse so that both the students and the teacher 

are clearer about what is being learned. 

•  Creating a classroom environment to support teaching and learning mathematics. 

•  Analyzing student learning, the mathematical tasks, and the environment in order to make 

ongoing instructional decisions. 



Hypothetical Learning Trajectory 

These standards implicitly tell us that much of the teacher’s responsibility involves planning. 

As Brousseau (1984) stated: “If the teacher has no intention, no plan, no problem or well-

developed situation, the child will not do and will not learn anything.” The consideration of (a) 

the learning goals, (b) the learning activities, and (c) the thinking and learning in which the 

students might engage is called the hypothetical learning trajectory (Simon, 1995). 

Although it is necessary for a teacher to form and describe his hypothetical learning 

trajectory, it is also evident that this trajectory will never actually play out as planned in the 

classroom. A teacher might offer students nice, open-ended tasks but the teacher cannot predict a 

student’s actual reactions, and therefore cannot predict the actual learning trajectory. So the 

trajectory will be modified continuously as the lesson cycle develops. And students’ assessment 

plays a vital role in this modification process. 

Of the three components in the trajectory, the teacher’s learning goals seem to be the easiest 

to tackle, and an experienced teacher will also be able to develop a plan for learning activities 

(probably heavily based on the student materials available on the market). But the most difficult 

component is the teacher’s hypothesis of the actual learning process. As Simon notes with some 

regret, the mathematics education literature is not abundant with research with emphasis on 

anticipating students’ learning processes. A notable positive exception is the successful project, 

Cognitively Guided Instruction (Carpenter & Fennema, 1988; Carpenter et al., 1999), in which 

teachers learned much about research on children’s thinking and thus were more capable of 

predicting and anticipating children’s learning processes. 

The design of a hypothetical learning trajectory. To a great extent, the student and teacher 

learning materials used will affect how complicated the design of the hypothetical learning 

trajectory will be. Sometimes the (textbook) materials help in a very limited way; sometimes 

they make more help available. As an example of the latter scenario, we have chosen the teacher 

guide for Looking at an Angle (Feijs, de Lange, Van Reeuwijk, Spence, & Brendefur, 1996), a 

unit from Mathematics in Context, a middle school curriculum funded by the National Science 

Foundation (NSF) and developed by the Wisconsin Center for Education Research (WCER; 

Madison, WI) and the Freudenthal Institute (Utrecht, The Netherlands). 

In this teacher guide we find a rather explicit goal description on the three competency levels 

used in this framework. That by itself facilitates the design quite a bit. From the nine goals on 



Level 1 (here called Conceptual and Procedural Knowledge), we quote: “understand the concepts 

of vision line, vision angle, and blind spot,” and this goal is directly related to activities in the 

student materials that “offer ongoing assessment opportunities.” 

From Level 2, we also mention one goal: “understand the relationship among steepness, 

angle, and height-to-distance ratio.” Again, the connection to the student materials shows that 

these connections are evenly spread out over the whole period of the unit (4–5 weeks), so that 

teachers and students can reflect on the concept several times and can work toward putting the 

relationship on a new and higher level of understanding. 

Also, some activities are identified that refer explicitly to Level 3 competencies such as 

seeing the isomorphism in the different models used in this unit. 

Not only are opportunities identified for ongoing formative assessment but also for “end-of-

unit” assessment, which has both formative and summative aspects. Further help is available in 

the form of possible right and wrong answers and strategies. 

In such a way, the teacher can get considerable support in formulating learning goals and 

planning for learning activities and can get backing for formulating the hypothetical learning 

process and how to relate this hypothetical learning trajectory to the assessments of student’s 

knowledge (a particularly important aspect). 

In his article on the learning trajectory, mentioned earlier, Simon (1995) correctly points out 

that the design of the trajectory with traditional textbooks is a difficult task. His approach 

represents a sharp contrast to the approach to instruction characteristic of traditional mathematics 

instruction and represented by traditional mathematics textbooks. Traditional instruction tends to 

focus on one skill or idea at a time and then provide considerable routine practice to “reinforce” 

that learning. Materials developed more recently differ in many ways from this approach and are 

more or less in line with the ideas represented by Simon, although they do not always directly 

represent the purely constructivist approach advocated in the article. 

After forming a hypothetical learning trajectory—and the more experienced a teacher gets, 

the better the trajectory, assuming the flexibility of the teacher to adjust continuously—the next 

problem arises: where and when am I going to assess what, and how? 

