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Samenvatting

In zijn bijdrage aan het OW & OC-symposium op 2 mei 1986 houdt Peter Hilton een pleidooi voor een vernieuwing

van het wiskunde-curriculum.

Discrete wiskunde — met name ‘handig tellen’, ‘recurrente betrekkingen’ en het ‘meetkundig aspect’ daarbij — zou een
belangrijke plaats in een dergelijk curriculum moeten krijgen. Het element van verrassing zou stimulerend kunnen

werken.

Introduction

In a recent forum conducted by the editor, Warren
Page, in an issue of the College Mathematics Journal
[2], the present author raised the following question.
What are the principal themes and core results in
discrete mathematics to compare with those of the
differential calculus? For all mathematicians would
agree that the notions of instantaneous rate of change
as a limit, of the derivative of x", of the linearity of the
derivative, of the Leibniz rule, of the chain rule, and
of the method of locating, distinguishing and calculat-
ing maxima and minima are central to the develop-
ment of the calculus: but there do not seem to be
obvious candidates for such a central role in a discrete
mathematics course.

Many have responded to that challenge, rotably
Norman Biggs. Others have already described in some
detail their plan for a discrete mathematics course [3],
from which one might attempt to deduce their answer
to the question. In this article, I give my own, tentative
answer to a perhaps easier question; namely, what are
certain key strategies and techniques in discrete math-
ematics? 1 do not believe I could myself attempt an
answer to my original question without first confront-
ing this easier question.

I make no attempt here to be comprehensive. In
particular, I shall have little to say about the role of
computers and about teaching the idea of a finite
algorithm. I will be largely concerned with combi-
natorics and its relation to arithmetic, algebra, geom-
etry and probability. I will present my point of view
through what are, I hope, illuminating and interesting
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examples rather than through an attempted rationale
for the adoption of certain general principles.

It may be argued that some (or all!) of my examples
are unsuitable for presentation in a ‘service’ course to
students. I respond, first, by pointing out that my
exampiles are intended for consumption by the readers
of this article, not by such students. However, [ might
also attempt a defence of the entirely mathematical
nature of these examples by claiming that to rely on
examples of interest to students who are supposed to
be largely insensitive to mathematics itself is to pursue
a will o’ the wisp. 1 propose to discuss this (very
different) question of pedagogical strategy at greater
length elsewhere.

The strategies and techniques discussed in this article
are clever counting, recurrence relations, and the
geometrical viewpoint, in its most general sense. An
important point to be brought out is that, while two
mathematical arguments may be equally compelling
from a logical point of view, one may be far superior
in the understanding it conveys. It is essential that
students (and mathematicians!) should understand
why some statement is true - it is not enough simply to
be rationally obliged to accept thar it is true. Thus, for
example, many assertions of a combinatorial nature
involving binomial coefficients may be proved either
algebraically or combinatorially; the combinatorial
proof usually gives the deeper insight. An interesting
example of an arithmetical statement admitting an
elegant combinatorial proof is that which asserts that
the product of r consecutive positive integers is divis-
ible by r!. It is only necessary to remark that
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(k+1) (k+2)...(k+r) /1! = (k”}”r), and hence is an

integer. No simple algebraic proof seems to be avail-
able, although we may of course, proof the Pascal

identity () + (,2y) = (rHr-]) algebraically and

thence prove that (1) is an integer by induction on n.
A further nice example of an arithmetical fact which
admits an elegant combinatorial proof is provided by
the following composite enunciation on special binom-
ial coefficients:

(i) n | GNP (i) @n—1) | (205 D Gii) (4n-2) | (2.

For the three quotients are equivalent forms of the nth
Catalan number, c¢,, which is the number of ways of
associating the sum of n objects. Indeed, from (i) and
(iii) above one gets the very mysterious statement:

If n=0 or 4 mod 6, then 2(n+1) 2n—1) | (20).

