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Abstract

Digital technology is indispensable for doing and learning statistics. When technology is
used in mathematics education, the learning of concepts and the development of tech-
niques for using a digital tool are known to intertwine. So far, this intertwinement of
techniques and conceptual understanding, known as instrumental genesis, has received
little attention in research on technology-supported statistics education. This study focus-
es on instrumental genesis for statistical modeling, investigating students’ modeling
processes in a digital environment called TinkerPlots. In particular, we analyzed how
emerging techniques and conceptual understanding intertwined in the instrumentation
schemes that 28 students (aged 14-15) develop. We identified six common instrumen-
tation schemes and observed a two-directional intertwining of emerging techniques and
conceptual understanding. Techniques for using TinkerPlots helped students to reveal
context-independent patterns that fostered a conceptual shift from a model of to a model
for. Vice versa, students’ conceptual understanding led to the exploration of more
sophisticated digital techniques. We recommend researchers, educators, designers, and
teachers involved in statistics education using digital technology to attentively consider
this two-directional intertwined relationship.

Keywords Statistical modeling - Instrumental genesis - Statistical reasoning - TinkerPlots -
Simulated sampling distribution

The increasing use of digital technology in our society requires an educational move towards
learning from and with digital tools. This is particularly urgent for statistics education where
digital technology is indispensable for interpreting statistical information, such as real sample
data (Gal, 2002; Thijs, Fisser, & Van der Hoeven, 2014). For such interpretations, under-
standing underlying statistical models is fundamental (Manor & Ben-Zvi, 2017). Current
technological developments offer digital tools—for example, TinkerPlots, Fathom, and
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Codap—that provide opportunities to deepen understanding of statistical modeling and
models. These digital tools enable students to build statistical models and to use these models
to simulate sampling data, and therefore offer means for statistical reasoning with data
(Biehler, Frischemeier, & Podworny, 2017). As such, modeling with digital tools is promising
for today’s and tomorrow’s statistics education.

Although statistics education is developing as a domain distinct from mathematics, the use
of digital tools is a shared problem space and collaboration within shared spaces can strengthen
each domain (Groth, 2015). From other domains in school mathematics, for example, algebra,
it is well known that as soon as digital tools are used during the learning process, the
development of conceptual understanding becomes intertwined with the emergence of tech-
niques to use the digital tool (Artigue, 2002; Drijvers, Godino, Font, & Trouche, 2013). For
teachers, researchers, educators, and designers, insight into this intertwined relationship of
learning techniques and concepts is a prerequisite for deploying digital tools in such a way that
they are productive for the intended conceptual understanding. In the meantime, due to a lack
of insight into this intertwining, undesired influence of techniques for using the digital tool on
the intended conceptual development can be overlooked. This complex relationship, however,
has so far received little attention in research on technology-supported statistical modeling
processes.

A useful perspective to grasp the relationship between the learning of digital techniques and
conceptual understanding is instrumental genesis (Artigue, 2002). In this theoretical view,
learning is seen as the simultaneous development of techniques for using artifacts, such as
digital tools, and of domain-specific conceptual understanding, for example, statistical models
and modeling. The perspective of instrumental genesis seems promising to gain knowledge
about learning from and with digital technology. As such, the aim of this study is to explore the
applicability of the instrumental genesis perspective to statistics education and to statistical
modeling processes in particular.

1 Theoretical framework

In this section, we elaborate on two main elements of this study: statistical modeling and
instrumental genesis.

1.1 Statistical modeling: techniques and concepts

Digital tools for statistical modeling have the potential to deepen students’ conceptual
understanding of statistics and probability and enable them to explore data by deploying
techniques for using the tool. They also offer possibilities to visualize concepts that
previously could not be seen, such as random behavior (Pfannkuch, Ben-Zvi, & Budgett,
2018). Such educational digital tools, for example, TinkerPlots, provide opportunities for
statistical reasoning with data, as students build statistical models and use these models to
simulate sample data (Biehler et al., 2017).

Modeling processes with a digital tool such as TinkerPlots require the development of
digital techniques. Digital TinkerPlots techniques for setting up statistical models and simu-
lating data are helpful to introduce key statistical ideas of distribution and probability (Konold,
Harradine, & Kazak, 2007). The research by Garfield, delMas, and Zieftler (2012) suggests
that students can learn to think and reason from a probabilistic perspective—or, as the authors
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call it, “really cook” instead of following recipes—by using TinkerPlots techniques to build a
model of a real-life situation and to use this model for simulating repeated samples. This way
to understand the probability involved in inferences is also reflected in our previous study (Van
Dijke-Droogers, Drijvers, & Bakker, 2020) in which an approach based on repeated sampling
from a black box filled with marbles seemed to support students in developing statistical
concepts. In this approach, students developed TinkerPlots techniques to investigate what
sample results would likely occur by chance. Statistical modeling in the study presented here
requires TinkerPlots techniques for building a model by choosing a graphical representation
(e.g., a bar or pie chart), entering population characteristics (e.g., population size, attributes,
and proportions), and entering the sample size, of a real-life situation from a given context to
solve a problem. The next steps include TinkerPlots techniques for simulating repeated
samples by running the model and visualizing the results in a sampling distribution, for
enabling to reason about probability—taking into account number of repetitions and sample
size—and to answer the problem using simulated data.

Statistical modeling processes with TinkerPlots also require, in addition to the development
of TinkerPlots techniques, an understanding of the concepts involved. The literature elaborates
several viewpoints on statistical modeling. We discuss three viewpoints and indicate how we
incorporated them in our study. First, Biischer and Schnell (2017) argue that the notion of
emergent modeling (Gravemeijer, 1999)—the conceptual shift from a model of a context-
specific situation to a model for—can also be applied to statistical reasoning in a variety of
similar and new contexts. Second, statistical modeling involves the interrelationship between
the real world and the model world. This relationship is elaborated in Patel and Pfannkuch’s
framework (2018) that displays students’ cognitive activities about understanding the problem
(real world), seeing and applying structure (real world-model world), modeling (model world—
real world), analyzing simulated data (model world), and communicating findings (model
world-real world). Third, for reasoning with models and modeling, Manor and Ben-Zvi (2017)
identify the following dimensions: reasoning with phenomenon simplification, with sample
representativeness, and with sampling distribution. Statistical modeling includes the process of
abstracting the real world into a model and then using this model for understanding the real
world. In short, Biischer and Schnell (2017) emphasize the importance of developing context-
independent models for statistical modeling processes, Patel and Pfannkuch (2018) outline the
interaction between the real and the model world, and Manor and Ben-Zvi (2017) address the
different dimensions when reasoning with models. These viewpoints provide insight into the
development of concepts for statistical modeling. In the study presented here, we embodied the
viewpoints in the design of students’ worksheets. On these worksheets, students are requested
to build and run a model of a real-world situation in TinkerPlots and to use this model, by
simulating and interpreting the sampling distribution of repeated samples, to understand the
real-world situation.

