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This paper problematizes the issue of how decisions about the content of mathematics education

can be made. After starting with two examples where research in mathematics education resulted

in different choices on the content of primary school teaching, I explore where and how, in the

scientific enterprise within the domain of education, issues of the what of mathematics education

are addressed. My conclusion is that, although it is often thought that scientific research cannot

resolve issues related to decisions about subject matter content and goals, there is a powerful

movement, with its roots in the European tradition, that pleads for the further development of

didactics as a scientific discipline.

Introduction

The underlying context of this paper is the curriculum debate that has been going on

since the early 1990s in primary and secondary school mathematics education. It

started in California (see Becker & Jacob, 1998) as a reaction to the publication of

the Standards by the US National Council of Teachers of Mathematics (NCTM,

1989). Together with a constructivist view on teaching mathematics, including

considering students as active and collaborative learners, the Standards also signified

a curricular change by advocating real-world connected mathematics and a liberal

use of calculators and de-emphasizing traditional algorithms and rote memorization.

Presumably elicited by international achievement comparisons, the curriculum

debate spread geographically and led to heated discussions all over the world. In

other words, for outsiders mathematics may be a school subject with an indisputable

content, but for those who are involved in mathematics education it is clearly not.

My intention with this paper is to contribute to this curriculum debate by

exploring what input scientific research can offer to informed decision-making on

the mathematics that is taught in school. Two experiences prompted me to write this

paper. The first one was connected to the worldwide reform of mathematics
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education. Considering what is happening in different countries I became more and

more aware that having similar views on mathematics education does not

automatically mean that the same choices will be made on content. Developers

and researchers with, for instance, a constructivist background who thoroughly agree

with each other on what are the best teaching methods, may choose different

teaching content; a view on teaching methods, even methods based on shared

opinions on mathematics as a school subject, clearly does not define what counts as

important mathematical content.

The second experience had to do with the discrepancy that arose when a learning–

teaching trajectory describing the sequence of mathematics problems children

roughly follow in primary school was compared with empirical data on the difficulty

level of problems. Both experiences emphatically raised the question of how

decisions on the content of mathematics education might be made and what kind of

research is needed for this.

After discussing these two experiences below, I review how the ‘what’ question is

dealt with in the educational research literature and investigate whether there are

possibilities for making content decisions in a scientific way. In other words, I

explore whether there are research methods that generate reliable and valid

knowledge to contribute to these decisions.

Experience one: instructional principles are not enough to make decisions

about subject matter content

Although our knowledge about the teaching and learning of mathematics is far from

complete, it looks as though we are making more and more progress on the question

of how students can learn mathematics (see Schoenfeld, 1994; Wiliam, 2003).1

Moreover it seems that the views on the how are growing closer. For instance,

Putnam (2003) describes the common assumptions on how children learn

mathematics that can be found in the newest USA reform curricula for primary

school mathematics education. In contrast with the traditional approach in the USA,

according to Putnam (ibid.), these curricula view the teacher as guiding the students

through discussions and learning activities and conceptualize the learning of

mathematics as building on the students’ intuitive understanding, providing the

students with settings and problems that are meaningful for them, and proceeding

from informal, grounded understanding to more formal knowledge of the symbol

systems of mathematics.

These ideas about the didactics of teaching mathematics are also very similar to

the principles of Realistic Mathematics Education (RME), which was the Dutch

answer to the need to reform the teaching of mathematics. The roots of RME go

back to the early 1970s when Freudenthal and his colleagues laid its foundations.

Briefly, these principles include taking students’ initial understanding as a starting

point, providing them with problem situations which they can imagine, scaffolding

the learning process via models, and evoking reflection by offering the students

opportunities to share their experiences (for a more elaborated overview see Van den
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Heuvel-Panhuizen, 2001a). In the Netherlands, as in the USA, this approach

contrasts with the traditional mechanistic way of teaching mathematics in which the

students are, for instance, offered fixed solving procedures in which they are to be

trained through the use of exercises.

However, contrary to what might have been expected, this agreement on

principles in no way assures similarity in mathematics programmes. I became

explicitly aware of this once again when I read McClain’s (2002) chapter in

Goodchild and English’s (2002) book on researching mathematics classrooms (see

Van den Heuvel-Panhuizen, 2002). The chapter reports on a classroom-teaching

experiment carried out by herself and Cobb and his colleagues. This focused on the

development of a socio-constructivist instructional sequence for adding and

subtracting three-digit numbers.

