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Introduction

Calculus is one of those topics in mathematics where the algorithmic
manipulation of symbols is easier than understanding the underlying

concepts. Around 1680 Leibniz invented a symbol system for calculus that
codifies and simplifies the essential elements of reasoning. The calculus of
Leibniz brings within the reach of an ordinary student problems that once
required the ingenuity of an Archimedes or a Newton. One can mechanically
‘ride’ the syntax of the notation without needing to think through the seman-
tics (Edwards, 1979; Kaput, 1994). Calculus education typically has a strong
routine aspect, focusing on methods for differentiation and integration
without justifying these methods, since current teaching practice barely has
time to discuss the underlying concepts.

A question for the design of a teaching trajectory that focuses on ways to
support the understanding of the underlying concepts is: How can students
invent this? It is useful to look at the history of a topic to gain insight into this
issue, to investigate concept development, and to analyse how and why people
tried to organise certain phenomena without having any notion yet about the
basic principles of calculus (Freudenthal, 1991). 

In addition to conceptual arguments, history can support the didactical
repertoire of the teacher and illuminate the nature of mathematics as a devel-
oping discipline and the role of mathematics and mathematicians in society
(Gulikers & Blom, 2001). A look at the source of algorithms and notations
can help teachers and students to evaluate standards, to step away for a while
from exercising to thinking and speaking about what they are doing (Van
Maanen, 1997). We will return to this claim in our final section.

We will first review some highlights in the history of calculus. This review
will lead into recommendations for an instructional sequence on calculus. We
conclude with a plea for historical reflections in mathematics education as a
method for changing routine-oriented practices.
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A historical review 

We will focus this historical review on the period from Aristotle up to the first
calculus textbook by l’Hôpital (1696), during which time the basic concepts
and models for calculus were shaped. The description covers a period of 2000
years. This could give an impression of a development by fits and starts, but
one should realise that it was a long and gradual process, in which the break-
throughs can be localised in the work of a few, brilliant scientists.

Free fall
Questions about falling objects were essential for the development of calcu-
lus, and one could say that it emerged from modeling forced motion and free
fall. Aristotle (c. 350 BC) was one of the first who formulated laws on motion.
He based his laws on everyday experiences and common sense reasoning.
Whether and with what (constant) speed an object falls to earth, or floats,
depends on its properties. 

Aristotle’s ideas remained almost unchanged until the late Middle Ages. In
the thirteenth century, scholars were convinced that a falling object increased
its speed. They tried to improve on Aristotle’s theory and developed the
impetus theory of motion. It is in the nature of an object to have a propen-
sity, or impetus, to move towards its natural place. The striving towards its
natural place gives an object an impetus that determines its velocity in the first
time-interval of free fall. After that moment, the object has both an impetus
(its striving towards its natural place) and a velocity. This causes an increase
in the object’s velocity in the second time interval, etcetera; which explains
the increasing velocity of a falling object. 

Until Galileo’s time, the impetus theory could be recognised in explana-
tions of the trajectory of an object thrown into the air. The motion of a
thrown object decelerates until the impetus, which it received from the throw,
has decreased to zero. After that moment, the object’s striving for the ground
will cause the object to fall to earth vertically with an increasing velocity.

Modelling velocity
Scientists started using variables and proportionalities in the fourteenth
century. This was the time of the so-called Calculatores at Merton College
(Oxford, UK). They theorised about methods for describing changing quali-
ties like temperature, size, and even a human quality like charity. Thomas
Bradwardine, for example, tried to describe the velocity of an object when the
proportion between a ‘force’ f that causes motion and the resistance r is
changing. He based his description on the theory of proportions, which states
that the addition of proportions equals the multiplication of the correspon-
ding fractions (e.g., when proportion a : b equals 1 : 2 and b : c equals 1 : 4,
then a : c equals 1 : 8), and the multiplication of a proportion by a parameter
n equals the corresponding fraction to the power n (three times the propor-
tion 1 : 3 equals a proportion of 1 : 27). 