Understanding and reasoning with the simulated sampling distribution from repeated
samples are, as mentioned by Manor and Ben-Zvi (2017), essential for statistical modeling.
However, the concept of sampling distribution is difficult for students. The study by Garfield,
delMas, and Chance (1999) focused on the design of a framework to describe stages of
development in students’ statistical reasoning about sampling distributions. Their initial
conception of the framework identified five levels that evolve from (1) idiosyncratic
reasoning—knowing words and symbols related to sampling distributions, but using them
without fully understanding and often incorrectly— through (2) verbal reasoning, (3) transi-
tional reasoning, and (4) procedural reasoning, towards (5) integrated process reasoning—
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complete understanding of the process of sampling and sampling distributions, in which rules
and stochastic behavior are coordinated. In our study, these levels will be used to indicate
students’ conceptual understanding of statistical modeling. Students’ difficulties in reasoning
with the sampling distribution are often related to misconceptions about basic statistical
concepts such as variability, distribution, sample and sampling, the effect of sample size,
and confusion of results from one sample with the sampling distribution. According to Chance,
delMas, and Garfield (2004), ways to improve students’ level of understanding statistical
modeling include techniques for exploring samples, comparing how sample behavior mimics
population behavior, and for both structured and unstructured explorations with the digital
tool. As such, conceptual understanding of statistical modeling involves the building, appli-
cation, and interpretation of context-independent statistical models—in our study the sampling
distribution of repeated sampling—to answer real-life problems.

1.2 Instrumental genesis

Using digital tools in a productive way for a specific learning goal requires insight into the
intertwined relationship between emerging digital techniques and conceptual understanding. A
useful perspective to grasp the intertwining of learning techniques and concepts is instrumental
genesis. A fundamental claim in this theory is that learning can be seen as the intertwined
development, driven by the student activity in a task situation, of techniques for using
artifacts—for example, a digital tool—and cognitive schemes that have pragmatic and episte-
mic value (Artigue, 2002; Drijvers et al., 2013). In this perspective, the conception of
“instrument” and instrumental genesis are used in the sense described by Artigue (2002):

The instrument is differentiated from the object, material or symbolic, on which it is
based and for which is used the term “artefact”. Thus an instrument is a mixed entity,
part artefact, part cognitive schemes which make it an instrument. For a given individ-
ual, the artefact at the outset does not have an instrumental value. It becomes an
instrument through a process, called instrumental genesis, involving the construction
of personal schemes or, more generally, the appropriation of social pre-existing schemes.
(p- 250)

According to Vergnaud (1996), a scheme is an invariant organization of behavior for a given
class of situations. Such a scheme includes patterns of action for using the tool and conceptual
elements that emerge from the activity. In the study presented here, the tasks on students’
worksheet intend to construct personal instrumentation schemes consisting of TinkerPlots
techniques and conceptual understanding of statistical modeling. The identification of schemes
can structure and deepen the observation of students’ emerging technical actions and statistical
reasoning, and hence provides insight into the intertwined development of techniques and
concepts.

As the application of instrumental genesis within the field of statistics education hardly
exists, we present an example from a study within the context of algebra. Table 1 shows an
instrumentation scheme concerning the use of a symbolic calculator for solving parametric
equations, from a study by Drijvers et al. (2013). The intertwined relationship can be seen, for
example, in scheme D. Here, students were asked to solve the parametric equation with respect
to x. On the one hand, in order to use the correct techniques, students must be able to identify
the unknown in the parameterized problem situation to enter the correct command “solve with
respect to x” into their computer algebra calculator. On the other hand, the available options of
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Table 1 Example of an instrumentation scheme for solving parametric equations with a computer algebra system
(Drijvers et al., 2013, p. 35)

Digital techniques Conceptual understanding

A. Use the Solve-option of the Graphing Knowing that the Solve command can be used to express one of
Calculator and enter the given function the variables in a parameterized equation in other variables

B. Enter the ‘=0’ sign Knowing the difference between an expression and an equation

C. Enter the unknown to solve (x) Realizing that an equation is solved with respect to an unknown

D. Solve the equation with respect to x Being able to identify the unknown in the parameterized

problem situation

E. Give the solution for the parametrized Being able to interpret the result, particularly when it is an

equation expression, and to relate it to graphical representations

Indicate the unknown to solve

An equation should contain an = sign Notice the scope of the square root sign

solve(x2+b-x+1£0,§r)

x[ > or : =

‘solve with respect to X’ = ‘express x in terms of b’ \
A solution can be an expression

the tool invite students to distinguish between the parameter and the unknown. In the study by
Drijvers et al., the identification of students’ instrumentation schemes provided insight into
how the learning of techniques for using a computer algebra system and the conceptual
understanding of solving parametric equations emerged in tandem. Furthermore, the identified
schemes helped the researchers to reveal several conceptual difficulties students encountered
while solving parametric equations with the digital tool.

As a second example, we present the findings from one of the scarce studies on instrumental
genesis within the field of statistics education, conducted by Podworny and Biehler (2014). In
their study, within a course on hypothesis testing and randomization tests with p values, university
students used simulations with TinkerPlots. Students noted their own schemes to plan and
structure their actions. These schemes drawn up by students proved useful as a personal work
plan; however, it was difficult to identify common instrumentation schemes and to unravel how
TinkerPlots techniques and conceptual understanding emerged together. Our study differs from
theirs, as we identified our students’ schemes by observing their actions and reasoning.

In general, instrumental genesis is considered an idiosyncratic process, unique for individ-
ual students. Yet, it takes place in the social context of a classroom, and as researchers, we are
interested in possible patterns. As such, identifying instrumentation schemes concerns the
complexity of unraveling patterns in the diversity of individual schemes that students develop.
The study presented here seeks to identify common instrumentation schemes by observing
students’ actions and reasoning when statistically modeling in TinkerPlots, and then to use
these schemes to zoom in on the genesis of the schemes to reveal how emerging TinkerPlots
techniques and the conceptual understanding of statistical modeling intertwine.

@ Springer



van Dijke-Droogers M. et al.

2 Research aim and question

To explore the applicability of the instrumental genesis perspective to statistics education, and
to statistical modeling, in particular, we conducted an explorative case study. This study
focuses on 14-to-15-year-old students’ intertwined development of learning techniques for
using TinkerPlots and conceptual understanding of statistical modeling. We address the
following question: Which instrumentation schemes do 9th-grade students develop through
statistical modeling processes with TinkerPlots and how do emerging techniques and concep-
tual understanding intertwine in these schemes?

3 Methods

This study is part of a larger design study on statistical inference. Our previous study focused
on the design of a learning trajectory in which students were introduced to the key concepts of
sample, frequency distribution, and sampling distribution, with the use of digital tools (Van
Dijke-Droogers et al., 2020). As a follow-up, this study focuses on the specific role of digital
techniques on conceptual understanding by examining how 28 9th-grade students work on
TinkerPlots worksheets, which were designed to engage students in statistical modeling.

