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Introduction 
In this paper we present results of a design research project on modelling and symbolizing in 
mathematics education. With symbolizing we refer to theories on how we create, use and 
adapt symbols and how this relates to concept development. Here we will focus on the role of 
graphical models in the process of teaching and learning the principles of calculus and 
kinematics. 
Instructional materials are thought to be transparent for the students, in the sense that students 
can see and understand the scientific concepts through the materials. The way graphs are used 
in calculus and kinematics education suggests a similar transparency. For instance, they are 
used as models for describing change of velocity or distance travelled during a time interval. 
Students are expected to give meaning to the relation between distance travelled and velocity 
through characteristics of these graphs such as area and slope. 
It is argued that the use of such instructional materials is based on a representational view 
(Cobb et all 1992), which assumes that scientific knowledge can be represented and made 
accessible by instructional models. Cobb et all criticize this idea and argue that you must take 
into account the limitations of the knowledge base of the students into which the scientific 
concepts have to be integrated. Often it shows that students lack the knowledge needed to see 
or understand the scientific concepts that are represented by the materials. Elements of this 
representational view can be found in ‘discovery learning’ approaches. Approaches in which 
students’ are expected to discover concepts while exploring formal representations in 
computer simulations. A considerable amount of research shows that students have 
difficulties with interpreting and using graphs in calculus and kinematics in non-standard 
situations. 
As an alternative for the above-mentioned approaches we will demonstrate how models of 
motion can co-evolve in a learning process. Theories on symbolizing give rise to heuristics 
for designing a learning route within which the mathematical and scientific knowledge 
emerges from the activity of the students (Gravemeijer et all 2000). In this route, the creation, 
use and adaptation of various graphical models are interwoven with learners’ activities in a 
series of science-practices. These practices vary from modelling discrete measurements to 
reasoning with continuous models of motion. We wanted to investigate the students’ 
contributions during these practices and the way they reason. Consequently, for understanding 
their activities we used a design research approach of planning and testing the envisioned 
trajectory in classroom situations. A research approach that aims at how a trajectory works, 
instead of trying to decide whether it works.  
 
Guided re-invention by emergent modelling 
Continuous velocity-time and distance-time graphs are – often theoretical - descriptions of a 
situation for mathematical reasoning. Their appearance and conventions (e.g. time-axis 
horizontal) are the result of a long period of scientific research on the calculus of change. 
During this period – prior to the continuous graphs - other models were developed and used 
for different purposes. After a period of almost 2000 years the graphs that we use nowadays 
were created (e.g. Clagett 1959). These continuous time graphs are models to be used for 
reasonings about motion with graphical properties like area and slope. Our claim is that many 
problems of students with calculus and kinematics are due to the fact that they don’t really 
understand why they can use these graphs for their reasonings. 



We investigated an alternative approach that aims at a process in which the mathematics stays 
related to their understanding of the physical properties of motion, and emerges from the 
modelling activities of the students. This is also an objective of realistic mathematics 
education, where instructional design is aimed at creating optimal opportunities for the 
emergence of formal mathematical knowledge. During this process students can preserve the 
connection between the mathematical concepts and what is described by these concepts. The 
students' final understanding of the formal mathematics should stay connected with, or as 
Freudenthal would say, should be "rooted in", their understanding of these experientially real, 
everyday-life phenomena (Freudenthal, 1991). The core mathematical activity is 
"mathematizing", which stands for organizing from a mathematical perspective. Freudenthal 
sees this activity of the students as a way to reinvent mathematics. However, the students are 
not expected to reinvent everything by themselves. In relation to this, Freudenthal (1991) 
speaks of guided reinvention; the emphasis is on the character of the learning process rather 
than on the invention as such. The idea is to allow learners to come to regard the knowledge 
they acquire as their own private knowledge, knowledge for which they themselves are 
responsible. 
In a reinvention approach, the problem situations for the students play a key role. Well-chosen 
context problems offer opportunities for the students to develop informal, highly context-
specific models and solving strategies. These informal solving procedures then may function 
as foothold inventions for formalization and generalization, in other words: for progressive 
mathematization. The instructional designer tries to construe a set of problems that can lead to 
a series of processes that together result in the reinvention of the intended mathematics. 
Basically, the guiding question for the designers is: How could I have invented this? 
Research on the design of primary-school RME sequences has shown, that the concept of 
emergent models can function as a powerful design heuristic (Gravemeijer, 1998). First, 
context problems that offer the students the opportunity to develop situation-specific methods 
are selected. Second, these methods are modelled during classroom discussions and 
subsequent activities. In this sense, the models emerge from the activity of the students. Even 
if the models are not actually invented by the students, great care is taken to approximate 
student invention as closely as possible by choosing models that link up with the learning 
history of the students. Another criterion is in the potential of the models to support 
mathematization. The idea is to look for models that can be generalized and formalized to 
develop into entities of their own, which as such can become models for mathematical 
reasoning (Gravemeijer & Doorman, 1999). The shift from informal models of realistic 
situations to models for mathematical reasoning concurs with a shift in the way the student 
thinks about the model, from models that derive their meaning from the modelled context 
situation, to thinking about mathematical relations. In this context the term 'model' must be 
understood in a broad sense. It is not just the physical representation, but everything that 
comes with it (e.g. activity and purpose) that constitutes the model (Cobb 1999). As a 
consequence, during the activities of the students the model and the situation being modelled 
co-evolve. Modelling in this view is a process of reorganizing both activities and the situation. 
The situation becomes to be structured in terms of mathematical concepts and relationships. 
 