The Calculatores tried to find mathematical laws in nature. Hence, their
view on the role of mathematics differed from that of Aristotle, and it shows
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what kind of difficulties had to be solved in order to describe phenomena in
a mathematical language. These difficulties not only originated from prob-
lematic physical assumptions, but also from limitations in the mathematical
language available. The Calculatores did not describe velocity as a proportion
of distance to time, because then they would have had a fraction of two differ-
ent types of quantities. They still followed the Euclidean tradition and worked
only with proportions between variables with similar dimension. Three impor-
tant results were achieved at Merton College:
1. A definition of the notion of instantaneous velocity. The velocity at a

certain moment in time can be described by the distance that would be
travelled if the object would move on with that very velocity, unchang-
ing during a certain time interval. This is a circular definition, because
when you ask what that very velocity is, you can only say “the velocity at
the fixed moment” which is still to be defined. However, it should be
noted that the idea of a potential distance travelled in a certain time
interval represents the instantaneous velocity of the object. This inter-
pretation can also be seen in current everyday language. Driving at a
speed of 70 is interpreted as: if you were to continue at this very speed
for one hour, you would have travelled 70 miles.

2. A description of the notion of a uniform accelerating velocity: the veloc-
ity increases by equal parts in equal time intervals (and not in equal
distances travelled!).

3. The Merton rule: if the velocity of an object is uniform accelerating
from zero to a velocity v in a time interval t, then the distance travelled
is equal to half the distance travelled by an object that moves with
constant velocity 1

2 v in time interval t.

Graphing change
It was Nichole Oresme (c. 1360) who invented a new
element in these arithmetical descriptions. He introduced
the graphic representation. Oresme worked at the
University of Paris, and also studied changing qualities. He
was not primarily interested in what actually happens, but
in how one could generally describe what happens. For
instance, he described ways to display the distribution of
heat in a beam (see Figure 1): think of a line along the
beam and imagine at every point of this line the heat at that
position in the beam represented by a line perpendicular to
the beam. The length of this second line displays the heat
at that position in the beam. These perpendicular lines
constitute a geometrically flat shape. This shape signifies
the distribution of the heat and its area is a measure for the
total heat in the beam. A constant temperature is displayed
by a rectangular shape, while a uniform change from low to
high is displayed by a triangular shape (or a trapezoid).
Oresme reasoned with and compared changes in qualities
using such geometrical shapes.
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Figure 1. Drawings from Oresme’s
“De configurationibus qualitatum.”



Oresme also applied this graphical technique to motion. His remarkable
way of thinking can be seen by the way in which he defined velocity as a
quality of objects that can be pictured against time (the dimension over which
the velocity of the object varies). Thanks to this choice, the area of the
geometrical shapes had many similarities with the current velocity–time
graphs. The perpendicular lines represent instantaneous velocities and the
area of the shape can be interpreted as total distance travelled. With this
graphical reasoning Oresme proved the Merton rule. These discrete graphs
simplify, conceptualise and illustrate reasoning about motion. 

Some mathematicians argue that this proof of the Merton rule is not valid
since instantaneous velocity had to be defined as a differential quotient and
only then distance travelled can be deduced by integration. The Dutch histo-
rian Dijksterhuis discussed this and defended Oresme by stating: 

“It is a situation which occurred regularly in the history of mathematics:
mathematical concepts are often — maybe even usually — used intuitively for
a long time before they can be described accurately, and fundamental theo-
rems are understood intuitively before they are proven.” (Dijksterhuis, 1980,
p. 218).

Free fall revisited: Galileo
Until the sixteenth century, it was commonly accepted that the time needed
for an object to fall to the ground was inverse proportional to its weight. This
was still a legacy of Aristotle’s theory. In 1586, Simon Stevin published his
Beghinselen der Weeghconst (Principles of weighing). Stevin opposed this
theory and described an experiment with two falling lead balls of different
weight that touched the ground at exactly the same time. In this experiment
he tested Aristotle’s assertion and concluded that it was contrary to this expe-
rience.