As McClain describes, the content of the instructional sequence that was

investigated in the classroom-teaching experiment was, among other things, based

on RME principles. The result was quite remarkable. Although the sequence reflects

some important RME principles, I would not call it an RME teaching unit. The

narrow focus on algorithms in conjunction with heavy emphasis on place value

supported by Unifix cubes is quite different from an RME approach. An example of

this approach can be found in the TAL learning–teaching trajectory for whole

number calculation (Van den Heuvel-Panhuizen, 2001b; more about TAL is in the

section in which the second experience is discussed). Characteristic of this trajectory

is the integration of written and mental calculations, an orientation towards numbers

instead of digits, and the use of the numberline to support the development of

strategies to solve problems such as 265–194. Without judging either approach, and

certainly not saying that the second approach is better than the approach that was

chosen in the classroom teaching experiment, I am left wondering about the

evidence base that motivated this different choice in content.

An explanation for this might be that the socio-constructivist instructional

sequence was inspired by the teaching tenets of RME. These tenets, however, do not

completely encapsulate the domain-specific education theory of RME. In addition to

these teaching principles, RME also implies choices for particular goals and

content—in its broadest sense—resulting from ‘didactical phenomenological

analyses’ (as suggested by Freudenthal, 1983). These include the analysis of

mathematical concepts from a didactical perspective, while bearing in mind

knowledge of the history of mathematics, evidence from students’ learning, and

using experience from collaboration with teachers, teacher educators, teacher

counsellors and textbook writers. Taking this into account it is understandable that

the content of instructional sequences based only on the RME principles may differ

from the previously described RME approach.

Another thing is that the classroom experiment did not bring new insights that led

to a fundamental revision of the conjectured trajectory. The revisions were mainly

related to the micro-didactical how-questions (How do the students learn? and How

to teach or how to organize an instructional environment to optimize the students’

learning?), rather than to the macro-didactical what-questions (What should be the
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learning goals? What content should constitute the programme?). Although this may

lead to the inference that questions about content cannot be covered within the

scope of classroom teaching experiments, I cannot believe that this is a correct

conclusion.

Because the answers to macro-didactical what-questions are significantly informed

by didactical phenomenological analyses loaded with experiences and opinions of

experts in and out of the school, evidence from classrooms can play an important

role in providing answers to such questions. However, to achieve this, it is necessary

to include research activities that can inform our macro decisions.

As an example, I want here to draw attention to Treffers’ (1987) plea to use

problems that can be solved in a variety of ways. Students’ work on these problems

can bring to light their levels of understanding and arithmetic skills at a particular

moment. Apart from the fact that this information is important for taking micro-

decisions it also guides the macro-decisions. The cross-sectional view of the class

(the different levels of understanding of the students in a class at one particular

moment) that is produced in this way shows at the same time a longitudinal section

of a learning–teaching trajectory or a part of it. The solution strategies of individual

students reveal collectively essential elements of the long-term path that students

need to travel. What is found in the classroom in the present anticipates what is on

the horizon and beyond.

Returning to the purpose of McClain’s chapter I think that research activities by

which we can expose students’ future learning must have a place within the

methodology of classroom teaching experiments. They can bring us closer to the

heart of the design process where instructional trajectories and sequences come into

being.

Experience two: empirical data from tests are not enough to make decisions

about subject matter content

The second experience, in which questions emerged as to the role research plays in

content decision making, also has to do with the TAL learning–teaching trajectory

on whole number calculation. Before dealing with this experience I will first say a few

words about the project in which this trajectory was developed.

The TAL Project

The aim of the TAL Project is to develop learning–teaching trajectories with

intermediate attainment targets for all domains in the primary school mathematics

curriculum. The project is funded by the Dutch Ministry of Education and carried

out by the Freudenthal Institute and the SLO (the Dutch Institute for Curriculum

Development), in collaboration with CED (school advisory center for the city of

Rotterdam). TAL is a Dutch abbreviation and stands for Intermediate Goals Annex

Learning–Teaching Trajectories. The guiding rationale for working on these

trajectories was to get a national consensus on the mathematics curricula and in
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particular more coherence between the programmes at the different age levels. The

trajectory descriptions are meant to provide the teachers with a concise overview

of how children’s mathematical understanding can develop from K1 and 2 (from

four-years-old) through Grade 6 (up to 12-years-old) and of how education can

contribute to this development. Although a learning–teaching trajectory puts the

learning process in line, it should not be seen as a linear and singular step-by-step

regime in which each step is necessarily and inexorably followed by the next one.