Our basic assumptions will be the following: there is a clearly defined curriculum for the 

whole year—including bypasses and scenic roads—and the time unit of coherent teaching within 

a cluster of related concepts is about a month. So that means that a teacher has learning 



trajectories with at least three “zoom” levels. The global level is the curriculum, the middle level 

is the next four weeks, and the micro level is the next hour(s). These levels will also have 

consequences for assessment: end-of-the-year assessment, end-of-the-unit assessment, and 

ongoing formative assessment. 

Hypothetical Assessment Trajectory 

Next we will see how to design a hypothetical assessment trajectory to fit the learning 

trajectory. Some of the ideas we describe have been suggested by Dekker and Querelle (1998). 

Before. The first assessment activity should be when starting to teach a new concept or idea 

with some fundamental value (middle zoom level). The teacher wants to know whether the 

students have mastered the prior knowledge necessary to start successfully with a new unit. 

Already, this assessment activity will change the learning trajectory. Possible and suggested test 

formats for these goals are— 

•  Oral test. Questions are posed that involve basic knowledge and skills (Level 1). This 

format is appropriate because it enables the teacher to recapitulate important topics with 

the whole group in a very interactive way. Although basic knowledge and skills should 

be stressed, the format also allows the teacher to check Level 2 and 3 competencies in a 

relatively effective and fruitful way. 

•  Aural test. Questions are posed orally but answers are written down. This gives students 

who are not too fluent in English a second and probably fairer chance to express their 

ideas. This format also lends itself very well to checking whether students are able to 

express their informal knowledge about things to come; this is again relevant to designing 

the learning trajectory. 

•  Entry test. A short, written entry test consisting of open-ended questions. 

•  Other test formats. It goes without saying that the teacher is free to choose from any of 

the test formats described before or to design other test formats. 

During. While in the trajectory, there are several issues that are of importance to teachers 

and students alike. One is the occurrence of misconceptions of core ideas and concepts. Because 

students in a socio-constructivist or interactive classroom get lots of opportunities to re-construct 

or re-invent their mathematics, the opportunities to develop misconceptions also abound. 

Because there is only one teacher but more than 30 students, the teacher needs some tools to 

check for student misconceptions. Dekker and Querelle (1998) recorded that cubes were 



mistaken for squares, Pythagoras theorem was remembered with a multiplication or “×” sign 

instead of a plus or “+” sign, and perimeters and areas were regularly mixed up. Possible 

assessment tools include: 

•  Production items. Students design a simple short-answer test. Of course answers should 

be provided as well (see discussion of this format), and all of the required content should 

be covered. The test could be graded but another, more rewarding possibility is to 

compose a class test using the student-designed items. Misconceptions will turn up and 

can then be discussed. 

•  Student-generated items. Students hand in a certain number of single-answer questions 

on the subject involved. These are used in a computer-based quiz for the whole group and 

are discussed afterwards. 

As discussed previously in some detail, all assessment should result in feedback, and 

hopefully in feedback that goes far beyond grading a test. Feedback to the students is especially 

important when most students fail to solve a problem—a problem which the teacher thought fit 

nicely in the learning trajectory.  

A very forceful way to get quality feedback is formed by the two-stage task. In this case, 

feedback on the first stage is given before the students start working on the second stage. In 

reality, this means that the teacher gets feedback from the students on how well the teacher’s 

feedback worked. Other information-rich formats include: 

•  Oral questions are asked when the topic is discussed in the classroom. In this case, the 

discourse is an assessment format. 

•  Short quizzes, sometimes consisting in part of one or more problems taken directly from 

student materials. 

•  Homework as an assessment format (if handled as described in our earlier section on 

homework). 

•  Self-assessment—preferable when working in small groups. Potential important 

difficulties will be dealt with in whole-class discussion. 

Throughout the school year, the teacher will constantly evaluate the students’ individual 

progress and the progress of the whole classroom within the learning trajectory and thus evaluate 

the intended learning goals as benchmarks. 



This ongoing and continuous process of formative assessment, coupled with the teachers’ so-

called intuitive feel for students’ progress, completes the picture of the learning trajectory that 

the teacher builds. The problem of a strongly interactive classroom environment is that for 

teachers and students alike it is difficult to know whether or not they contribute to the group 

learning process and what they learned individually. Formats that may be helpful to evaluate 

students’ progress include— 

•  Discussions with individual students about their understanding. 

•  Observation of students in groups and while working individually. 

•  Extended-response open questions, which require own productions, display of results 

for the whole group, or discussion by the whole class. 

•  Peer-assessment can be a tremendous help because students see the mistakes of their 

fellow students and then try to decide whether full or partial credit should be given for a 

certain solution. 