In 1618, Isaac Beeckman proved a new relation between elapsed time and
falling distance that is independent of the weight of the object. He approxi-
mated a continuous force that pulled the object as if with little tugs. After
each time interval t, such a tug increased the
velocity by a constant amount g. This process
was visualised by the graph below (Figure 2), in
which the distance travelled in a time interval t
is represented by the area of the corresponding
bar. 

When the length of the time interval t
approaches zero, the distances travelled in total
times 0A1 and 0A2 are represented by the areas
of the triangles 0A1B1 and 0A2B2. These
distances are proportional to each other as the
squares of the time intervals 0A1 and 0A2. He
still used this reasoning in proportionalities
between similar quantities. We compress the
relation between time and distance travelled in
one equation: s(t) = c · t2.
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Figure 2. Graph showing Beeckman’s reasoning
with areas of bars.



Beeckman used a discrete approximation of the area. Such approxima-
tions were related to Archimedes’ methods to determine centers of gravity (c.
200 BC). This is no surprise; since Archimedes’ collected works were trans-
lated into Latin and published in 1544, Stevin, Kepler and Descartes also used
his methods in their publications. Interest in the work of Archimedes was the
result of the Renaissance and a rising prominence for mathematical methods.

Galileo (1564–1642) is one of the most famous scientists to work on free
fall. In his Dialogue Concerning Two New Sciences he wrote about the Aristotelian
view on this topic and why this view must be wrong. His argumentation is tied
up in dialogues between Simplicio (representing the Aristotelian view on
motion) and Salviati along the question what would happen with the falling
velocity of two objects of different weight when they are put together.

Galileo used graphs to explain the quadratic relationship between distance
travelled and falling time. Galileo tested this relationship with experiments.
He knew that sequences of successive odd numbers, starting with 1, add up to
a square, and he used ratios of odd numbers between the distances travelled
in equal time intervals. This ratio must be 1 : 3 if you divide time into two
equal intervals. If you divide the time into four intervals the ratio is 1 : 3 : 5 :
7, etc. With this property he tested the equation that is based on the conjec-
ture that the acceleration of a free falling object is constant. An important
step which Galileo made was to reason that the motion of free fall is similar
to (in terms of proportions), and can be delayed by, an object rolling down
an incline. He probably designed a slide with nails on one side. The distances
between the nails were in the same ratio as the successive odd numbers, thus
a rolling ball should need the same amount of time to pass each following
nail.

Many scientists commented on Galileo’s reasoning. For instance, Fermat
(1601–1665) believed that an object must have a velocity at the moment of
falling, otherwise it would not start moving. This is yet another example which
illustrates that their ways of thinking about velocities of falling objects and
about instantaneous change were not trivial. It shows that even famous math-
ematicians during the time of Galileo found the idea that, at the moment of
starting to fall, the object could have constant acceleration while its instanta-
neous velocity should be zero, problematic.

Leibniz and Newton
Two scientists, Leibniz and Newton, were crucial in the development of calcu-
lus; they discovered and proved the main theorems of calculus. In the
seventeenth century, methods were discovered for calculating maximums and
minimums in optimisation problems. These methods mainly concerned poly-
nomials. However, many problems, such as the breaking of light, could not be
described with polynomials. The conceptual understanding of the mathe-
matics of instantaneous change developed. How to calculate change became
a topic of interest, and Leibniz’s and Newton’s contributions concerned
precisely this issue. Their invention of a literal symbolism was essential for the
rapid progress of analytic geometry and calculus in the following centuries. It
permitted the concept of change to enter algebraic thought.
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The language of Newton was closely related to motions of geometrical enti-
ties in a system of coordinates. The y-coordinate denotes the velocity of a
changing entity (e.g., an area or a length) and the x-coordinate denotes time.
Such a geometrical approach fitted the research tradition in the seventeenth
century and might have supported his findings (Thompson, 1994). The
embedding of motion and time in geometry is one of the most characteristic
features of Newton’s dynamical techniques.