Instead, in the TAL Project a learning–teaching trajectory is seen as a route with

bandwidth. It should do justice to differences in learning processes between

individual students and to the different levels at which children achieve competency

in particular skills and concepts.

The main purpose of the trajectories is to give the teachers a grip on educational

decision-making. Although the description contains many examples of classroom

activities it is not meant as a practical recipe book, but as a framework at a conceptual

level. Based on the description of fundamental elements of the mathematical

content–that has much common ground with Wittmann’s (2004) ‘fundamental

ideas’ in which the epistemological structure of subject matter is best expressed–the

teachers can develop a mental educational map that guides their teaching. Having an

overview of the process the students go through is very important for working on

progress in their understanding. To make adequate decisions about help and hints

when selecting new problems, a teacher must have a good idea of the goals, the route

that can lead to these goals and the landmarks the students will pass at one stage or

another along this route. Without this outline in mind, it is difficult for the teacher to

value the students’ strategies and to foresee where and when one can anticipate

students’ understandings and skills that are just coming into view in the distance (see

also Streefland, 1985). Without this longitudinal perspective, it becomes very

difficult to guide students’ learning.

For the development of the TAL learning–teaching trajectories, didactical

phenomenological analyses play a crucial role. These analyses reveal what kind of

mathematics is worthwhile to learn and which actual phenomena can offer

possibilities for developing intended mathematical knowledge and understanding.

It is important that one tries to discover how students can contact these phenomena,

and how they appear to the students. This means that problems and problem

situations that give students opportunities to develop insight into mathematical

concepts and strategies must be identified. Therefore a team was formed that

covered all kinds of specialisms in primary school mathematics. The TAL team

contains members with experience in research and development of mathematics

education, assessment, teacher education, teacher advice, and the teaching of

mathematics in primary school. The core of the work is formed by the (almost)

weekly discussions in the project team, for which input comes from a variety of

sources: analyses of textbook series, analyses of research literature, classroom

investigations, and extensive consultations of experts in mathematics education. In

the following I show what content decisions have been made for the domain of

estimation in primary school.

The ‘what’ question of mathematics education 39



The content domain of estimation as an example

Although estimation is now widely acknowledged as an important goal of

mathematics education, most textbooks lack a framework for learning how to

estimate. At most, they contain several problems on estimation, but doing a few

estimation problems from time to time is not enough to develop real understanding

of how estimation works, and it is certainly not sufficient to develop comprehension

of what is ‘allowed’ and what is not when estimating.

The TAL learning–teaching trajectory offers a first proposal for a pathway the

students can take to develop estimation skills (for a more elaborated description see

Van den Heuvel-Panhuizen, 2001c). The trajectory is based on the fundamental

elements of the domain of estimation that are brought to the fore by the didactical

phenomenological analyses carried out by the TAL team. The analysis resulted in

the conceptual didactical structure for learning and teaching estimation that is

shown in Figure 1.

This structure contains a subdivision into four subdomains with three different

learning stages. The arrow indicates the global direction of the trajectory for

estimation from Grade 3 through to Grade 6. The basis of estimation is considered

as lying in exploring and rounding off numbers, which is followed by estimating in

calculation problems. The latter is differentiated into calculations with given

numbers that can be rounded off and calculations with estimated values in problems

where the necessary data are incomplete or unavailable.

The distinguishing of three learning stages can be seen as the most basic structure

in the learning–teaching trajectory:

N In the informal phase the students can globally determine answers without using

the standard rounding off rule.

N In the rule-directed phase the students arrive at the standard rounding off rule for

operating with numbers and learn to apply this rule.

Figure 1. Conceptual didactical structure of the domain of estimation in Grades 3–6.
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N In the flexible and critical phase the students are capable of applying more

balanced estimation methods when operating with numbers and they can deal in a

critical way with rounded off and exact numbers.

Of the four basic operations, addition and subtraction are offered first.

Multiplication and division, however, are more difficult to perceive. This has

mainly to do with the fact that in these operations the deviations caused by rounding

off become magnified. Therefore it is more difficult to understand the result of a

calculation with rounded off numbers and to comprehend the magnitude of the

deviation. At this point, learning to estimate is a process that goes beyond primary

school. Take, for instance, the following Seats problem (Figure 2).