3.1 Design of student worksheets

A suitable stage to investigate students’ instrumental genesis—their development of schemes
that include TinkerPlots techniques and conceptual understanding of statistical modeling—is
after the introduction of the tool and the concepts, when they engage in the emergent modeling
process of applying gained knowledge in new real-life situations. Prior to working with the
TinkerPlots worksheets, students had a brief introduction to the tool and concepts. These
preparatory activities were designed within the specific context of a black box with marbles
and involved three 60-min lessons. Two of these lessons concentrated on physical black box
experiments and one on simulations. Both the physical and simulation-based preparatory
activities introduced students to statistical modeling by addressing concepts such as sample,
sampling variation, repeated sampling, sample size, frequency distribution of repeated sam-
pling, and (simulated) sampling distribution (Chance et al., 2004). The introduction of
TinkerPlots techniques was done in the third 60-min lesson through a classroom demonstration
of the tool by the teacher, followed by students practicing themselves using an instruction
sheet. On this instruction sheet, the TinkerPlots techniques for making a model, simulating
repeated samples, and visualizing the sampling distribution were listed. The brief introduction
on techniques and concepts focused on the black box context only.

For the study reported here, we designed five worksheets. In one 60-min lesson per worksheet,
we invited students to apply and expand their emerging knowledge from the preparatory black
box activities in new real-life contexts. The design of the worksheets was inspired by studies from
Patel and Pfannkuch (2018), Manor and Ben-Zvi (2017), and Chance et al. (2004). In each
worksheet, the students were asked to build and run a model of a real-world situation in
TinkerPlots and to use this model, by simulating and interpreting the sampling distribution of
repeated samples, to understand the real-world situation. The structure of these worksheets is
shown in Table 2. In each worksheet (W1 to W5), a new context was introduced. We chose
contexts with categorical data to minimize the common confusion between the distribution of one
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Table 2 Structure of designed worksheets 1-5

Worksheet component Student activity

a. Explore and identify important factors from a Try to understand the situation and the data collection by
given real-life problem to build a population defining the problem, making predictions, and
model in TinkerPlots considering variation. Apply structure by identifying

all known real-world factors, considering model tools
in TinkerPlots to represent real-world factors, and
evaluating whether all relevant factors are included in

the model
b. Build and run the model by simulating sample Use TinkerPlots to examine the behavior of the model by
results and examine the behavior of the model visualizing single sample results and repeated sample

results in respectively sample and sampling
distributions by, checking variation in simulated data
distributions at varying sample sizes and varying
number of repeated samples, comparing these data
with the contextual knowledge, evaluating model fit
by checking how simulated data mimic the model
. Examine and interpret the simulated results by Interpret the results of simulated data by identifying and
using the sampling distribution using TinkerPlots tools to answer specific tasks and, in
addition, by considering (the probability of a specific)
range of outcomes, sampling variability, effect of
sample size, and number of repeated samples
d. Answer the problem using the simulated data Communicate findings by stating background to the
problem, making model informed decisions,
recognizing effects of underlying randomness, and
stating limitations of the decisions

o

sample and sampling distribution (Chance et al., 2004) and to optimize the similarity with the
black box context in the preparatory activities. When carrying out the tasks on W1 to W5, students
could use the TinkerPlots instruction sheet from the preparatory activities. The aim of the
worksheets was to expand students’ understanding of statistical modeling—that is, the building,
application, and interpretation, of context-independent statistical models; in our study, the
sampling distribution of repeated sampling—by using TinkerPlots as an instrument.

3.2 Participants

We worked with two groups, each consisting of fourteen 9th-grade students. Group 1
consisted of students in school year 2018-2019 and group 2 of students in school year
2019-2020. All students were in the pre-university stream and thus belonged to the 15% best
performing students in our educational system. The students were inexperienced in sampling
and had no prior experience in working with digital tools during mathematics classes.

The students in group 1 went through the preparatory activities described earlier during the
regular math lessons in school. Their teacher had been involved in the research project and had
already carried out these lessons several times. All twenty students from the class were invited to
participate in the session at Utrecht University’s Teaching and Learning Lab (a laboratory classroom)
and fourteen of them applied. During the lab session, these students worked on worksheets 1-3 (W1
to W3), the initial phase of the teaching sequence. For practical reasons—such as missing regular
classes and travel time—multiple research sessions with the same students were not possible.

Therefore, one school year later, we performed lab sessions again, but with a different group of
students, here called group 2. These students from the same school and with the same teacher as
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Table 3 Overview of participants and data collection

Participants Data collection

Group School year Average Average grade  Data from students’ Total time duration
math grade preparatory tasks work recordings

1 (n=14) 2018-2019 6.9 8 W1-W3, initial phase 28 h

2 (n=14) 2019-2020 6.6 8 W4-WS5, more advanced phase 17 h

group 1 went through the same preparatory lessons and W1 to W3 during their regular math
lessons at their school. Again, fourteen students applied to participate in the research sessions at the
university. These students in group 2 were similar to those in group 1: They performed at a similar
level in mathematics, as their overall grades for the school year averaged 6.6 on a scale of 10, which
was comparable to 6.9 in group 1. In addition, students’ performance in the preparatory tasks
averaged 8 on a scale of 10 in both groups. The teacher judged the starting level of the two groups
to be similar. During the research sessions, the students of group 2 worked on W4-WS5, the more
advanced phase of the teaching sequence. An overview of participants can be found in Table 3.

3.3 Data collection

The data consisted of video and audio recordings from two classroom laboratory sessions.
During the first 5-h session in Utrecht University’s Teaching and Learning Lab, the fourteen
students of group 1 worked in teams of two or three on the designed W1-W3. The advantage
of this lab setting over a classroom environment was that detailed video recordings could be
made of students’ actions in TinkerPlots and their accompanying conversations. The students
were specifically asked to express their thoughts while solving the problem, the think-aloud
method (Van Someren, Barnard, & Sandberg, 1994). The teams worked on a laptop, the screen
of which was displayed on an interactive whiteboard. Figure 1 shows the setup in the lab.

Fig. 1 Students working with TinkerPlots in Utrecht University’s teaching and learning lab
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During the second lab session, we collected video and audio recordings from fourteen students
of group 2, while working on W4-WS5.

3.4 Data analysis

The data analysis consisted of three phases: (1) identifying common instrumentation schemes,
(2) examining the global scheme genesis process during the work, and (3) examining the
scheme genesis process in depth (Table 4).