Newton used the context of motion to give intuitive insight into the limit
process of the proportion between two quantities that tend to zero. He
argued that the ultimate proportion of two vanishing quantities should be
understood as the velocity of an object at the ultimate instant when it arrives
at a certain position. The two quantities are position and time, and he defined
the limit or vanishing proportion between change of position and change of
time as the instantaneous velocity. 

The roots of Leibniz’s work were in algebraic patterns in sums and differ-
ences and their properties. In 1672, before he formulated the fundamental
theorem of calculus, he published on properties of sequences of sums and
differences of sums. 

Leibniz noticed that with a sequence a0, a1, a2, … and with a sequence of
differences d1 = a1 – a0, d2 = a2 – a1, … dn = an – an–1, he could conclude d1 + d2

+ … + dn = an – a0. Therefore, the sum of the consecutive differences equals
the difference of the first and the last term of the original sequence.
According to Edwards (1979), Leibniz refers to this inverse relation between
the sequences an and dn in his later work as his inspiration for calculus. 

Leibniz introduced a more accessible symbol system for calculus than
Newton, a system which we still use today. Leibniz did not write much about
the limit concept as a foundation for his symbol system. He illustrated his
method in his first article Nova Methodus on calculus in 1684 with a graph of
an equation with no related context. Leibniz did not define “infinitely small.”
He interpreted a tangent as a line through two points on a curve that lie at a
distance to each other which is smaller than every possible length. Leibniz did
not publish this definition in the article, because he thought this to be too
revolutionary. He only published the rules to do the calculus and some
convincing applications. 

L’Hôpital
Marquis de l’Hôpital (1661–1704) was a French mathematician. He is
perhaps best known for the rule (which still bears his name) for calculating
the limiting value of a fraction whose numerator and denominator both tend
to zero. In addition, he is the author of the first textbook on differential calcu-
lus, L’Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes (1696).
The text includes lectures by his teacher, Johann Bernoulli. In 1694 l’Hôpital
forged a deal with Bernoulli to give away his discoveries for the book.

L’Hôpital’s purpose with his textbook was to convince mathematicians and
physicists that differential calculus, which was not yet fully accepted, was a
sound and powerful method. The activities in the book show a wide variety in
complexity and applications. He translated the problem of the breaking of
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light into a question about the quickest route of a traveler passing two differ-
ent landscapes that require different velocities, and showed how this could be
solved easily with the new method. Another application concerns the position
of a pulley when the weight D is at rest (see Figure 3).

Figure 3. The weight problem in l’Hôpital’s Analyse.

We will return to this problem in the next section. Now we would like to
finish this historical sketch with a few final remarks. The period before
l’Hôpital described a development of calculus that took place over circa two
thousand years. It is remarkable that current educational practices hardly
reveal anything of this struggle for mathematising change and motion. The
methods of Leibniz are taught as an obvious, or natural, way to treat change
mathematically. 

Looking at history through a didactical lens

In history we do not see the regular calculus textbook approach from limits
to differential quotient, from methods for differentiation to methods for inte-
gration, and finally to the main theorem of calculus. Instead, the definition
of differential quotient as a basic idea underlying calculus is one of the final
findings in the history of calculus. This inversion of history for displaying a
mathematical topic in a textbook is precisely what Freudenthal calls an “anti-
didactic inversion” (Freudenthal, 1991). Such an inversion has its origins in
the expert’s point of view on elegance and efficiency. The reader can imagine
how these inversions might have anti-didactic consequences.

Oresme’s intention was to describe and value changing qualities, one of
which was velocity, in order to be able to compare them. He used graphs for
displaying and reasoning about changing qualities. He did not define veloc-
ity as a compound quantity, nor did he use scales along his two-dimensional
graphs. Nevertheless he interpreted areas as distances travelled and used
geometrical shapes to compare different kinds of change.