The author is especially indebted to his colleague and
friend Jean Pedersen for her role in developing the
material of this article. Many of the examples are
drawn from our book [5], and I am very grateful to her
for allowing me to discuss these here in a rather
different context. She also drew my attention to the
rich vein of mathematical ideas inherent in Pascal’s
Triangle, and pointed out how the inspiration for
mining this vein might be regarded as geometrical.
That theme constitutes the content of [6].

Clever Counting

We discuss here the famous Euler totient function
d(n), the number of positive integers less than n and
prime to n, or, alternatively, the number of residues
mod n prime to n. Simply to compute ¢(n) for
successive values of n reveals no obvious pattern, thus:

n] 12345678910 111213 141516 17 1819 20

Q)(n)l 112242646 410 412 6 8 816 618 8

However, we may proceed systematically as follows.
First, we compute ¢(p™), where p is prime. We
observe (i) to be prime to p™ is just not to be divisible
by p; (ii) it is obvious that there are p™! numbers <p™
and divisible by p; (iii) thus there are pm-—pm!
numbers <p™ and not divisible by p. We have shown
that:

$(pm) = p™i(p—1). (1)
Second, we establish a multiplicative law,
okl = d(k)dp(Y), if k,/ are mutually prime. )

To establish this, write the numbers from 1 to k/ in a
rectangular array:

1 2 !

I+1 2 ..

A= 2U+1 A+2 .. 3
k=1)+1 (k=Di+2 ... kI
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We now argue (i) that any column of A consists either
of numbers all of which are prime to [ or of numbers
none of which is prime to /[; (ii) the last column
contains all the residues mod k, since / is prime to k;
(iii) hence each column contains all the residues mod
k; (iv) a residue is prime to kil if and only if it is prime
to both k and /.

Observation (i) establishes that there are ¢(/) columns
consisting of numbers prime to /, and then observation
(iii) establishes that there are ¢(k)$(!) entries in A
which are prime to both k and /. Observation (iv) now
establishes (2).

Armed with (1) and (2) we can calculate ¢(n) easily.
We find the prime factorization:

m» m,;

m, 2
n=p P2 .o Pr

of n and deduce that:

om=p™  pi=Dp ™ -1 p ™ (p- 1),

Thus, for example,
12012 = 22.3.7.11.13
so:  $(12012) = 2.2.6.10.12 = 2880

Notice the following strategies: (i) in calculating ¢(p™)
we count the numbers we’re not interested in first; (ii)
we prove a structural result (2), which is more general
but actually simpler than what we need, and which
relates to the numbers we are interested in.

Another function whose calculation may proceed the
same way is o(n), the sum of the positive integers
which are factors of n. Again, a table is unrevealing:

nj 12345 67 8 91011 1213 14 1516 17 18 19 20
O(n),13476128151318122814242431 18 39 20 42

However, as we point out below, it is easy to show
that:

m+l_]
P 3)

o(kl) = o(k)a(/) if k,/ are mutually prime 4)

Indeed, (3) follows from summing the progression
14+p+...+pm, while (4) follows from the observation
that, k and / being mutually prime, a factor of k/ is
uniquely expressible as the product of a factor of k and
a factor of /.

The quantity o(n) is especially interesting in the search
for perfect numbers, that is, numbers n which are
equal to the sum of their proper factors: in our
terminology, these are numbers n such that o(n) = 2n.
Notice that the function ¢!(n) which gives the sum of
the proper factors of n is not a good function to
handle, since it does not satisfy the crucial multipli-
cative condition corresponding to (4), and hence
cannot be so readily calculated. It is not difficult to see
that the only even perfect numbers are the numbers
2P~1(2P— 1), where 2P — 1 is a (Mersenne) prime; it is
not known if there are any odd perfect numbers.
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Recurrence Relations

We discuss in this section the question of perfect
mixups, defined to be permutations (of finite sets) in
which every element is moved. Let F,, be the number
of perfect mixups of n objects, designated 1,2,...,n,
and let P, be the probability of a perfect mixup; thus:

P, = F,/n! (%)