The A-part of the problem is very easy to answer: 20630 would give a close

estimate, and at first glance this appears to be a simple estimation problem. The B-

part, however, makes it clear that this problem is actually quite difficult. This is also

indicated by Butterworth (1999) who found that this kind of problem, that he called

‘false-compensation’, is difficult even for university students. Not being aware of this

but through our own didactical phenomenological analyses of the domain of

estimation we decided to restrict estimation in multiplication and division problems

in the learning–teaching trajectory to rule-directed rounding off and to problems in

which only one number has to be rounded off. Teachers should be aware that

presenting the students with more complex (multiplication and division) estimation

problems with numbers that ‘automatically’ give a good estimate will in fact lead to a

type of mock knowledge in the domain of estimation.

Comparison with empirical test data

Our decision not to include those problems in the primary school trajectory was in

contrast with the results from a large-scale study on students’ achievements. The

large-scale study is the Dutch PPON study carried out every five years by CITO,

the Dutch National Institute for Educational Measurement. Figure 3 depicts the

empirically established scale of estimation problems for Grade 6 students (12-years-

old) based on the latest mathematics study PPON conducted in 1997 (Janssen et al.,

1999). The bars indicate, for estimation problems, the results that were found for

students at different levels. Problems such as item one turned out to be easiest, while

problems such as item ten were the most difficult. Even the best 10% of students had

an insufficient mastery of this problem, meaning a chance of fewer than 50% solving

it correctly.

Figure 2. Seats problem.
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A closer look at these results reveals, however, that some problems that are

identified here as easy, actually refer to a category of problems that requires a high

level of understanding of estimation. This is especially true for items two and three.

Similar to the Seats problem, discussed earlier, it is not easy to understand whether

2006500 gives a larger or a smaller result than the precise answer for 2036496. In

the same way item three belongs to a more difficult category of problem than is

indicated here. Changing the numbers a little bit—for instance, changing 51641

into 52638—would make this problem more difficult.

The above casts some doubt on the usefulness of the previously mentioned

empirically determined scale of estimation problems to determine the norm for what

is feasible for students in this domain. Therefore such empirical data—even when

obtained in an ostensibly unimpeachable and indubitable scientific context—are not

Figure 3. PPON 1997 results on the domain estimation.
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automatically appropriate for establishing standards and setting up trajectories.

So the question of how to take decisions on the what-question of mathematics

education still remains open.

Decisions about the ‘what’

Significance attached to the ‘what’

The lack of clarity on how decisions about the what of mathematics education can be

made, contrasts sharply with the importance that is attached to it. A broad audience,

ranging from parents, caregivers, business leaders and politicians to professional

educators, cares deeply about what children learn in school (see Senk & Thompson,

2003). The many countries that formulated standards in the last decade and the

interest in international comparative studies such as TIMSS and PISA also reflect

this engagement. Although it looks as if this awareness is typical of our present time,

this is not the case. Even in 1845, the Secretary of the Massachusetts State Board of

Education, Horace Mann, raised the question of whether school was teaching how

to calculate the amount of tax that citizens have to pay (see Kilpatrick, 1992).

Just as in Horace Mann’s time, the question about the what comes up most

significantly within the context of evaluation and assessment. We have to ask very

explicitly what knowledge we want students to have (Romberg, 1993). Moreover, we

have to ask this question continually. As Romberg and Kaput (1999) make clear, we

can no longer assume that mathematics is a fixed body of concepts and skills to be

mastered. Mathematics is a living, dynamic discipline, and therefore further changes

in school mathematics are inevitable.

What-questions rouse suspicion

Despite the great concern about what schools are teaching, asking for content

specification is often—in one way or another—viewed with some suspicion. For

this reason, what-questions are often followed with an explanation that tones

down the question and with warnings about the danger of focusing on content.

According to Schoenfeld (1994) the danger of the ‘content inventory’ point of view

comes from what it leaves out: the critically important point that mathematical

thinking consists of a lot more than knowing facts, theorems, techniques and

so forth. In line with him, Burton (2002a) mentions the danger of fragmentation.