In phase 1 of the analysis, we used a combined approach of theory-driven (prior to data
collection) and bottom-up (based on the data) to identify emerging instrumentation schemes. The
final results can be found in Table 7. To identify the schemes, we conducted qualitative data
analysis as defined by Simon (2019): A process of working with data, so that more can be gleaned
from the data than would be available from merely reading, viewing, or listening carefully to the
data multiple times (p. 112). In step 0, prior to the data collection, we defined preformulated
schemes. These schemes were based on the theories on statistical modeling (Biischer & Schnell,
2017; Chance et al., 2004; Gravemeijer, 1999; Manor & Ben-Zvi, 2017; Patel & Pfannkuch,

Table 4 Overview of data analysis

Phase and objective Outline Data-driven/theory-driven

Phase 1: Qualitative data analysis
Identification of students’
instrumentation schemes

Phase 2: Interpretive
content analysis

Examination of students’
scheme development by
identifying their TinkerPlots
techniques and levels of
understanding statistical
modeling during the work

Phase 3: Case study
More detailed examination of
students’ scheme development

Step 0 (Prior to data collection):
Preformulating instrumentation
schemes based on theories
on statistical modeling

Step 1: Observing each student at
a certain local segment of
the teaching sequence

Step 2: Categorizing data from
step 1, by using preformulated
instrumentation schemes

Step 3: Identifying global patterns
of instrumentation schemes
for more students, by using the
categorized data of step 2

Defining technical levels for
TinkerPlots techniques and
conceptual levels for
understanding statistical modeling

Refining and specifying technical
and conceptual levels in each
instrumentation scheme

Assigning levels to student actions
when working on W1 and W5

Further examining how TinkerPlots
techniques and understanding
statistical modeling intertwine
in the schemes students develop,

Theory-driven

Data-driven

Data- and theory-driven

Data- and theory-driven

Theory-driven

Data- and theory-driven

Data- and theory-driven

Data-driven

that is, how techniques may support
conceptual understanding and

the other way around, by zooming
in on developing personal schemes
of students
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2018), and instrumental genesis (Artigue, 2002), and on expertise developed in previous inter-
ventions (Van Dijke-Droogers et al., 2020). In these preformulated schemes, specific TinkerPlots
techniques were related to students’ understanding of statistical modeling. In step 1, we observed
each student at a certain local segment of the teaching sequence, for example, building a model of
the population (W1 Task 5), and analyzed the techniques and concepts that were manifested in
students’ actions and reasoning at that local segment. In step 2, we categorized the data from step 1
by using the preformulated schemes. To do this categorization, at the same time as preformulated
schemes were assigned, we expanded, refined and adjusted them to include the observed data. In
step 3, we used the categorized data of step 2 to identify patterns for more students. By
systematically and iteratively going through the categorized data, both within one student over
several schemes and across students, we identified global patterns in emerging instrumentation
schemes. These global patterns occurred to a certain extent in every student and across students
while working on each worksheet. By adapting the preformulated schemes to the global patterns,
we identified students’ instrumentation schemes.

Concerning phase 2 of the analysis, the data for examining students’ instrumental genesis,
that is, their scheme development during the work, we used interpretive content analysis
(Ahuvia, 2001). This variant of content analysis allowed us to identify both explicitly observed
and latent content of students’ technical actions and reasoning. To identify possible progress in
students’ TinkerPlots techniques, we defined five technical levels of proficiency. These levels
were based on Davies’ (2011) levels of technology literacy and refined by both our experi-
ences from previous research and the collected video data. Davies defined six levels of users
(non-user, potential user, tentative user, capable user, expert user, and discerning user) each of
which corresponds to ascending levels of use: none, limited, developing, experienced, pow-
erful, and selective. For our study (Table 5), we merged the last two levels of technology
literacy, as our students were unable to reach the highest level in the short period of time
working on W1 to W5. Based on the observed data, we specified the five technical levels for
using TinkerPlots, for each instrumentation scheme. The specified technical levels were used
to analyze students’ scheme development during the work on W1 and WS, respectively. To
identify possible progress in students’ understanding of statistical modeling, we defined five
conceptual levels. The conceptual levels are displayed in Table 6. The conceptual levels were
merely based on the previously described levels by Garfield et al. (1999). These conceptual
levels for understanding statistical modeling were further specified for each instrumentation
scheme on the basis of the observed video data and prior experiences.

Table 5 Technical levels for using TinkerPlots

Level Description

1. Non-user Students are not able to carry out the TinkerPlots techniques

2. Limited user Students carry out the TinkerPlots techniques by following the instructions stepwise; the
techniques are still carried out hesitantly; haphazard trial and error or simply trying
something

3. Developing user ~ Students carry out correct TinkerPlots techniques by following the instructions most of the
time; incorrect techniques are used but later corrected
4. Experienced user  Students carry out correct TinkerPlots techniques fluently—that is, fast and without
mistakes—sometimes augmented by newly explored TinkerPlots techniques
5. Expert/discerning ~ Students make well-considered decisions for correct TinkerPlots techniques
user
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Table 6 Conceptual levels of understanding statistical modeling

Level Description

—_

. Incorrect reasoning ~ Wrong statements and/or incorrect using words and symbols related to the specific
item of conceptual understanding

2. Idiosyncratic Knowing words and symbols related to the specific item of conceptual understanding
reasoning but using them without fully comprehending and often incorrectly
3. Verbal reasoning Verbal understanding of the item but unable to apply it to the actual behavior. For

example, the student can reproduce that results from a larger number of repeated
samples lead to a better estimate of the population but does not understand how key
concepts such as variability and range are integrated
4. Transitional Correctly identifying one or two features of the item without fully integrating these
reasoning features. For example, identifying, and relating just one or two of the features (1-3)
in understanding that results from more repeated samples lead to a better estimate of
the population: more repeated samples lead to (1) a smoother sampling distribution,
without local peaks, with (2) a peak at the population proportion and (3) to an
average that resembles the population
. Integrated process Understanding of the process of sampling and sampling distributions. For example,
reasoning understanding the effect of simulating a larger number of repeated samples to the
shape, peak, and average of the sampling distribution and that, as a consequence,
more repeated samples lead to a better estimate of the population

W

The specification of both the technical and conceptual levels for coding the data was
discussed in-depth with experts in this domain. Although the students worked in teams of
two or three, we analyzed their proficiency levels individually. We did so as we noticed
considerable differences in individual proficiency within one team and also because there
was cooperation and consultation between teams. To check the reliability of the first
coder’s analysis, a second coder analyzed the video data of students’ activities with W1
and W5, for both the coding of technical and conceptual levels. A random sample of 5%
of the data (30 out of 600 fragments) was independently rated by the second coder. The
second coder agreed on 85% of the codes. Deviating codes, which were limited to two
levels difference at most, were discussed until agreement was reached.

In phase 3, to further examine the intertwined relationship between developing TinkerPlots
techniques and understanding statistical modeling, that is, how techniques may support
conceptual understanding and vice versa, we used case studies to investigate students’
instrumental genesis. In these case studies, we zoomed in on developing personal schemes
of students in both the initial and more advanced phase.