It is plain that F; = 0, F, = 1, F; = 2; for (2,1) is a
perfect mixup of 1,2, and (2,3,1), (3,1,2) are perfect
mixups of 1,2,3. Rather than seeking an expression in
closed form for F, (or P,), we will aim to obtain a
recurrence relation. To this end, let C; be the set of
perfect mixups of n objects in which 1 appears in the
nth place. It is clear, by symmetry, that if [C,| is the
number of objects in Cy, then F, = (n—1)|C,[; for any
of (n—1) objects can appear, in a perfect mixup, in the
nth place with equal likelihood. We separate C; into
two disjoint sets, C'y and C”";, as follows. A mixup (in
C,) goes into C’y if n appears in the first place, and into
C"y if it does not. Now it should be clear that the
mixups in C'; are in one-one correspondence with the
perfect mixups of (n—2) objects, so that |C’|| = F,_,.
Further, given a perfect mixup in C";, we may put 1
where n occurs and thus obtain a perfect mixup of
{n—1) objects (see figure), so that:

= Fo P
| " AR

We conclude that:

Fp = (n=1)(F,-; + Fyp), n=3. (6)
In view of (5) this is equivalent to:

p,=""lp 4 Lp, s 023, %
or

Po— Py = = = (Pry — Pya). (8)

The recurrence relation (8) is very easy to handle,
yielding by iteration:

P,—P_ = fl—g;—ig—g (P, — Py).

ButP, =1, P, =0, so:
—_ n
p,—p, =D on 9)

It is interesting to observe that the recurrence relation
(6) was obtained by a combinatorial argument, where-
as the (simpler) relation (9) required algebraic mani-
pulation and does not seem to correspond to any
intuitive combinatorial fact. (This contrast between
combinatorial and algebraic reasoning is seen, for

example, in the Pascal identity (1) + (1) = (n'}'l),

which may be proved either by considering the selec-
tion of r objects from (n+1) objects, one of which is

marked, so that (Ir]) is the number of selections

excluding the marked object, while (;{) is the num-

. . . n n!
ber including it; or by replacing (1) by n—1)! Y and
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manipulating, as suggested earlier. (We will discuss
this aspect further in the next section.)
Reverting to (9) we quickly conclude that:

1

11 ="
Pn—1—1!+2!—..4+ — (10)

. 1 . .
that is, the n'" convergent to e Some interesting

points emerge at this stage: (i) P, oscillates about %,

being alternately below and above it; (ii) P, is fairly
insensitive to the value of n — for example, Py — Py =

—0.0000027 and Py differs from é—by less than

0.0000003. These facts do not seem to be intuitively
evident. ,

Our result shows that if the cards from 2 decks are
turned over simultaneously, one by one, the probabili-
ty of the same card turning up in both decks at some

stage is approximately Eg_l = (0.63212. The fact that

the deck has 52 cards is largely irrelevant — the
probability would be essentially the same for a deck of
n cards for any n=9.

Geometry and Combinatorics

It is our claim that geometry provides an essential link
between discrete and continuous mathematics and
that we most easily and most profitably conceptualize
through geometrical configurations. We will give three
examples to illustrate these points.

A method for calculating

L. _—

Figure 1

Consider figure 1. This is to be thought of as obtained
as follows. We start with a regular 2n — gon AB...
(here n = 2) with centre 0. We draw the circumcircle
and let C be the midpoint of the arc AB. If D, F are
the midpoints of CA, CB, then it is easy to see that DF
is the side of a regular 2n+1 — gon, also with centre 0,
with the same perimeter as our original 27 — gon.
Now let R,. r, be the circumradius and inradius of the
27 — gon.
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Then:
OC=R,, 0D =R,,;,0X =1, OE =r1,,,. (11)

It is immediately obvious that:

Tae1 =3 (Tn + Ry). (12)
Also, since the triangles ODE, OCD are similar, we
have 82 85 or, by (11),

Rot = (fr iRy’ (13)

Of course, r, < R, so that (12), (13) describe 1,4,
R, as arithmetic and geometric means and we have
the pattern:

I'y Thyy Rn+1 Rn (14)

The picture (14) and the relations (12), (13) make it
plain that the sequence {r,} increases to a limit / and
the sequence {R,} decreases to the same limit /.