This danger is also often linked up with the traditional view on subject matter which

still holds sway, especially in state guidelines and in textbook specifications (see

also Bereiter, 2002). In contrast to the conventional approach of itemizing what is

to be learned, the more modern view, associated with labels such as constructivism

and conceptual change teaching, looks at subject matter somewhat differently

(ibid.). The focus is more on mathematics as a whole and the relationships between

the different parts of content. As is shown in the first part of this paper, this

focus does not necessarily imply similar content choices—with a result of different

learning outcomes.
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Content matters

There is a wide range of studies showing that ‘students learn what they have an

opportunity to learn’—as Hiebert (1999, p. 12) says. If extra attention is paid to

particular content, then, on average, students learn this content. On the other hand,

if a mathematical topic is not taught, then it is often not learned by the students. In

other words, different goals and curricula lead to different patterns of achievement

(Hiebert, 2003; Kilpatrick, 2003). Again this is not a new finding. The study by

Walker and Schafferzick (1974) in which they reviewed a number of curriculum

evaluation studies is well known. Similar results were also found in a study carried

out in the Netherlands aimed at comparing the achievements of students that had

been taught using two different textbooks (Gravemeijer et al., 1993). These findings

have important consequences for decisions about the what of mathematics

education.

Disagreement about the what

The problem is that the what is not a unified thing: ‘In different countries across the

world and within countries themselves, school mathematics looks different’

(Lerman, 2004, p. 340). In the USA substantial differences can be found in grade

placement of mathematics topics (Senk & Thompson, 2003) and there is little

agreement across the nation on the most appropriate content for any grade level

(Lambdin et al., 2004). On an international scale the situation is similar. This is

clearly shown by the variation in topics in textbooks found in the TIMSS related

study ‘According to the book’ (Valverde et al., 2002).

The reason for this content difference has to do with making different choices. As

stated by Lerman (2004, p. 341), ‘to teach in school is always a selection from what

we (or whoever decides) perceive to be Mathematics (academic, in business/

industry, etc). Values are always associated with that choice, values as to what

education should be all about and in particular what mathematics education should

be all about. … These are political battles …’

In other words, it might be no surprise that the NCTM Standards sparked

a nationwide ‘math war’ in which positions were taken by mathematicians,

mathematics educators, teachers, administrators, parents and politicians (see

Becker & Jacob, 1998; Lambdin et al., 2004). Senk and Thompson (2003) stress

that this debate emerged because there is much disagreement about what skills are

needed for productive citizenship as well as on whether students can apply their

knowledge in everyday life, the workplace, or higher education. According to

Hiebert (1999) this lack of consensus is understandable given rapid changes in

mathematical competencies that are important in the workplace and the increasing

availability of computational technologies.

However, in addition to this, we should not forget that the different agencies that

are struggling for what should constitute school mathematics are unlikely to accept

that one group dictates what should be ‘worthwhile’ knowledge (Burton, 2004).

Moreover, at the same time it is not very clear who has to decide upon the what. In
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this respect the April 1999 issue of the NCTM discussion journal Mathematics

Education Dialogues was very revealing. This issue was completely dedicated to the

question ‘Who should determine what you teach?’ In the editorial introduction it

stated that there are different ideas about the level on which decisions about the what

should be made. Some people believe that teachers, who are the closest to their

students and who know their local situation better than outsiders, should make these

choices. Others think that they should be made more centrally, at the school level,

the school district level, state or provincial level, national level, or even

internationally. By discussing the who-question in this way it looks as if the what

of education is a kind of optional up-to-you thing. But is this really the case? This

question can be asked in particular when a whole curriculum has to be designed.

The macro-decisions that are required for such a design go far beyond the level of

the individual teacher—which however does not mean that teachers cannot be

involved in making choices of what content is most worthy of being taught.

Claim for research-based decision making

Notwithstanding projects in which research guided the process of curriculum design,

the general feeling exists that ‘in many cases the curricular decisions that have

followed depend more on the rhetorical or political power of individuals than on any

convincing body of research. Thus, everyone is now asking for research evidence

about the relative effectiveness of the new and the traditional approaches to school

mathematics’ (Lambdin et al., 2004, p. 38).

In my view, this quotation expresses the prevailing interpretation of what research

can do: it is seen as a kind of a posteriori research that informs the adequacy of the

choices, whilst the process of generating content and goals is situated outside the

scientific area. Some would even claim it is not research at all. An example of this

interpretation can be found in Kilpatrick et al. (2001). According to them choices

about the mathematics curriculum depend in part on what society wants educated

adults to know and to be able to do, but these ideas also depend on value judgements

based on experiences and convictions, and ‘these judgements often fall outside the

domain of research. Once the learning objectives for mathematics education have

been established, research can guide decisions about how to achieve these objectives’

(p. 3). In other words, ‘[research] cannot resolve matters of values and priorities’

(Kilpatrick, 2001, p. 424).