4 Results

In this section, we first present the six instrumentation schemes we identified, each including
TinkerPlots techniques and conceptual understanding of statistical modeling (Table 7). Sec-
ond, we describe students’ global scheme development during the work, by presenting the
levels at which the students used the techniques and concepts while working on worksheets 1
and 5. Third, we describe two students’ cases to reveal in more detail the intertwinement of
emerging techniques and conceptual understanding in the personal instrumentation schemes
that students developed.
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Table 7 Instrumentation schemes for statistical modeling through simulating repeated samples with TinkerPlots

Instrumentation Schemes for Statistical Modeling

Scheme TinkerPlots techniques Conceptual Understanding
A. Enter a title A population model can be built by
Building a _ reducing/filtering the given data
model and using a suitable graphical
Explore and i e representation (depending on the
identify Enter type and 210 description/context given), for
important number/ example a bar or pie chart, that
factors from a proportions of = incorporates the important factors,
given real-life elements = - such as the total number of
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features such as absolute and/or
relative numbers for each
characteristic.

To answer a real-life problem, the
behavior of the model with respect
to a specific characteristic (related
to the real-life data)—for example
the number of students having daily
breakfast—can be examined by
simulating repeated samples and
displaying the results in a sampling
distribution. A sampling
distribution displays the results of
each sample in one bar chart (or
stacked dot plot). Along the
horizontal axis are the possible
sample results displayed and along
the vertical axis the frequency with
which each result occurs;

sample results from the same
population model will vary due to
chance, with results close to the
population model occurring more
frequently than strongly deviating
sample results.
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Table 7 (continued)
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Results from a larger number of
repeated samples lead to a better
estimate of the population, that is,
more repeated samples lead to (1) a
smoother sampling distribution—
without local peaks— (2) with a
peak corresponding with the
population proportion and (3) to an
average that better resembles the
population, and these three features
ensure that results of more repeated
samples lead to a better estimate of
the population.

Results from repeated samples with
a larger sample size lead to a better
estimate of the population, that is, a
larger sample size leads to (1) less
variation in the corresponding
estimates of the population and (2)
to an average that better resembles
the population, and these two
features ensure that a larger sample
size leads to a better estimate of the
population.

The proportion of sample results
belonging to a particular range of
results indicates the probability that
a random sample result falls into
this particular range. In this way,
the probability of a given sample
result can be interpreted and used to
make a statement about a given
real-life problem.

4.1 Identified instrumentation schemes

In observing students’ work, we identified six instrumentation schemes, called (A) building a
model, (B) running a model, (C) visualizing repeated samples, (D) exploring repeated samples,
(E) exploring sample size, and (F) interpreting sampling distribution (see Table 7). Column 1
provides a description of each scheme, column 2 displays a screenshot of students” TinkerPlots
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techniques for the scheme at stake, and column 3 shows students’ understanding of statistical
modeling that we could distill from their reasoning during these actions. Each instrumentation
scheme incorporates a specific modeling process, ranging from building a population model
by exploring and identifying important information in a given real-life problem in scheme A,
to answering a given problem by interpreting the simulated sampling distribution from
repeated sampling in scheme F. As such, the identified instrumentation schemes display
how specific TinkerPlots techniques occurred simultaneously with particular elements in
students’ understanding of statistical modeling.

4.2 Students’ global scheme development

We now describe students’ instrumental genesis by presenting the observed levels at which the
students used the TinkerPlots techniques and demonstrated their understanding of statistical
modeling in their reasoning, throughout the teaching sequence. In each Worksheet (W1 to
W5), instrumentation schemes A to F were addressed. Data from group 1 while working on
W1 were used to indicate students’ level in the initial phase of the teaching sequence, and data
from group 2 while working on W5 for the more advanced phase. Students’ technical actions
with TinkerPlots were coded in technical levels for each scheme and for each student. For
example, concerning W1 scheme A, five students out of fourteen in group 1 were unable to
build a population model. They encountered difficulties in finding the input options for the
parameters of the population model or for graphical representations of the model and,
therefore, we coded their actions for W1 scheme A as technical level 1. As another example,
concerning W5 scheme A, six students out of fourteen in group 2 were capable of making well
thought out choices from newly explored TinkerPlots options to make a model, for example,
by using non-instructed options for graphical representations like pie chart or histogram, and
we coded their actions technical level 5.

Students’ average technical levels for each instrumentation scheme on respectively W1 and
W5 was calculated to identify students’ global development during the work. For example,
students’ average technical level score on W1 in scheme A was calculated from five students
whose actions were coded technical level 1, seven students who scored level 2, and two
students on level 3, which resulted in an average technical level score of 1.8. Likewise, we
coded students’ reasoning and calculated their average conceptual levels for each scheme from
A to F, while working on W1 and W5. The change in performance on technical and conceptual
levels from the initial phase in W1 to the more advanced phase in W5 is visualized in Fig. 2.
When comparing students’ work on W1 to W5, students showed an improving level of
proficiency in their application and control of the tool as well as in their usage and expression
of statistical concepts in their accompanying reasoning. As students’ development of
TinkerPlots techniques and conceptual understanding of statistical modeling was observed
simultaneously, the results show a co-development of techniques and concepts.

It is interesting to note that in schemes C and D, we observed more progress in students’
average conceptual level score than for their technical level score. Both these schemes required
more complex TinkerPlots techniques than the other schemes. In the initial phase, concerning
these two schemes, most students of group 1 worked carefully according to the TinkerPlots
instruction sheet, which enabled them to use the correct techniques. For example, concerning
students’ TinkerPlots techniques in scheme C during the initial phase with W1, all fourteen
students had difficulty using the history option in TinkerPlots to visualize the sampling
distribution. They all followed the instruction stepwise. Seven of them made mistakes in their
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Co-Development of Techniques and Concepts for Statistical Modeling using TinkerPlots
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Fig. 2 Development of students’ average technical level (TL) and conceptual level (CL) for each instrumentation
scheme from worksheets 1 to 5

actions—for example, not knowing how to enlarge the history window to enter all required
information or not being able to select a useful characteristic for the history option—which
made it difficult for them to visualize a correct sampling distribution, and as such, their actions
were coded technical level 2. The other seven students made a correct visualization, although
they encountered problems with displaying a clear bar chart or entering the correct values, and,
as such, their actions were coded technical level 3. Students’ reasoning during the initial phase
focused on the correct technical actions. For the seven students that were unable to visualize a
correct sampling distribution, we also observed incorrect reasoning, that is, wrong statements
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or incorrectly using words and symbols related to sample, variability, repeated samples, and
sampling distribution, and we coded their reasoning conceptual level 1. In the data of five of
the seven students that managed to display a correct sampling distribution, we observed
superficial but correct reasoning, that is, noticing that the graph looks more or less the same
as on the instruction sheet and reading the values on the horizontal axis for common sample
result; as such, we coded their reasoning conceptual level 2. The two other students that
visualized a correct sampling distribution were in one team. They discussed that the shape of
the sampling distribution was not in line with their expectations, as they expected a smooth
bell curve. Later in this section, we present in detail the work of these two students.