Let us assume that the perimeter of the 2» — gon is 4.

Then R, = \/2

circumference 4 and hence of radius -72; Thus if we start

—%. In the limit we obtain a circle of

%, and proceed to obtain

R, and r, by iterated use of (12, 13), we will obtain

with the values R; = 712° r; =

. 2 .
sequences tending to s This is, of course, a procedure

very easily executed by a computer.

Patterns in Pascal’s Triangle

n

0 1

1 1 1

2 1 2

3 1 3 3 1

4 1 4 o6 4 1

5 1 S 10 10 5 1

6 1 6 15 20 15 6

7 1 7 21 35 35 21 7 1

8§ 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 8 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1
r 0 1 2 3 4 5 6 7 8 9 10
Figure 2

Consider figure 2. This is Pascal’s Triangie justified on
the left. Thus the entry at depth n and r places to
the right is the binomial coefficient (I!). Recognizing
patterns in Pascal’s Triangle in a splendidly creative
exercise (see [6]). Here we show one pattern which
shows up best in the justified version of the triangle.

Let us consider a ‘rectangle’ of entries in Pascal’s Tri-

angle, with vertices labeled (1), (n?k), G2, (?Il});

36

thus:

" n—k)
(15)
(rrl) (r-ril—l)

We say that the weight, w = w(n,r;k,[), of this
rectangle is the ‘cross-ratio’,

w=MAHhETHCE) (16)

We obtain the reflexion of the rectangle (15) by
interchanging the roles of k and /, and we may prove
theorem 1.

Theorem 1: The weight of a rectangle is invariant
under reflexion.

w(n,r;k,[) = w(n,r;Lk).

Fo; example, w(10,2;4,3) = (18)(2)/(8)(1(5)) = 1_411;
an

1
w(102:3.4) = D15 =1

Before proving theorem 1, let us enunciate another
property of the weight, which the authors of [6] also
conjectured as a result of observation and experiment.
We regard (1) as the pivotal vertex of the rectangle
(15) and we consider the family of rectangles we
obtain by sliding the pivotal vertex along the 45° axis
parallel to the hypotenuse of Pascal's Triangle (we
may call this the axis n—r = constant).

Theorem 2: The weight of a rectangle is constant
along the axis n—r = Constant

For example, w(10,2;4,3) =

N Ty 7y 1 =
(3)(e)/(3)(Cg) = g
The proofs of theorems 1 and 2 are very easy using the
n!
rl(n—r)!’
For then we quickly see that:

k) (n—r—1)!
EE—:)!(J—(?—LI% ’ a7

and the right side of (17) is visibly symmetric in k and
{ and, for fixed k,/, a function of (n—r). Thus we use
geometry to suggest a conjecture about combinatorial
constructs, and algebra to prove it. It would then be
reasonable to conjecture that the weight should itself
have some combinatorial significance. Of course,
there is an obvious algebraic generalization of these
two theorems, in which we take an arbitrary function
f of the non-negative integers and consider the ‘Pascal
f-triangle’, in which the entry in position (n,r) is
f(n)
f(r)f(n—r) °

14, while w(11,3;4,3) =

formula (1) =

w(n,r;k,[) =
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An interesting example of this generalization is fur-
nished by the Gaussian polynomials — also known as
q-analogues of binomial coefficients.
Heref(0)=1,f(n)=(1-g") (1-g"H...(1-q),n =1,
and

n_ _ f(n

[T]= i—1 ,0<sr=n.

It is obvious that [[] is a polynomial in q, but this
follows from f(0) and the Pascal q-identity

g +Lr 0=t 1<r<n,
by induction on n. (Compare our earlier ‘proof’ that

the binomial coefficients are integers!)
It is obvious, by L’Hépital’s Rule or the Pascal

g-identity, that [?] — (1) as q — 1; and it is further

obvious that Theorems1 and 2 remain true if (1) is
replaced by its g-analogue [T].

It is worth mentioning that the Gaussian polynomials
are important in the (combinatorial) theory of parti-
tions.