Hiebert (1999, 2003) has very similar thoughts. According to him research cannot

select standards. They are chosen through a complex process that is fed by societal

expectations, past practice, research information, and visions of the professionals in

the field. Moreover, he stresses that the role that research plays in selecting standards

is difficult to pin down. Very helpful in this respect is his distinction between the

selecting role and the influencing role of research. His view is that only the latter is

possible. He grounds this in the many examples in mathematics education that show

that research can influence the nature of standards and the way they are defined. By

questioning assumptions, uncovering deficiencies, revealing possibilities, and by
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recreating new needs, research can contribute to these decisions. But again, research

evidence must rest on judgements as to what and how much mathematics should be

learned, and research cannot set those goals (see also Kilpatrick, 2001).

Despite the conviction that ‘curriculum struggles are moral and political, [and]

that they cannot be resolved by appealing to ‘‘what research shows’’ ’ (Page, 2001,

p. 19), there is a strong claim for research-based decision making. This claim is

unambiguously expressed in the report of the Coalition for Evidence-Based Policy

(2002), in which the US Department of Education is recommended to base teaching

and learning on solid, empirical educational practices. As is said in the title of the

report, its aim is to bring evidence-driven progress to education. Therefore the

report is calling for a major, department-wide effort to fund studies that randomly

assign students to treatment and control groups, to establish what works in

educating American children. In other words, it would seem that only the how can be

investigated and not the what.

Is there any hope? Can research answer the ‘what’ question?

In order to arrive at an answer to the question that guides this paper I now focus on

what kind of research might lead us to decisions about the what of mathematics

education.

Research can answer this question

A first answer can be found in Greeno (2003) when he is explaining what kind of

research findings can guide the formulation of standards.

First, research can affect standards about the range of possible practices to be

considered. … Results of research provide information about practices of teaching and

learning, showing how they can be conducted and providing information about possible

outcomes of the practices studied. [Second,] research develops ways of conceptualizing

and understanding activities of learning and teaching, and these conceptualizations and

understandings can be appropriated in discussions and debates about choosing between

alternative practices and evaluating the achievements of schools, teacher, and students.

(2003, pp. 311–312)

Thus research can do more than reveal what is the most effective programme.

Support for this broader approach to research can also be found in Hiebert (2003).

Despite his statement that research cannot select standards (see the previous

section) he mentions explicitly that research in the subject itself can also shape the

kinds of standards that are selected. In this way ‘transformation’ and ‘projective

geometry’ found their way into elementary and secondary curricula and are

identified in the NCTM Standards.

And, even for the goals, Hiebert (2003) opens the door further. Although they are

based on values and beliefs, several sources of information can address decisions

about goals. Hiebert sees two kinds of sources here. One sets the choice of goals in

an international context, and the other pertains to whether the goals are overly

ambitious.
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The American who goes even further is Bruner. In his contribution to the book

Issues in education research (edited by Lagemann & Shulmann, 1999), he gives

an unambiguously affirmative answer to the question of whether goals belong in

the field of research: ‘Education research, if it is to be effective in the broader society,

must extend its concern, as it is now doing, beyond the classroom and beyond

pedagogy narrowly defined’ (Bruner, 1999, p. 404) and ‘education—and education

research—cannot be kept separate from the life of the culture at large’ (ibid., p. 408).

According to Bruner ‘the major research question … is not simply how well

our schools and systems of pedagogy teach spelling or mathematics or literacy’

but ‘the master question from which the mission of education is derived is: what

should be taught to whom, and with what pedagogical object in mind?’ (ibid.,

p. 408). The consequence of this is that ‘education research … becomes … design

research in the sense that it explores possible ways in which educational objectives

can be formulated and carried out in the light of cultural objectives and values in

the broad.’ (ibid., p. 408). Bruner is not very explicit on how research might

fulfil this task and what will be the implications for the methodology. He only

explains:

I am not proposing a technocratic solution to the effect that education research should

establish our educational goals as well as help design the methods of achieving them.

Rather, the proposal is that modern societies are sufficiently complex so that even the

task of setting the goals of education requires careful research as to what be needed in

order to achieve such goals as may be set. (ibid., p. 408)

Furthermore, he emphasizes that we need ‘much better knowledge about the role of

education and schooling in shaping the ways of the society’ (ibid., p. 408).

Although in the USA Bruner’s view on research is rather unusual, this is not the

case for researchers in Europe. For Burton (2002b, p. 8), for instance, it is obvious

that ‘as researchers in the field of mathematics education, we are part of a social

science in which we are researching aspects of human experience. Such experience is

embedded in social and cultural contexts that cannot be ignored whether the

researcher shares, or is alien to, those contexts.’