After. At the end of a unit, a longer chapter, or the treatment of a cluster of connected 

concepts, the teacher wants to assess whether the students have reached the goals of the learning 

trajectory. This test has both formative and summative aspects depending of the place of this part 

of the curriculum in the whole curriculum. Different test formats are possible, while we see often 

that some formats with timed, written tests are the teacher’s favorite—most likely because of 

their relatively ease of design and scoring and the limited possibility of feedback in a qualitative 

way 

On Design 

Assuming that the teacher has been able to construct a reasonable Hypothetical Learning 

Trajectory, the question is how to design in some more detail the assessment package that fits the 

corresponding trajectory. We need to take the following minimal variables into account: 

•  “Zoom” level. 

•  Content or big ideas. 

•  Level of competencies. 

•  Contexts. 

•  Formats. 

•  Feedback. 



•  Grading. 

•  Coherence and balance. 

Keep in mind that we need to also consider the nine “Principles for Classroom Assessment.” 

With these in mind, let us look briefly at each variable. 

“Zoom” level. It is a good idea to start with a helicopter view of what the curriculum will 

look like over the whole year. This can be done in units of instruction or chapters of a textbook, 

or another clustering of ideas and concepts. The sequence needs to be logical and we need to pay 

attention to the longer lines of cognitive development that might be the results of this curriculum. 

For instance, it is quite possible that several concepts return to the attention months apart but at a 

higher and more formal level each time. If this is the case, it should be reflected in the 

assessment package. 

From this higher or more global zoom-level, we can identify the end-of-year test and a 

number of end-of-cluster tests. For all practical purposes, most of these will be in a restricted-

time written test format. But some of them need to be different if we want to stick to our 

principles. One of the tests could easily be a two-stage task. Easily, in the sense that apart from 

the design, these tests are relatively easy to administer. Or one of them could be a take-home task 

or a task to be performed in groups of two. 

Content. The content can be covered in two distinct ways: cumulatively or by covering only 

the “unit” that has just been taught. The end-of-year test will always be cumulative, even over 

the years. The implication, of course, is that students should be informed about what the covered 

content will be far in advance. Three aspects need to be considered when looking at the content:  

•  How similar or dissimilar should the items be in relation to the student materials? (Are we 

testing reproduction or production and transfer?)  

•  What are the connections with other subjects and concepts? (Are we thinking big ideas, 

and to what extent?) 

•  What is the balance between more formal vs. informal mathematics?  

This connects directly to the levels of mathematical competencies. 

Competencies. All levels of competencies should be present in all tests but there should be 

more of the lower ones because they take little time. It is advisable to make an equal distribution 

over the three levels in terms of time rather than in terms of the number of items. It is a good idea 

to keep track of the distribution of the number of items on different levels and how the students 



perform relative to the levels in order to be able to give quality feedback both on both the 

classroom and the individual levels. Some support in finding higher level items and how to keep 

track of the distribution over the years can be found in the applications of technology to 

assessment. A modest contribution in this direction, consistent to a large extent with this 

framework is the assessment tool, “AssessMath!” (Cappo & de Lange, 1999), that offers not only 

a database of items but also a wide array of formats, the three levels of competencies, and the 

role of context. 

Contexts. One should not fall into the tempting trap of designing items with the mathematics 

content in mind and then later adding a context. Nor should one take a context problem and 

simply change the context—many examples are available to show the disasters that can happen 

when these design strategies are followed. 

The distance of the context to the students’ real world is one aspect that the teacher needs to 

get under control in the sense that each class environment can generate its own rules. (The 

assessment contract plays a crucial role here.) If the teacher takes the news from the different 

media as a regular discussion point in the lessons, one might expect a greater spread of distances 

in contexts than is the case with a teacher who facilitates contexts especially close to home and 

school. There is a clear trend for younger students to feel more confident with contexts closer to 

their life; to the surprise of some, however, context that relates to the environment, nature, and 

daily life in a wider sense can also motivate students very well, assuming challenging problems. 

One should also be aware that in the more informal assessment formats, the freedom in 

context use is greater than when the tests are of a more summative character. This is because a 

teacher in a discussion will immediately note whether a certain context seems sensible to certain 

students (certain illnesses, for instance), and the teacher can correct for that on the spot. 

The relevance of the context is another important point of consideration. If we take problem 

solving, and thus mathematization, as an important aspect of mathematics, then it is absolutely 

necessary to include first- and preferably second-order contexts on a regular basis. Quite often 

this means the use of more complex formats, although extended-response written questions offer 

good possibilities. 