The formulae of Euler and Descartes for polyhedra
Let us understand, in the first instance, by a polyhe-
dron a 2-dimensional rectilinear figure made up of
vertices, edges and faces, which is homeomorphic to
the sphere. It is thus a closed rectilinear surface and
the faces which are polygons are put together by
identifying a side of one with a side of another to form
an edge of the polyhedron. Two simple, but important,
examples are the tetrahedron and the cube:

Let V,E F be the number of vertices, edges, and faces,
respectively, of the polyhedron. Thus, for the tetrahe-
dron, V=4, E =6, F = 4, while, for the cube,
V =8, E =12, F = 6. The celebrated formula of
Euler asserts that:

V-E+F=2. (18)

Now Descartes had, much earlier (of course), intro-
duced the idea of the angular defect at a vertex-of a
convex polyhedron and the total angular defect, A, of
the polyhedron, being the sum of the angular defects
at each of the vertices. If v is a vertex of the
polyhedron, then the angular defect at v is the dif-
ference 27— (sum of the face angles of the polyhedron
at the vertex v); notice that Euclid had shown that this
quantity is always positive for a convex polyhedron.
For the regular tetrahedron the angular defect at each

) L.
vertex is 7, and for the cube it is bx Descartes proved
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the remarkable result that, for any convex polyhedron,
A = 47, (19)

In fact, Euler did not know Descartes’ result, and
reached his conclusion (18) quite independently. Polya
[7] showed that the two statements (18), (19) are
equivalent; using Polya’s argument, the author and
Jean Pedersen proved a more general result relating to
any closed rectilinear surface. Thus we do not require
that the surface be homeomorphic to a sphere, and we
do not require that it be convex (we simply allow
negative angular defects). Our conclusion was [4]:

Theorem 3:  For any closed rectilinear surface,
A =2n(V - E + F).

Proof

We proceed by ‘clever counting’. We defined A by
counting by vertices; but we could equally well count
by faces. If we count the sum of all the face angles by
vertices we see easily, from the definition of the
angular defect at a vertex, that thissum A is27V — A,

A =27V - A (20)

Now let us count by faces. We suppose that there are
F; faces which are j-gons. Then F = ZF;, and ZjF; = §,
the total number of sides. Since each edge on our
surface is obtained by putting together two sides, we
see that S = 2E, so that:

Finally, we observe that the sum of the angles of a
j-gon is (j—2)a. Thus the sum of all the face angles,
counting by faces, is given by:

A =ZF; (j-2)m,
or, using (21),
A =27E — 27F. (22)

The theorem follows immediately from a comparison
of (20) and (22).

It should be noted that Euler’s formula does not
require that the polyhedron be rectilinear, so long as
itis broken up into faces with adjacent faces sharing a
common edge; faces and edges may be curved. Thus
Euler’s formula has to do with combinatorial notions
(in fact, as we know, it really has to do merely with
topological notions). On the other hand, Descartes’
notion of angular deficiency is genuinely geometrical
in nature, and could not be applied to a polyhedron
which had curved faces. Thus theorem 3 is remarkable
in linking a combinatorial concept with a geometrical
concept.

If one wished to extend the idea of angular deficiency
to the case of a curved surface, or, indeed, even to
higher dimensions, one would find oneself led to the
celebrated Gauss-Bonnet theorem. A beautiful ac-
count of this development is given in [1].

Conclusion

We hope that these examples illustrate both the
diversity of method and application in combinatorics
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and also the possibility of some kind of systematiza-
tion. This very diversity should be a source of added
interest in presenting a course centered on combi-
natorics, even if it makes the organization of such a
course more difficult.

Related to the diversity is another feature which we
may notice from our examples, and which was not
deliberately inserted, let alone fostered. There is an
element of surprise in all these examples which should
be stimulating to students. It has to be admitted that it
is not easy to incorporate such an element into a basic
calculus course! Indeed, the present author has often
argued for the early introduction of the theory of
functions of a complex variable into the curriculum in
order to inject some excitement into the proceedings.
Perhaps combinatorics has the potential to provide
this vital ingredient of a successful learning expe-
rience.
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