In the more advanced phase (W5), with regard to students’ technical level in scheme C, all
fourteen students in group 2 displayed a correct sampling distribution and were coded level 3
or higher. Four of them explored a quick start for simulating and adding repeated sample
results to a sampling distribution; their actions were coded technical level 5. Concerning
students’ conceptual level in scheme C with W5, all students’ reasoning was coded level 4 or
higher, as they correctly stated that more repeated samples led to a smoother shape of the
sampling distribution with a peak and average that resembled the modeled population propor-
tion. For example, a student quoted:

This is in line with our expectations. Most of the sample results seem to be in between
43 and 47. This bar at 42 is a bit high [local peak], but yeah, it can happen that within
these 100 repeated samples, there are incidentally more with 42...

With regard to the intertwinement of developing techniques and conceptual understanding,
based on our findings in schemes C and D, it appeared that for schemes that required complex
TinkerPlots techniques, a strong technical focus in the initial phase occurred together with less
proficiency on a conceptual level, and, additionally, that in the more advanced phase within
those schemes, students’ statements shifted from discussing techniques to reasoning with
concepts, which resulted in more progress for conceptual understanding. In schemes A, B,
E, and F, we observed a more balanced co-development. Lastly, it is worth mentioning that in
the advanced phase, most students (10 out of 14) were capable of using the simulated sampling
distribution from repeated sampling as a model for determining the probability of a specific
range of sample results, and, as such, to interpret the statistical model to solve a given problem.

4.3 Two cases

In this section, we present two cases of students as illustrative examples of how we zoomed in
on the observed data to reveal the intertwining of emerging TinkerPlots techniques and
conceptual understanding of statistical modeling in the personal schemes students develop.
First, we present the case of Elisha and Willie (all student names are pseudonyms) while
working on W1, as it illustrates how conceptual understanding influenced TinkerPlots tech-
niques and vice versa in the initial phase. Second, we present the case of William and Brenda
while working on W5 in the more advanced phase.

4.3.1 The case of Elisha and Willie
We focus on Elisha and Willie’s work on W1 tasks 5 and 8 (Fig. 3). We start by

highlighting some of their actions and reasoning, followed by an evaluation of how their
developing TinkerPlots techniques influenced their conceptual understanding and vice
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Breakfast worksheet

Introduction: Research at a primary school into the breakfast habits of pupils showed at the beginning of
the school year that 210 of the 300 pupils eat breakfast daily. The school management wants to
investigate again the number of students having daily breakfast at the end of the school year. However,
asking all pupils is a lot of work and therefore they decide to take a sample of 30.

Task 5: Assume that the number of pupils having daily breakfast remained the same during the school
year. Use TinkerPlots to simulate sample results (number of pupils having daily breakfast) from the
given population and sample size. Fill in the table below, based on the simulated results.

Sample size 30

Simulated sample results in
interval notation [...;...]

Most common results

Exceptionally low results

Exceptionally high results

Task 8: In the past school year, a lot of attention has been paid to stimulating 'daily breakfast' at the
school. The school management wants to use the results from the sample of 30 to determine whether the
breakfast behavior of pupils has improved. Suppose the sample shows that 23 out of 30 pupils have
breakfast daily. Can the school management, based on this result, conclude that the pupils' breakfast

behavior has improved? Support your answer with the simulated sample results.

Fig. 3 Tasks 5 and 8 from worksheet 1

versa. To answer W1 task 5, we expected students in scheme A of the instrumentation
scheme to develop TinkerPlots techniques for entering the population characteristics as
shown in Fig. 4(a). However, when entering the sample size in scheme B, Elisha and
Willie incorrectly entered 100. Later on, when they arrived at scheme F—interpret the

a
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Repeat
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Draw 90
1
Breakfast No breakfast
e k|

Mixer Stacks Spinner Bars Curve Counter

5% £ O il & 55
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Fig. 4 Building a population model on worksheet 1 task 5: the expected model (a) and Willie and Elisha’s model

(b)
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results using the sampling distribution—the following discussion in excerpt 1 took place
while the two students were looking at the simulated sampling distribution on their
screen (see Fig. 5(a)).

Willie:  According to this graph, the sample results vary between 58 and 80 pupils who
have breakfast every day [silence]. But... how is this possible? We only have 30
pupils in one sample......

Elisha:  Yes, but we have already filled in 100 [points to the input option ‘repeat’ on the
screen, see Fig. 4(b)] and we should have entered 30.

Willie:  But why, we do it [simulating repeated samples] 100 times, don’t we? We do it 100
times with 30 pupils.

a
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Fig. 5 Willie and Elisha’s simulated sampling distributions from repeated sampling for worksheet 1 task 5. (a)
Simulated sampling distribution for worksheet 1 with an incorrect sample size of 100 instead of 30. (b) Simulated
sampling distribution for worksheet 1 with sample size 30 and 100 repeated samples, showing a “bumpy” shape.
(c) Simulated sampling distribution for worksheet 1 with sample size 30 and 300 repeated samples, showing a
“smooth” shape
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Elisha:  Yes, exactly. We repeat it 100 times with 30 pupils. And now, we get for one such
thing [points at the visualization of one sample on the screen] a result of 73 pupils
who eat breakfast daily and 27 not, that is not correct. So, here [points again to the
input option ‘repeat’ on the screen, see Fig. 4(b)], we should have entered the sample
size, which is 30, instead of entering 100.

Following this discussion, they deleted their work and started again by entering a popula-
tion model, but now with a correct sample size of 30. This time, in scheme C, they entered 100
for the number of repeated samples. This results in the simulated sampling distribution of Fig.
5(b). Here, the discussion in excerpt 2 took place.

Willie:  This graph looks weird. What went wrong? Look at all those bumps.

Elisha: Let’s do it again [more repeated sampling]. And maybe, we should simulate more
than 100 repeated samples. The more, the better, right?

Willie:  [After simulating 200 extra repeated samples, their simulated sampling distribution
looked like Fig. 5(c)]. Yes, that’s the way it should look like. Next time we just have
to enter more repetitions right away. That’s simply the best. So, for now, most of the
samples are between 18 and 24.

After the discussion in excerpt 2, they used the simulated sampling distribution (Fig. 5(c))
to correctly answer task 5 and 8. For task 5, they stated that most common sample results will
vary from 18 to 24 out of 30; they indicated sample results varying from 15 to 17 out of 30 as
exceptionally low and results varying from 25 to 27 exceptionally high. They ignored the
possibility of sample results below 15 and above 27, probably as these results were not
displayed on the x-axis of their simulated sampling distribution. For task 8, they stated that
23 out of 30 seemed to be better than 21 out of 30; however, 23 was not exceptionally high
and, therefore, the school management could not conclude that the breakfast habits of pupils
have improved. Elisha added that she regarded a sample of 30 as very small in this case.