The graphical method made it possible to illustrate the middle-speed
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theorem (Merton’s rule) and to investigate the relation between change of
velocity and distance travelled. The method was successful thanks to Oresme’s
choice to draw a graph with a horizontal time axis. Possibly, his choice was
influenced by his trying to depict potential distances travelled. 

In this history we recognise a dialectic process of the development of
meaning, notations and graphical representations; a process from two-dimen-
sional discrete graphs for describing motion to reasoning about slope and
area. Discrete graphs might provide students with meaningful graphical tools
that afford them both a way to reason with area and slope, and to invent rela-
tions between them before the formalisation with limits.

The methods of Leibniz opened up the possibility of symbol manipulation
without examining these symbols and understanding their meaning. This
symbolic writing seems to replace conceptual thinking by substituting calcu-
lation for reasoning, the sign for the thing signified. However, we note that
Leibniz’s symbol manipulations were built upon extensive experience with
numerical patterns in sums and differences. We assume that his experience
underpinned a meaningful use of these manipulations. 

History suggests — as Dijksterhuis noticed — that an intuitive under-
standing of reasoning with discrete graphs, with sums and differences and
with area and slope precedes the formal methods of differentiation and inte-
gration (Dijksterhuis, 1980). A process of reification can be recognised
(Sfard, 1991). However, it is not the graph but rather the activity of summing
and taking differences that is reified into the mathematical objects of integral
and derivative. Discrete graphs support both the modeling activity and the
reification. 

Suggestions for instructional design

It might be a natural step to use discrete approximations and to take that as
a starting point for reasoning about sums and differences. We assume that, in
this reasoning, the use and understanding of graphical characteristics might
emerge. In the process of trying to get a handle on change, the method of
approximating a constantly changing velocity with the help of graphs plays a
key role. These ideas can be exploited in an instructional design by starting a
learning sequence with patterns in discrete graphs (Doorman, 2005;
Gravemeijer & Doorman, 1999).

In the context of motion, students can have the opportunity to contribute
to the idea that successive displacements are a measure for change (velocity)
and that they add up to the total distance travelled. According to the discrete
inspirations of Leibniz, students can study the relationship between sums and
differences with graphs. 

Let graph S be given (Figure 4) as a graph of distance travelled. Define
displacement 

D(k) = S(k + 1) – S(k). 
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From the graph it can be seen that the sum of all displacements 

D(0) + D(1) + … + D(n – 1) = S(n) – S(0). 

In general the discrete case of the main theorem of calculus is: 

ΔS(k) = D(k) and ∑D(k) = S(n) – S(0). 

Students can use graphic calculators when applying this property to func-
tions. From graphs and tables (or algebra) it is possible to deduce that 

Δ3k = 3k+1 – 3k = 2 · 3k

and, with the property it can be proved that 

∑3k = 1
2 · (3n – 30). 

These activities of taking and relating sums and differences for grasping
change prepare students for the relation between integral and derivative. 

In addition, the scenery of a lesson might take place in Galileo’s time and
the search for a relation between time and falling distance (e.g., Polya, 1963).
In this context, the problem of how to visualise the motion of an object that
moves with varying speed can be posed. While struggling with this problem,
the students (or the teacher) may come up with the idea of symbolising
instantaneous velocities with bars. 

Next, the students are told the story of Galileo, who assumed that the
motion of a free-falling object was with a uniformly accelerating velocity. They
are asked to graph the discrete approximation of such a motion (see
Figure 5). Subsequently, Galileo’s problem is posed: What distance is covered
by the object? Here, after solving and improving discrete approximations, the
students are expected to make the connection between the area of the bar-
graph, and the area of the triangle that is created by the continuous graph:
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Figure 4. Total distance travelled as a sum of displacements.



This resulting equation reveals the quadratic relation between time and
distance that Galileo used to test his hypotheses empirically.

Figure 5. The discrete approximation of free fall.