Specific methodology and epistemology are needed

In addition to this, Burton (2002b) makes it clear that this might imply that—in

order to cope with the problems of the discipline—we might need to construct a

specific methodology:

The history of research in the discipline of mathematics education is that it has, until

recently, followed the well-worn paths of psychology and sociology as they apply to

education. Inevitably, this has led to methodology being treated as the unproblematic

statement of the methods used in the research [and that this] must be reassessed.

(Burton, 2002b, p. 9)

Although coming from another field of work the following quotation is very

meaningful in this respect: ‘The ‘‘normal’’ way of creating ‘‘truth’’ must not be

allowed to persist and dominate research where corroborative evidence is impossible’
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(Herbert, 1989, quoted by Burton, 2002b, p. 7). Later, Burton (2002b, p. 9) clarifies

that this need for a different methodology has to do with a different epistemology:

Often, the epistemology held about mathematics can be in conflict with the social

science approach to behaviour preferred by the researcher. This is a particular problem

for those researching in mathematics education. We have been educated to believe in

the ‘objectivity’ of mathematics; at the same time, we might be trying to hold a belief in

learning being socially negotiated. Thus we might end up with internally contradictory

stances. (Burton, 2002b, p. 8)

Burton is not a single voice in the wilderness. Bereiter (2002) came to a

comparable judgement—although he has a different interpretation of epistemology.

According to him educators are pressed for conformity to a pedagogical philosophy

because of the absence of an epistemology adequate to deal with subject matter. He

mentions the example of number sense that now appears regularly in curriculum

standards and which needs more conceptualization:

Reformers … need concepts that allow them to think constructively about issues like the

following: Why something is worth learning—apart from its conjectured long-term

utility in the job market and apart from its traditional backing; why, in other words, a

student might feel disposed to learn it. … Answering questions like these requires

getting deeply into subject matter and into the cognitive developmental and

instructional research in various domains. (Bereiter, 2002, p. 432)

To me, these remarks sound very familiar. Thinking about the subject matter in

order to find out what is the mathematics that is worthwhile to teach, is what

Freudenthal (1978, 1983) emphasized. This is something which still has a great

influence on our work in the Netherlands and which can also be recognized in our

Utrecht colleagues’ work in the field of science education. See, for example, the

work of Lijnse (2002) who pleads for a thorough didactical, conceptual analysis of

the subject matter content that is taught in science, in order to come to didactical

structures that can both be considered as a basis for teaching trajectories and as a

particular way of formulating didactical theory. According to him such an analysis is

lacking in the mainstream of science education research.

Of course this focus on content from the point of view of subject matter is not just

our local concern. It is an approach that is rooted in a European tradition.

Exemplary in this context is Wittmann’s work. He advocates mathematics education

as a design science (see Wittmann, 1998, 2004) focused on the design of substantial

learning environments of which ‘[the] ‘‘substance’’ derives mainly from the

epistemological richness of the subject matter … whereby ‘‘richness’’ also includes

the problems to be explored by the students’ (2004, p. 114). To bring this richness

in mathematics teaching to the surface, analyses of elementary mathematics from the

mathematical point of view have to go together with analyses of curricular traditions,

applications of mathematics in various fields, the history of elementary mathematics,

the psychology of mathematical thinking and experiences in the classroom. As early

as the 1990s, Wittmann was pleading for a redefinition of the basic orientation for

research: ‘didactic research and development in general get their specific orientation

from the requirements of the core’ (Wittmann, 1992, p. 4) and ‘work in the core
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must start from mathematical activity’ (ibid., p. 5). In Wittmann’s view research and

development in mathematics education includes a variety of components, such as

(1) ‘development of local theories, for example, on mathematizing, problem solving,

proof, practising skills’; (2) ‘mathematical analysis of content and the identification

of possible contents of mathematics teaching focused at making them accessible for

learners’; (3) ‘critical examination and justification of contents in view of general

goals of mathematics teaching’ (ibid., p. 2).

In the same paper Wittmann also touched upon the sometimes denied scientific

status of the activities connected to the core, but in his eyes, borrowing standards

from, for instance, psychology is no option.2 ‘The establishment of scientific

standards in mathematics education by taking over of the standards from the related

disciplines leads … to the unacceptable result that problems and tasks of

mathematics education are tackled only insofar and to the extent as they are

accessible to the methods of the related disciplines, and that the core is not

sufficiently recognized as a scientific field of its own’ (ibid., p. 6).