In summary, the case of Elisha and Willie showed how their conceptual understanding and
TinkerPlots techniques co-developed and influenced each other. From excerpt 1, it seems that they
mixed up the option in TinkerPlots for entering sample size with entering the number of repeated
sampling. When the (incorrect) simulated sampling distribution was displayed on their screen, this
sampling distribution did not correspond to their conceptual expectations. The mismatch led them
to investigate the options available to see what the problem was, which resulted in applying the
correct technical option for entering sample size. Here, their conceptual understanding fostered
their technical actions. From excerpt 2, we see how Elisha and Willie used the technical options for
repeated sampling to get a better, less “bumpy and smoother” representation of the sampling
distribution. The technique of increasing the number of repeated samples helped them understand
the effect of more repeated samples by giving them a better picture of the sampling distribution. In
this way, the technique of repeated sampling fostered their conceptual understanding of the effect
of adding more repeated samples on the sampling distribution in scheme D.

From excerpt 2, it was difficult to distill the depth of the students’ conceptual understanding
about adding more repeated samples in scheme D. Although they stated that they should enter
a larger number of repetitions next time, and that a larger number of repetitions would lead to a
better graph of the sampling distribution, they did not express clearly how they thought these
two were related. However, later on, in W1 task 14, they explicitly mentioned that next time
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they should simulate a larger number of repeated samples at once in order to reduce the
influence of possible outliers and to achieve a well-shaped sampling distribution. Combining
students’ statements over several tasks and schemes helped us to identify their understanding
of specific concepts.

4.3.2 The case of William and Brenda

We focus on the work of William and Brenda on W5 tasks 7 and 9 (Fig. 6). Instead of getting
started with TinkerPlots after reading task 7, these two students started a 5-min discussion
about possible answers. Excerpt 3 presents a small part.

William: 42 out of 50, that’s not 90%, because then it should be 45, this is not enough. So
don’t buy it.

Brenda: I agree. 42 is not sufficient. Don’t do it.

William:  Or... (silence)... it’s just a small sample size, only 50. In our earlier social media
task with a sample of 50, there was a lot of variation, then 42 is not that unusual.

Athe discussion progressed, they decided to model the task in TinkerPlots. Without
discussing the TinkerPlots techniques, they succeeded within a few minutes and without
any hesitations to display the sampling distribution as shown in Fig. 7(a). Their goal was
to determine the most common results—in their strategy, the middle 80% of the samples—
by placing borders for the lowest and highest 10%. After they moved the lower border of
the gray area back and forth a number of times, it turned out to be impossible to get
exactly 10% into the left part of the sampling distribution. On that point, the following
discussion took place.

Worksheet 5: LED lights

Introduction: A do-it-yourself shop is not satisfied with the quality of LED lights they sell. There are
too many complaints from customers about defective lights. They are therefore considering a switch
to supplier B. This supplier guarantees that at least 90% of the lights will function. The do-it-yourself
shop has therefore ordered a batch of 10,000 LED lights. Before selling them in the shop, they use a
sample to verify whether the supplier's claim is correct.

... Task 7: Suppose there are 42 functioning LEDs in the sample (size 50). What advice would you
give the shop about the purchase of the batch of LED lights? Justify your answer.

... Task 9: On closer inspection, the shop doubts whether a sample size of 50 would be appropriate.
Which sample size would you recommend? Justify your answer.

... Task 12: Because the shop has doubts about the quality of the LED lights from supplier B, they
ordered a batch of 10,000 from supplier C. They also examine this batch with a sample of 50 to
determine whether this batch may be better than the batch of supplier B.

Open the file "LED lights supplier C" with TinkerPlots. Simulate repeated samples from the hidden
population model of supplier C. Based on the simulations, estimate the number of functioning LEDs
in the total batch of 10,000 LEDs. Justify your answer.

Fig. 6 Tasks 7, 9, and 12 from worksheet 5
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Fig. 7 William and Brenda’s simulated sampling distributions from repeated sampling for worksheet 5 task 7. (a)
Simulated sampling distribution for 100 repeated samples in worksheet 5 with a left border of the gray area at
5%. (b) Simulated sampling distribution for 100 repeated samples in worksheet 5, second attempt, with a left
border of the gray area at 16%. (¢) Simulated sampling distribution for 500 repeated samples in worksheet 5 with
a left border of the gray area at 5%

William: ~ This is not a good sampling distribution.

Brenda:  How is that?

William: It is not possible to get 10% here [pointing to the left part in the sampling
distribution]. It is either 5% or 13%

Brenda:  And now what? There’s not much we can do with this. Can’t we do it again? Then
maybe it will be better.

They decided to delete everything and start all over again. This resulted in the sampling
distribution of Fig. 7(b). Then the discussion in excerpt 5 took place.

William:  This isn’t much better... now we have 8% or 16%...

Brenda:  Let’s just do it again.

William:  Again? Wait, I think we can do this again faster. We can leave this [points to sub
screen 1, 2 and 3] and only have to do the repeats again.
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William:  We should have discovered this earlier, that would have saved us a lot of work
with the previous worksheets. In fact, we always investigate the same thing, but
with a different subject.

Brenda:  How do you mean?

William:  Well, we investigate possible sample results with a given samples size to answer
the questions. It doesn’t really matter whether it’s breakfast, social media or lights.

This third attempt also resulted in a left area smaller than 10%. At that moment, they
decided to increase the number of repetitions, as that usually gives a better picture. After
William said: “You can probably add samples in a quick way, without starting all over,” they
explored the techniques and soon found out how to add samples. This resulted in the sampling
distribution of Fig. 7(c).

William: I don’t think there is any point in adding more repetitions, it remains the same. 42
is apparently exactly at the border of common results. And now what?

Brenda:  The sampling distribution hardly changes, so there’s no need for more repetition. I
think 42 is not much. Most results are higher

William:  Okay, based on these sampling distributions we find 42 to be too few. So our
advice is not to buy!

Later on, when they worked on W5 task 9, they fully agreed that the sample size was too
small. Brenda stated: “The larger sample the better the results, but very large is not conve-
nient,” at which point William proposed to pick a sample size of 200. As with task 7, they
wanted to explore a fast way in which they did not have to remove all the sub-screens. To this
end, they discussed the views on each sub-screen and finally decided that only sub-screen 1
could remain. Here, they discussed concepts such as sample size, difference between sample
size and number of repeated samples, and the relationship between the tables and dot plots.
When using a fast method for larger sample size, the effect of larger sample size confirmed
their conjecture.