 
A modeling motion trajectory 
We tried to develop an instructional sequence in which discrete graphs come to the fore as 
models of changing location of a hurricane, and develop into models for reasoning about the 
relation between displacements in time intervals and total distance travelled.  
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A situation in which it makes sense to describe modelling motion seems the weather forecast, 
especially the change of position of hurricanes: when will it reach land? This problem is 
posed as a leading question throughout the unit as a context for the need of grasping change.  
After being introduced to time series, students work with situations that are described with 
stroboscopic photographs. The idea is that students come up with measurements of displace-
ments  and that it makes sense to display them graphically (based upon Boyd et al. 1996). The 
key issue that should arise in the discussion is how to describe change (of position) in order to 
view patterns and to be able to do predictions. Two types of discrete graphs are discussed: 
graphs of displacements and graphs of total distance travelled. In following activities the 
students work with a computer tool to analyse various situations with these graphs. During the 
discussions and their activities, students should find relations between discrete velocity graphs 
and discrete graphs of distances travelled. 
Note that a key element of the notion of reinvention is that the models first come to the fore as 
models of situations that are experientially real for the students. It is in line with this notion 
that discrete graphs are not introduced as an arbitrary symbol system, but as models of 
discrete approximations of a motion that link up with prior activities or students’ experiences. 
  

 
 
The starting point for the transition of displacements to modelling velocity, is in the medieval 
notion of instantaneous speed, which is introduced in the context of a narrative about Galileo's 
work. Instantaneous velocity will be defined in accordance with this medieval notion, in terms 
of the distance covered if the moving object maintains its instantaneous velocity for a given 
period of time. In this context, the problem is posed of how to verify Galileo’s hypothesis on 
free fall: velocity increases constantly, and is proportional to time. Figuring this out demands 
of the students that they come to grips with the relationship between the motion, the 
representation, and the approximation. During this process, the way of modelling motion, and 
the conceptualisation of the motion that is being modelled, co-evolve. 
A shift is made from problems cast in terms of everyday-life contexts to a focus on the 
mathematical and physical concepts and relations. In order to make such a shift possible for 
the students, they have to develop a mathematical framework of reference that enables them 
to look at these types of problems mathematically (see also Simon 1995). It is exactly the 
emergence of such a framework that this sequence tries to foster. It is this framework that 
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enables the students to trace the origin of the mathematical models and to anticipate on what 
is to come. 
 
Teaching experiments 
This learning route is tested out and revised during teaching experiments in four Dutch tenth-
grade classes. We collected data by video and audio taping of whole class discussions and 
group work. The videotapes were used to analyse students’ discourses and students’ written 
materials according to a constant comparative method (Glaser and Strauss 1967). 
We used the concept of a hypothetical learning trajectory (Simon 1995, Lijnse 1995) to 
describe and analyse the conjectured teaching and learning process. Reflection on what 
happened during the experiments results in recognising and optimising successful patterns in 
the teaching and learning processes. After several teaching experiments these explanatory 
patterns evolve in recommendations for a local instruction theory. 
The qualitative analyses show that during the practices students re-invent and develop 
graphical symbolizations, as well as the scientific concepts aimed at. However, the analyses 
left us with some questions concerning the transition of working with discrete measurements 
to interpreting graphs of a continuously changing composite magnitude velocity. 
Additionally, we found that the teacher had a crucial role during the classroom experiments. 
The students’ activities were especially productive when the teacher introduced situations and 
arranged classroom discussions of students’ contributions in such a way, that the students 
themselves came up with the problems that had to be solved.  
 
Conclusion 
In this guided re-invention approach the construction and interpretation of graphical models 
and the scientific concepts are rooted in the activity of the students through a cascade of 
inscriptions (Roth e.a. 1997). This ensures that mathematical and physical models aimed at, 
are firmly rooted in the students' understanding of everyday-life phenomena. We conclude 
that in such teaching and learning processes students learn to model and to organize new 
situations from a mathematical perspective. We advise that design heuristics for realizing 
classroom discussions where students pose problems to be solved accompany the emergent 
modelling heuristic. 
On the basis of our findings we like to discuss the above-sketched results and the implications 
of the use of theories on modelling and symbolizing in science and mathematics education 
design and research.  
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