Didactics as a scientific discipline

In Europe, the scientific discipline related to the research and development of

mathematics education is called the ‘didactics of mathematics’ (Wittmann, 1984;

Biehler et al., 1994; Kansanen, 1995; Bengtsson, 1997; Brousseau et al., 1997). In

the introductory chapter of Biehler et al’s book Didactics of mathematics as a discipline,

Winkelmann (1994, p. 11) describes this discipline as follows:

In didactics of mathematics as a scientific discipline, [the] art [of elementarization; that

includes the choosing, preparing and evaluating mathematical topics for teaching

purposes] and, furthermore, the whole process of reorganizing mathematical knowledge

for the purpose of schools and teaching are described and methodologically reflected.

The three problem fields distinguished by Niss (1994) can be considered as the

guiding questions for this discipline. According to him the process of preparing

mathematics for students includes the ‘problem of justification’ (why to teach

particular parts of mathematics?); the ‘problem of possibility’ (can these be taught,

and if so, how?); the ‘problem of implementation’ (how to make the teaching

possible?).

However, the role that mathematics—as a subject matter domain and as a human

activity—is assumed to play in answering these questions varies. As Winkelmann

(1994, p. 11) explains:

… there are different traditions in different cultures and different didactical schools of

handling this process of choosing, preparing and evaluating mathematical topics for

teaching purposes. These traditions differ in their emphasis on specific elementarization

strategies, students’ needs, fundamental ideas of mathematics, topic levels (examples,

concepts, methods, or general ideas such as model building), description levels and the

like, and degrees of elaboratedness.

For instance, as a result of a negotiation process in which mathematics education

researchers, mathematicians, psychologists, and classroom teachers as well as
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politicians, supervisors, and the lay public are involved, elementarization is

considered as an interdisciplinary enterprise in the North American tradition. This

view contrasts, for instance, with the approach in Germany and Austria where the

community of mathematics educators is coping with problems of defining and

justifying mathematical curricula and the underlying goals.

Kansanen (1995) wrote a very interesting paper on the difference between

German didactics and American research on teaching. He points to the difference in

historical background: ‘By nature, the ‘‘Didaktik’’ in Germany has always been

philosophical thinking, theorizing, and construction of theoretical models’ while in

the USA ‘the fundamental interest in teaching was practical by nature’ and ‘most of

the research on teaching has been empirical and with quantitative methods’ (ibid.,

pp. 2–3). According to him, within the German ‘erudition-centred didactics’—that

has a close connection to subject matter didactics that in German is called

‘Fachdidaktik’—the content of education is selected according to its value in the

curriculum and the instructional process. In other words, this approach claims to

have educational autonomy and expert knowledge in educational matters.

Moreover, ‘in this system there are both formal educational criteria and clear

normative decisions’ (ibid., pp. 12–13)

Indeed, within the European tradition it is widely recognized that didactics has

both normative and descriptive aspects (Imsen, 1999). Because ‘no teaching is

possible without choices concerning goals, content and methods … it doesn’t seem

plausible to leave the questions of norms and values outside the discipline of

didactics’ (Bengtsson, 1997, p. 2). As discussed earlier, this is in contrast with the

perception that many American researchers of mathematics education have that

including values imposes a threat to the scientific quality of their work. This narrow

interpretation of what it means to be ‘scientific’ implies that questions about the

what can only be answered outside the ‘scientific’ discipline and that ‘scientific’

activity is restricted to monitoring the process of negotiation with all interest groups

by ‘scientific’ survey methods. I believe that such an a posteriori approach does not

offer us enough possibilities for further development of the practice and the theory of

mathematics education. Instead of putting decision-making about the content and

goals outside of mathematics education research, I believe that it should be at its heart.
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Notes

1. While contrasting ‘what’ and ‘how’, I am aware that it is almost impossible to separate these

concepts. They cohere. Teaching methods determine what can be learned; and the choice for

particular content has consequences for the teaching methods as well. Furthermore, in a

curriculum (part of) the content can also be expressed by means of the how, namely by

describing the learning environment the teacher has to offer.

2. Although Wittmann (1992) admits that mathematics educators by retreating into a

‘mathematical garden’ may have trivialized the educational aspects of mathematics education

and, as a result, those working in the areas of psychology and pedagogy may have neglected the

mathematical aspects, he regrets greatly that the related disciplines are arguing against the

scientific status of didactics. According to him, this leads to an unreasonable set back into

reductionist positions that were analyzed as unfounded many years ago.
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