In summary, the case of William and Brenda in the more advanced phase showed a focus
on conceptual understanding when reading the task, a focus that we saw in almost all students
in W5. Excerpt 4 illustrates how the two students, after reading task 7, discussed concepts such
as variation, probability, and sample size. Moreover, in this excerpt, they related this task to a
previous task and context (the context of W3). This also appeared in the second part of excerpt
5; here, we saw how the use of similar TinkerPlots techniques in different worksheets and
contexts enabled William to discover a context-independent pattern. The TinkerPlots tech-
niques helped him to identify technical patterns in the modeling process and thus to view the
concepts involved at a more abstract—context-independent—level. Regarding the intertwined
relationship between TinkerPlots techniques and conceptual understanding, excerpt 5 showed
how their understanding—in this case, their overestimation of variation in many repeated
samples—triggered them to explore new techniques. Also, the other way around, how in
excerpt 6 the techniques helped them to understand that the sampling distribution of many
repeated samples remains stable. Also, their work on W5 task 9 showed, as in the case of
Willie and Elisha, a two-directional relationship between TinkerPlots techniques and concep-
tual understanding. Their understanding of statistical modeling concerning a general approach
and patterns resulted in a search for more advanced TinkerPlots techniques by using already
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modeled parts of the process in their sub-screens, and also, the techniques strengthened them in
their conjecture about the effect of sample size.

5 Discussion

The aim of this study was to explore the applicability of the instrumental genesis perspective to
statistics education, and to statistical modeling in particular. We identified six instrumentation
schemes for statistical modeling processes with TinkerPlots, describing the intertwined devel-
opment of students’ digital techniques and conceptual understanding. We noticed an increase
in their mastery of the tool as well as in their statistical reasoning, evidencing students’ co-
development of techniques and conceptual understanding. We observed a two-directional
intertwinement of techniques and concepts. The two student cases showed in more detail
how students’ understanding of concepts informed their TinkerPlots techniques and vice versa.
Although we found a two-directional intertwining in all schemes and phases of the teaching
sequence, at particular moments we noticed more emphasis in one direction.

In the more advanced phase of the teaching sequence, the results show how the use of
similar TinkerPlots techniques over different worksheets and contexts enabled students to
discover context-independent technical patterns. Students’ identification of those technical
patterns in the modeling process enabled them to view concepts at a higher, more abstract
level. We interpret this as emergent modeling (Gravemeijer, 1999), which involves the
conceptual shift from a model of a context-specific situation to a model for statistical reasoning
in a variety of similar and new contexts. Although the emphasis here was on technical patterns
that informed students’ conceptual understanding, we also saw the opposite direction
intertwined in this process, as their conceptual understanding concerning a general approach
and patterns resulted in a search for more advanced techniques by using already modeled parts
of the process on their screen.

In a short period of time, students—who were inexperienced in taking samples and working
with digital tools—Ilearned to carry out the modeling processes, including interpreting the
simulated sampling distribution. Regarding this promising result, we discuss some possible
stimulating factors. As a first factor, it appeared from the identified instrumentation schemes
that the required techniques in the digital environment of TinkerPlots strongly align with key
concepts for statistical modeling. This strong alignment probably facilitated students to
overcome initial difficulties concerning variability, distribution, sample and sampling, the
effect of sample size, difference between the sample and sampling distribution (Chance
et al., 2004), which we hardly observed in the more advanced phase. For example, concerning
the common confusion between the sample and sampling distribution, the distinct visualization
of sample and sampling results within the digital environment of TinkerPlots enabled students
to distinguish between both distributions. As a second factor, the required TinkerPlots
techniques invited students to phenomenon simplification (Manor & Ben-Zvi, 2017). For
example, in the initial phase, we observed difficulties in distilling sample size and population
proportion from the context given for entering the correct model, while these difficulties hardly
occurred in the more advanced phase. As a third factor, applying similar statistical modeling
processes in TinkerPlots to varying real-life contexts allowed students to distinguish and
interact between the model world—using the same digital environment—and the real world
using varying contexts (Patel & Pfannkuch, 2018).
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The findings presented in this paper should be interpreted in the light of the study’s
limitations. First, the results of this research are based on students in a classroom laboratory
instead of students’ regular classroom environment. By conducting the preparatory activities in
students’ regular classrooms and maintaining the same student teams, lesson design, and a
familiar teacher, we tried to reduce the influence of the classroom laboratory setting at the
university. Second, due to practical reasons, we were confined to working with two groups of
students, group 1 in the initial phase and group 2 in the more advanced phase of the teaching
sequence. Differences between both groups may have affected students’ global scheme
development. However, the students in both groups performed at a similar level in mathemat-
ics and their performances in the preparatory tasks were comparable. The teacher judged the
starting level of the two groups to be similar. Third, distilling students’ conceptual under-
standing from their reasoning was challenging. However, by combining the sometimes flawed
statements made by the students with their accompanying activities—such as their next action
with the tool or their statements later on in their process—we tried to identify their under-
standing of the concepts. Fourth, we worked with pre-university students, the top 15%
achievers in our educational system. Other students may need more time.

Although we focused on statistical modeling processes using TinkerPlots, we consider our
findings on the intertwining of emerging digital techniques and conceptual understanding
applicable to the broader field of statistics education, and to other educational digital tools as
well. Digital tools for other areas in statistics education also structure and guide students’
thinking by providing specific options for entering parameters and commands and/or by
facilitating explorative options that may strengthen students’ conceptual understanding.

Overall, we conclude that the perspective of instrumental genesis in this study proved
helpful to gain insight into students’ learning from and with a digital tool, and to identify how
emerging digital techniques and conceptual understanding intertwine.

6 Implications

The study’s results lead to implications for the design of teaching materials and digital tools,
and for future research. In designing teaching materials, it is important to take into account the
two-directional relationship between emerging digital techniques and conceptual understand-
ing, both during instruction and during practice. Attention to digital techniques in the initial
phase, especially to more complex ones, seems to have a positive effect on learning the
associated concepts later on. The development of context-independent techniques and con-
cepts requires sufficient time and practice for students with different contexts and situations. In
designing digital tools, the intertwined relationship between digital techniques and conceptual
understanding calls for attentive consideration of how the digital techniques are related to the
concepts, to deploy the digital tool in a productive way for the intended learning goal.

This also suggests an implication for future research on statistics education using digital
tools. Although we focused on statistical modeling using TinkerPlots—that is, solving real-life
problems by the building, application, and interpretation, of the sampling distribution of
repeated samples—we assume our global findings also hold for other statistical processes
and digital tools. However, the specific intertwining of emerging digital techniques and
conceptual understanding is unique for each digital tool and intended learning goal. To identify
the specific intertwinement, we recommend using the perspective of instrumental genesis in
analyzing video and conversation data, which can be added by using clinical interviews.
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On a final note, this study gave an insight into the applicability of the instrumental genesis
perspective in the context of statistics education, and statistical modeling with digital tools in
particular. Instrumental genesis seems a fruitful perspective to design technology-rich activities
and to monitor students’ learning.
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