Our final suggestion is to involve students in the deal between l’Hôpital
and Bernoulli and use the “weight problem” from l’Hôpital’s textbook (Van
Maanen, 1991). This problem can be a starting point for discussing the power
of methods in calculus. Equipment needed can be borrowed from physics
colleagues. The instrument is displayed in Figure 3. CB is a horizontal bar. A
rope CF of length a tied to C carries a pulley at F. A rope of length b attached
at one end to B passes over the pulley and carries a mass at its free end D. One
supposes that the pulley and the ropes do not have mass. L’Hôpital took a =
0.4 and b = 1. The problem is to determine the equilibrium position of the
weight D. The analytic solution uses the principle that the weight will search
for the lowest possible position. The only thing you have to do is to introduce
a coordinate system, to choose an independent variable x that fixes the posi-
tion of the pulley, to express the distance of the weight to CB in x, and to
maximise this distance using differentiation. 

After modeling the problem situation and determining x in such a way that
the problem can be translated into an optimisation problem, the solution
process is rather straightforward and does not depend on geometrical tricks.
This is precisely the strength of the general and algorithmic methods in calcu-
lus. What makes this weight-problem interesting is not just the mathematics,
but also the story behind it: a means of fighting for the acceptance of calcu-
lus. It shows how attention shifts from teaching various geometrical solution
procedures to modeling and heuristics for clever ways to choose x.

Conclusions

This historical study provides us with indications of conceptual thresholds,
how they were overcome, and how calculus evolved in connection with the
physics of motion. Comparison of our present-day mathematics with older
methods enables us to value our modern notations and to establish more
coherence with physics. History shows us that mathematics is more than a
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fixed collection of truths, facts and algorithms. Reasoning with discrete
graphs as a support for learning calculus might prevent the algorithms
becoming disconnected from their roots (Doorman & Gravemeijer, in press). 

In addition, history appears to be a source for interesting mathematical
problems and suggestions to tackle conceptual difficulties. The problem of
the pulley in l’Hôpital’s book was part of a propaganda machine; it was a
weapon against conventional methods. Such problems — and the motivation
behind them — provoke discussions about mathematics, its methods and its
value for society. 

References
Edwards, C. H. (1979). The historical development of the calculus. New York: Springer-Verlag.

Doorman, L. M. (2005). Modeling motion: From trace graphs to instantaneous change. Utrecht, the
Netherlands: CD-Beta Press.

Doorman, L. M. & Gravemeijer, K. P. E. (in press). Emergent modeling: Discrete graphs to
support the understanding of change and velocity. ZDM — The International Journal on
Mathematics Education.

Dijksterhuis, E. J. (1980). De mechanisering van het wereldbeeld. Amsterdam: Meulenhoff.

Freudenthal, H. (1991). Revisiting mathematics education — China lectures. Dordrecht: Kluwer
Academic Publishers.

Gravemeijer, K. P. E. & Doorman, L. M. (1999). Context problems in realistic mathematics
education: A calculus course as an example. Educational Studies in Mathematics, 39,
111–129.

Gulikers, I. & Blom, K. (2001). ‘A historical angle’, a survey of recent literature on the use
and value of history in geometrical education. Educational Studies in Mathematics, 47,
223–258.

Kaput, J. J. (1994). Democratizing access to calculus: New routes to old roots. In A. H.
Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 77–156). Washington:
Mathematical Association of America.

Polya, G. (1963). Mathematical methods in science. School Mathematics Group; Stanford.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes
and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

Thompson, P.W. (1994). Images of rate and operational understanding of the fundamental
theorem of calculus. Educational Studies in Mathematics, 26, 229–274.

Van Maanen, J.A. (1991). L’Hôpital’s weight problem. For the Learning of Mathematics, 11(2),
44–47.

Van Maanen, J.A. (1997). New maths may profit from old methods. For the Learning of
Mathematics, 17(2), 39–47.

14

A
us

tr
al

ia
n 

S
en

io
r 

M
at

he
m

at
ic

s 
Jo

ur
na

l 2
2
 (

2
)

D
oo

rm
an

 &
 v

an
 M

aa
ne

n