Finally, the point of “realness” of the context needs attention. Here again the teacher, in 

relation with the students, sets the boundaries. Although it seems sensible to stay as close to 

reality as possible without losing mathematical relevance, there are also good examples of not-



so-real or not-so-authentic problems that have been excellent items for assessment, along with a 

few almost ridiculous “fantasy” problems that functioned within the classroom environment 

defined by teacher and students. 

Formats. It is too simple to state that the choice of formats should be balanced. When we 

have a learning trajectory, one cannot just identify crucial assessment opportunities and choose a 

format. But in general, one can say certain things about the choice. From our previous 

discussion, it will be evident that discourse and observations are the continuous mode of 

operation together with homework. What is not trivial is that this has to be carried out with some 

structure and focus on key concepts. Also, some thought needs to be given to keeping track of 

the “scores” of the students on these formats. Again, technology can support us a bit with these 

issues: Handheld PDIs with dedicated software can be a considerable help in tracking the 

observations. 

Regularly, some kind of restricted-time written test will be the backbone of our system. 

Assuming we have the right quality of items, there’s nothing wrong with that. These can vary in 

time from a short, 10-minute quiz to a two hour–long problem-solving task. We also need to 

stress more “constructive” formats of assessment with some mode of a two-stage task that can fit 

in well, although certainly not too often—maybe at most three times per year. 

Part of the minimal requirements for a representative assessment system include that self-

assessment be systemic and that homework should function, at least in part, as assessment. 

It seems advisable to construct a path of incremental change in relation to more challenging 

assessment formats. The design, or even a proper judgment of open–open ended questions is 

already a very complex task. And although it seems sometimes easier to design a project task 

(like the question: “Is the pattern of green and red lights at this intersection the optimal in 

relation to the traffic flow?”), problems abound about such concerns as the execution, logistics, 

level of individuality, data sampling, and reporting in and out of school, not to mention how to 

cope with the different reports when the scoring, grading, and feedback are to be discussed. One 

should be careful not to fall into the hole of entering a very promising but extremely complex 

area of the assessment landscape without the prior experience of closely related formats. 

Feedback. Feedback on the practical level relates directly to the assessment format. If we are 

in the discourse mode, feedback is absolutely necessary and instant. This can be challenging: 

Teachers need to react without much opportunity for reflection; thus they take the risk of not 



completely grasping the meaning of a student’s remark. A sharp ear and a the eye of a hawk are 

the requirements for proper feedback during discourse, especially as we are viewing this as a part 

of the assessment system. And the better the picture of the hypothetical learning trajectory at the 

micro zoom level, the better this process will go. 

At the other end we have the more traditional restricted-time written tests that usually only 

allow for a grade and some comments on errors or excellent strategies. But giving feedback this 

way has a large risk: It may never reach the student in an effective way. In order to learn from it, 

the students should internalize the feedback and reflect on it. This process sometimes becomes 

visible in a discussion but with written feedback on a test, there is no way to check this. 

Making students aware of what feedback is and should be at all occasions, and in this way 

adapting the classroom environments to new socio-mathematical norms (Cobb, Yackel, & Wood, 

1993), is a task that lays ahead of any teacher who wants to improve the teaching and learning 

process. This includes a discussion in a whole classroom of some of the students’ answers and 

the feedback given by the teacher. 

Grading. Students should be offered a clear and transparent picture of the scoring and 

grading for each of the assessment formats chosen. We have discussed in some detail how we 

can grade several of the more traditional formats. But we should also inform the students if we 

give certain marks for their role in a discussion, for doing excellent homework, or for suggesting 

a different and elegant strategy. At any given moment, the student should know which marks and 

grades are in the teacher’s grading book. And a discussion about these should be possible, too. 

Coherence and balance. Of course, we should not give the students multiple-choice 

throughout the year and then give a project at the end. Designing a hypothetical assessment 

trajectory that really is coherent and balanced, though it seems trivial, is very difficult given the 

variables that need to be balanced out: the competency levels, the content (from formal to 

informal), the contexts, the formats, and the possibilities for feedback. Teachers need concrete 

examples of a hypothetical assessment trajectory and imaginary curriculum for a whole year. 
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Endnotes 

1. The Mathematical Functional Expert Group is comprised of Jan de Lange (Chair), 

Raimondo Boletta, Sean Close, Maria Luisa Moreno, Mogens Niss, Kyang Mee Park, Thomas 

Romberg, and Peter Schuller. 

2. These levels have been developed over the last decade and find their origin at the end of 

the Eighties (de Lange, 1987), were made more explicit in the early Nineties (de Lange, 1992, 

1994, 1995) and have been represented visually in a pyramid from then on with help from 

Dekker (Verhage & de Lange, 1997; Shafer & Foster, 1997). 


